Ch. 22 – Agents that Communicate

Chapter Outline

- Communication as action
- Types of communicating agents
- Formal grammar for subset of English *
- Syntactic analysis
- Definite clause grammar
- Augmenting a grammar *
- Semantic interpretation
- Ambiguity and disambiguation

* student presentations
Communication

• Definition: *Communication*
 – Intentional exchange of information
 – Production and perception of “signs”
 – Shared system of conventional signs

Communication as Action

• Speech act
 – not necessarily producing sound
 – but act of producing language
• Communicating agents can:
 – Inform each other
 – Query about world
 – Answer questions
 – Request / command actions
 – Promise / offer
 – Share experiences
Communication as Action

- Hard part:
 - Decide when to “speak”
 - Decide what to “say”
 - Similar to planning
 - Non-determinism due to:
 - misunderstanding
 - ambiguity

Fundamentals of Language

- Formal language
 - Set of strings
 - String = sequence of symbols (terminal symbols)
 - Most formalisms based on *phrase structure*
 - Noun phrase can combine with verb phrase to make a sentence
 - NP, VP, S = non-terminal symbols
 - Example grammar rule:
 - S → NP VP
Steps of communication

- Speaker S wants to convey proposition P to hearer H using words W:
 - Speaker:
 - Intention – S wants H to believe P
 - Generation – S chooses words W
 - Synthesis – S utters words W
 - Hearer
 - Perception – H perceives W'
 - Analysis – H infers the W' has possible meanings P_1, \ldots, P_n
 - Disambiguation – H infers S intended to convey P_i
 - Incorporation – H decides to believe P_i
Types of communicating agents

• Two types:
 – Share common internal representation language
 – Share communication language – no assumptions about internal representation

Common Internal Representation Language

• Direct access to each others KBs
• Through TELL and ASK interface
• “telepathic” communication

• Problems:
 1. Need naming policy to avoid using same symbol
 2. Relating symbols introduced by different agents
 3. Reconciling differences in KBs
 4. Vulnerable to sabotage
Share Communication Language

- Most agents communicate this way
- More flexible
- Less vulnerable to sabotage

Formal grammar for subset of English

- Student presentation
Syntactic Analysis
Building a Parse Tree

function BOTTOM-UP-PARSE(words, grammar) returns a parse tree

 forest ← words
 loop do
 if LENGTH(forest) = 1 and CATEGORY(forest[1]) = START(grammar) then
 return forest[1]
 else
 i ← choose from {1…LENGTH(forest)}
 rule ← choose from RULES(grammar)
 n ← LENGTH(RULE-RHS(rule))
 subsequence ← SUBSEQUENCE(forest, i, i+n-1)
 if MATCH(subsequence, RULE-RHS(rule)) then
 forest[i…i+n-1] ← [MAKE-NODE(RULE-LHS(rule), subsequence)]
 else fail
 end
 end

Parsing Example

<table>
<thead>
<tr>
<th>forest</th>
<th>subsequence</th>
<th>rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>The wumpus is dead</td>
<td>The wumpus</td>
<td>Article → the</td>
</tr>
<tr>
<td>Article wumpus is dead</td>
<td>wumpus</td>
<td>Noun → wumpus</td>
</tr>
<tr>
<td>Article Noun is dead</td>
<td>Article Noun</td>
<td>NP → Article Noun</td>
</tr>
<tr>
<td>NP is dead</td>
<td>is</td>
<td>Verb → is</td>
</tr>
<tr>
<td>NP Verb dead</td>
<td>dead</td>
<td>Adjective → dead</td>
</tr>
<tr>
<td>NP Verb Adjective</td>
<td>Verb</td>
<td>VP → Verb</td>
</tr>
<tr>
<td>NP VP Adjective</td>
<td>VP Adjective</td>
<td>VP → VP Adjective</td>
</tr>
<tr>
<td>NP VP</td>
<td>NP VP</td>
<td>S → NP VP</td>
</tr>
</tbody>
</table>
Definite clause grammar

- Need a way to associate meaning with each string
- Use first-order logic
- Non-terminal symbol becomes predicate
 \[S \rightarrow NP \ VP \quad NP(s_1) \land VP(s_2) \Rightarrow S(\text{Append}(s_1,s_2)) \]
 \[\text{Noun} \rightarrow \text{stench} \quad (s=\text{“stench”} \lor \ldots) \Rightarrow \text{Noun}(s) \]
- More verbose than BNF notation
 - Use special notation for DCG
 \[X \rightarrow Y \; Z \quad Y(s_1) \land Z(s_2) \Rightarrow X(\text{Append}(s_1,s_2)) \]
 \[X \rightarrow \text{word} \quad X(\text{“word”}) \]
 \[X \rightarrow Y \mid Z \mid \ldots \quad Y'(s_1) \lor Z'(s_2) \lor \ldots \Rightarrow X(s), \quad Y’=\text{logic translation of Y} \]

DCG Augmentations

- Non-terminals augmented with extra arguments
 - \[NP(\text{sem},s) \quad \text{sem} \text{ represents semantics of } NP \; s \]
- Variable on RHS of DCG rule
 - Represents single symbol of input string
 - \[\text{Double} \rightarrow \text{w w} \quad \text{Word repeated twice} \]
- Logical test on RHS of rule
 - \[\text{Digit(sem)} \rightarrow \text{sem} \{0 \leq \text{sem} \leq 9\} \]
Augmenting a grammar

- Student presentation

Semantic interpretation

- Get a set of possible interpretations
- Later use disambiguation to determine correct one
- Grammar for small subset of English
 - \(\varepsilon_1 \) – what is its semantics?
 - How to represent time, events, etc.
Grammar for ε_1

\[
S \rightarrow NP(Subj) \ VP | \ ...
\]

\[
NP(case) \rightarrow Pronoun(case) | Noun | Article Noun | ...
\]

\[
VP \rightarrow VP \ NP(Objective) | ...
\]

\[
PP \rightarrow Preposition \ NP(Objective)
\]

\[
Pronoun(Subj) \rightarrow I | you | he | she | ...
\]

\[
Pronoun(Obj) \rightarrow me | you | him | her | ...
\]

Semantics of ε_1

- Logical form
 - “Every agent smells a wumpus”
 \[
 \forall a \ Agent(a) \Rightarrow \exists w \ Wumpus(w) \land \exists e \in \text{Perceive}(a, w, Nose) \land \\
 \text{During}(Now, e))
 \]

- Intermediate form – mediate between syntax and semantics
 - Structurally similar to syntax
 - Can be translated into first-order logical sentence
 - Sometimes called quasi-logical form

\[
\exists e \in \text{Perceive}(\forall a \ Agent(a), \exists w \ Wumpus(w), Nose) \land \\
\text{During}(Now, e))
\]
Converting quasi-logical form to logical form

- Final step in semantic interpretation
- Turn quantified terms into real terms
- For each quantified term \([q \ x \ P(x)]\) in \(QLF\)
 - Replace quantified term with \(x\)
 - Replace \(QLF\) with \(q \ x \ P(x) \ op \ QLF\)
 - Where \(op\) is \(\Rightarrow\) when \(q\) is \(\forall\)
 - And \(op\) is \(\wedge\) when \(q\) is \(\exists\)

Example

- “Every dog has his day”
 - Quasi-logical form:
 \(\exists \ e \ e \in Has(\forall \ d \ Dog(d)), [\exists \ a \ Day(a)] ,Now\)
- Two possible logical interpretations
 \(\forall \ d \ Dog(d) \Rightarrow \exists \ a \ Day(a) \wedge \exists \ e \ e \in Has(d,a,Now)\)
 - Each dog has his own day.
 \(\exists \ a \ Day(a) \wedge \forall \ d \ Dog(d) \Rightarrow \exists \ e \ e \in Has(d,a,Now)\)
 - There is a special day that all dogs share.
Pragmatic Interpretation

- Resolving *indexicals* – refer directly to current situation
 - I, today, there, etc.
 - Use knowledge of who speaker is, where speaker is, etc.
- Resolving *anaphora* – previously mentioned objects
 - He, it, etc.
 - Get help from syntax – refer to previous sentences
 - John was hungry. He ate dinner.
 - Has to be handled with disambiguation

Ambiguity

- Lexical ambiguity – word has more than one meaning
 - Right hand side, right answer
- Syntactic (structural) ambiguity – which words fit which part of speech
 - The agent heard a scream in the room.
- Referential ambiguity – anaphoric expressions
 - “it” can stand for anything
- Pragmatic ambiguity – speaker and hearer disagree on current situation
 - Last Saturday
- Local ambiguity – substring can be parsed several ways
 - Larger context may resolve ambiguity
 - A + B + C
Disambiguation

- Hearer maintains model of world
 - New speech act – add possible interpretations to model as hypothesis
- Uncertain reasoning – decide which interpretation is best
- Requires combination of four models:
 1. World model – probability that fact occurs in world
 2. Mental model – prob. Speaker forms intention of communication fact
 3. Language model – prob. String will be chosen
 4. Acoustic model – prob. Sequence of sounds generated

Disambiguation

- Probabilistic context-free grammar (PCFG)
 \[S \rightarrow NP \ VP \ (0.9) \]
 \[S \rightarrow S \ Conjunction \ S \ (0.1) \]
- Problem:
 - Context-free – semantics are hard
 - Need context-sensitive model
 - Studied further in Ch. 24
Ontologies

\textit{The philosophical study of the nature of being}

- Specification of ontological commitments
- Description of concepts and relationships used to interact

Ontologies

- Ontologies define classes, functions, object constants, and axioms to constrain meaning
- Allows unambiguous interpretation of logical sentences
Example Ontology 1

```
Vessel
  +------------------+
  |                  |
  |                  |
  +------------------+
  |                  |
  |                  |
  +------------------+
  |      Ship      |
  |                |
  +------------------+
  |                  |
  |                  |
  +------------------+
  |      Boat       |
  |                |
  +------------------+
  |                  |
  |                  |
  +------------------+
  | Sail boat       |
  |                |
  +------------------+
  |                  |
  |                  |
  +------------------+
  | Motor boat      |
  |                |
  +------------------+
  |                  |
  |                  |
  +------------------+
  | Hull            |
  |                |
  +------------------+
  | Engine          |
  |                |
  +------------------+
```

Example Ontology 2

```
Boat
  +------------------+
  |                  |
  |                  |
  +------------------+
  |                  |
  |                  |
  +------------------+
  | Keel            |
  |                |
  +------------------+
  | Motor           |
  |                |
  +------------------+
  | Sail            |
  |                |
  +------------------+
```
Translation

- How do we map objects from one ontology to another?

Agent Communication Languages (ACL)

- Agents are typically defined at a “high” level
- Low level languages and protocols of distributed computing are not compatible
Desired Features

- ACL should support an *intentional* communication
- The language should *not* define protocols
 - Transport protocols
 - High level coordination protocols
 - Constraints on valid exchanges

ACL Requirements (1-3)

- Seven categories
 - Form
 - Declarative, syntactically simple, easy to read – Extensible
 - Content
 - Provide communicative primitives – not content language
 - Semantics
 - Well-defined semantics, grounded in theory
 - Include time and space
 - Exhibit canonical form
ACL Requirements (4-7)

- Implementation
 - Efficient for speed and bandwidth – Simple interface
- Networking
 - Fit modern technology
 - Serve as a substrate for higher-level protocols
- Environment
 - Tool for coping with dynamic, heterogeneous systems
- Reliability
 - Includes errors and security

A Proposed ACL

- The Knowledge Query Manipulation Language (KQML) is an attempt to create a standard ACL
- Based on
 - Speech act theory
 - Separates language from how you use it
KQML Example

(ask-one
 :sender joe
 :content (PRICE IBM ?price)
 :receiver stock-server
 :reply-with ibm-stock
 :language LPROLOG
 :ontology NYSE-TICKS)

(tell
 :sender stock-server
 :content (PRICE IBM 14)
 :receiver joe
 :in-reply-to ibm-stock
 :language LPROLOG
 :ontology NYSE-TICKS)

KQML

- KQML defines a message format and message handling protocol
- Communicates an attitude about the message content
- Language *performatives* define permissible actions agents may attempt during communication