3.4 The Five Number Summary;
Boxplot

→ Now, descriptive measures based on percentiles (advantage: resistant).

The most commonly used percentiles are quartiles (quantiles):

25th percentile

50th percentile

75th percentile
How do we calculate quartiles?

Let \(n \) denote the \# obs.
Arrange the data in increasing order.

• \(Q_1 \) is at position

• \(Q_2 \) is the median, which is at position

• \(Q_3 \) is at position

If a position is not a whole number,

Note: The textbook calculates percentiles differently. Follow class notes, which are consistent with software.
Ex. City A data: (ordered)

3 4 5 5 5 6 7

First quartile?

Observation at position

Choose

Third quartile?

Observation at position

Choose
Interquartile Range (IQR)

To avoid a single data value overly influencing the measure of dispersion,

IQR =

Ex. City A: $Q_1 = 4, Q_3 = 6$

$IQR_A =$

City B: $Q_1 = -4, Q_3 = 9$

$IQR_B =$

6 Data from City
The median, 1st and 3rd quartiles and smallest and largest observations are useful indicators of the dist’n of a data set.

→ display in

Boxplot - City A
Boxplots are effective for displaying several samples for visual comparison.

Ex.
Outliers

→ Use IQR to identify potential outliers.

Lower limit =
Upper limit =

Obs that lie outside the lower and upper limits are

Ex. The monthly rents -ordered- for 8 one-bedroom apartments, located in one area of the city are

<table>
<thead>
<tr>
<th>525</th>
<th>540</th>
<th>570</th>
<th>580</th>
</tr>
</thead>
<tbody>
<tr>
<td>585</td>
<td>585</td>
<td>625</td>
<td>770</td>
</tr>
</tbody>
</table>
Minitab output:

Descriptive Statistics: Rent

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Median</th>
<th>TrMean</th>
<th>StDev</th>
<th>SE Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rent</td>
<td>8</td>
<td>597.5</td>
<td>582.5</td>
<td>597.5</td>
<td>76.0</td>
<td>26.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Q1</th>
<th>Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rent</td>
<td>525.0</td>
<td>770.0</td>
<td>547.5</td>
<td>615.0</td>
</tr>
</tbody>
</table>

First quartile for rent data?
(Need to use linear interpolation)

Obs. at position \((n+1)/4\) =

Hence, \(Q_1\) is in between

\[Q_1 = \]

↑

known as linear interpolation.

Check: \(Q_3 = 615!\)
\[\text{IQR} = 615 - 547.5 = 67.5 \]

Lower limit =
Upper limit =

↑

Useful to identify potential outliers.

Boxplot for rent data:
3.5 Descriptive Measures for Populations

<table>
<thead>
<tr>
<th>Statistics (Sample)</th>
<th>Parameters (Population)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td></td>
</tr>
<tr>
<td>Variance</td>
<td></td>
</tr>
<tr>
<td>Standard Deviation</td>
<td></td>
</tr>
</tbody>
</table>

↑ ↑

Note: Sample size: Popul’n size:
Popul’n Mean:

\[\mu = \]

Popul’n Variance:

\[\sigma^2 = \]

=

Popul’n SD:

\[\sigma = \]
Standardized Variables and z-Scores

For a variable x, the variable

$$z = \quad \text{is called the } \text{standardized variable}$$

corresponding to the variable x.

Important!!
Example 3.25 (pg 134)

Possible observations for the variable \(x \):

\[
\begin{array}{c}
\text{x} \\
\hline
-1 \\
3 \\
3 \\
3 \\
5 \\
5 \\
\end{array}
\]

a. Assuming the data set is popul’n data, compute the mean and SD.

b. Using your answer in part (a), determine the standardized version of \(x \).

c. Determine the observed value of \(z \) corresponding to an observed value of \(x \) of 5.

d. Obtain all possible observations of \(z \).

e. Find the mean and SD of \(z \) using the popul’n equations.

f. Obtain dotplots of the dist’ns of \(x \) and \(z \).
a. Popul’n mean:

\[\mu_x = \]

Popul’n SD:

\[\sigma_x = \sqrt{\frac{\sum x_i^2}{N}} \mu_x^2 \]

\[\sum_{i=1}^{6} x_i^2 = \]

\[\rightarrow \sigma_x = \sqrt{\quad} = \]

b. Standardized version of x:

\[z = \]
c. When $x = 5$, $z =$

d. When $x = -1$, $z =$, and when $x = 3$, $z =$

Hence, the standardized value for each of the observations are:

$$x : \quad -1 \quad 3 \quad 3 \quad 3 \quad 5 \quad 5$$

$$\rightarrow \quad z :$$
e. Popul’n mean of standardized obs.:

\[\mu_z = \]

Popul’n SD of standardized obs.:

\[\sigma_z = \sqrt{\frac{\sum z_i^2}{6}} \mu_z^2 \]

\[\sum_{i=1}^{6} z_i^2 = \]

\[\rightarrow \sigma_z = \sqrt{\mu_z^2} = \]
f. Dotplot for x and z observations:

Dotplot: x, z

Already know that

Standardizing **shifts** a dist’n, so that the

Notice:

A lot easier to look at standardized observations!
PROBABILITY CONCEPTS
(Weiss, Chapter 4)

The science of uncertainty is called

4.1 Probability Basics

Experiment

- Is a process that results in one of a number of possible outcomes.
- The outcome that occurs cannot be predicted with certainty.

Example

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flip a coin</td>
<td></td>
</tr>
<tr>
<td>Roll a die</td>
<td></td>
</tr>
<tr>
<td>Dow Jones</td>
<td></td>
</tr>
</tbody>
</table>
Actual outcome can not be determined (predicted) in advance; but can

Definition - Probability

Probability of an event =
Meaning of Probability

Probability is

- a generalization of the

- a numerical measure of

\[
\begin{array}{ccc}
0 & 0.5 & 1 \\
\end{array}
\]

Properties of Probabilities

-

- \(p = 1 \)

- \(p = 0 \)
Ex. As reported in *Employment and Earnings*, the age dist’n of employed persons 16 years old and over is

<table>
<thead>
<tr>
<th>Age (X)</th>
<th>Frequency (000's)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-19</td>
<td>6,500</td>
</tr>
<tr>
<td>20-24</td>
<td>12,138</td>
</tr>
<tr>
<td>25-34</td>
<td>32,077</td>
</tr>
<tr>
<td>35-44</td>
<td>35,051</td>
</tr>
<tr>
<td>45-54</td>
<td>25,514</td>
</tr>
<tr>
<td>55-64</td>
<td>11,739</td>
</tr>
<tr>
<td>65 & over</td>
<td>3,690</td>
</tr>
<tr>
<td>Total</td>
<td>126,709</td>
</tr>
</tbody>
</table>
If an employed person is selected at random, find the probability that the person obtained is

a. Between 25 and 34 years old, inclusive.

\[P(25 \leq X \leq 34) = \]

b. At least 45 years old.

\[P(X \geq 45) = \]

\[= 0.3231 \]
c. Between 20 and 34 years old, inclusive.

\[P(20 \leq X \leq 34) = 0.3489 \]

\[= 0.3489 \]

d. Under 20 or over 54.

\[P(X < 20 \text{ or } X > 54) = 0.1731 \]