Ch. 20 - Reinforcement Learning

Reinforcement Learning

- Passive learning
 - known environment
 - unknown environment
- Active learning
 - unknown environment
- Exploration
- Action-Value function
- Genetic algorithms and evolutionary programming*
Reinforcement Learning

- Agent receives:
 - no examples
 - no environment model
 - no utility function
- Uses feedback (reinforcement)
 - use rewards to learn successful agent function
 - never told correct actions
- Passive vs. active learners:
 - passive - watches to learn utility function
 - active - acts using learned information
 - suggests explorations of unknown portions of environment

Passive Learning in a Known Environment

- Environment generates state transitions
 - agent perceives them
- Provided with model M_{ij} - probability of transition from state i to state j
- Uses information about rewards to learn utility function $U(I)$ for each state
- Simplifying assumption - additive utility function
 - utility of sequence = sum of rewards in sequence
Passive Learning Example

Agent trying to learn utilities of terminal states (4,3) and (4,2)

Transitions among adjacent states

Exact utility values

Naïve Updating

- Least mean squares (LMS) approach
- Assumes:
 - observed reward-to-go provides direct evidence of actual expected reward-to-go
- Calculate observed reward-to-go for each state
 - updates estimated utility for each state
- Learning utility function directly from examples
 - reduced reinforcement learning to standard inductive learning (Ch 18)
- Misses important fact:
 - utilities of states are not independent
 - converges very slowly to correct utility values
Adaptive Dynamic Programming

- Solving utility equations with DP algorithm
- After agent has observed rewards for all states
 - compute utilities by solving set of equations:
 \[U(i) = R(i) + \sum_j M_{ij} U(j) \]
 - \(R(i) \) - reward associated with state \(i \)
 - \(M_{ij} \) - probability that transition will occur from state \(i \) to state \(j \)
- Provides standard to measure reinforcement algorithms
- Intractable in large state spaces

Temporal Difference Learning

- Approximate constraint equations
 - without solving for all possible states
 - adjust values of observed states to agree with constraints
- Updating rule (temporal difference equation)
 - \(U(i) \leftarrow U(i) + \alpha (R(i) + U(j) - U(i)) \)
 - \(\alpha \) - learning rate parameter
- Define conditions that hold locally when utility estimates are correct
- Write update equation that moves estimates towards equilibrium equation (previous slide)
Passive Learning in an Unknown Environment

- LMS and TD will work the same in an unknown environment - don’t use environment model
- ADP will change
 - adds a step to update estimated model of environment
 - used a basis for utility estimates
 - as environment model approaches correct model, utility estimates converge on correct utilities
- Env. Model learned by observation of transitions

Active Learning in an Unknown Environment

- Active agent must consider what actions to take
- Env. Model must consider probabilities of transitions given certain actions:
 \[M_{ij}^a \]
- Update utility equation:
 \[U(i) = R(i) + \max_a \sum_j M_{ij}^a U(j) \]
- Needs performance element to choose action at each step
Active ADP Agent

function ACTIVE-ADP-AGENT(e) returns an action
 static: U, a table of utility estimates
 M, a table of transition probabilities from state to state for each action
 R, a table of rewards for states
 percepts, a percept sequence (initially empty)
 last-action, the action just executed

 add e to percepts
 $R[SATE][e] \leftarrow \text{REDUCE}[e]$
 $M \leftarrow \text{UPDATE-ACTIVE-MODEL}(M, \text{percepts}, \text{last-action})$
 $U \leftarrow \text{VALUE-ITERATION}(U, M, R)$
 if TERMINAL[e] then
 $\text{percepts} \leftarrow$ the empty sequence
 last-action $\leftarrow \text{PERFORMANCE-ELEMENT}(e)$
 return last-action

Exploration

- What actions should the agent take?
- Each action has two outcomes:
 - gains rewards on current sequence
 - affects percepts received and ability to learn
- Must make trade-off
 - immediate good - current utility estimates
 - long-term well-being
- Don’t want to get stuck in a rut - maximizing rewards on current sequence
- Decide between staying comfortable and exploring to learn more
Example

Moves:
- North, South, East, West
- Prob(action works)=0.8

Rewards:
- -0.04 doesn’t reach terminal state

Two approaches:
- "wacky" - acts randomly
 • eventually explore entire environment
- "greedy" - maximize utility using current estimates

Results:
- "wacky" - learns good utility for all states
 • but never uses the estimates to receive the ultimate reward
- "greedy" - often finds path to terminal state
 • but only sticks to that path
 • never explores for a possibly better path

Exploration Function

\[U^+(i) \leftarrow R(i) + \max_a f \left(\sum_j M_{ij} U^+(j), N(a,i) \right) \]

- \(U^+(i) \) = optimistic estimate of utility
- \(N(a,i) \) = number of times action a has been tried in state i
- \(f(u,n) \) = exploration function
 - determines how greed is traded off against curiosity
 - ex: \(f(u,n) = \begin{cases} R^+ & \text{if } n < N_e \\ u & \text{otherwise} \end{cases} \)
 - \(R^+ \) - optimistic estimate of best reward
 - \(N_e \) - try each state at least Ne times
Genetic Algorithms and Evolutionary Programming

- Student presentation