
Software Life-Cycle Models 
 
Software Life-Cycle Models (Software Process Models) 

1. Define the phases that are part of the software development process for a product; 
2. Define how the development process moves from one phase to another. 

 
The second part of the above definition distinguishes life-cycle models from software 
processes. 
 



Build-and-Fix Model 
 

 
 

Problems 
• No requirements phase 
• No analysis phase 
• No design phase (!) 
• Everything is done during implementation → change is very expensive. 
• Radical requirement shifts could lead to a complete fresh start. 

 
� We need a more complete life-cycle model: 

• Game plan 
• Phases other than implementation & maintenance 
• Project milestones that are predictable and measurable 

 



Waterfall Model 
 

 
 
 
Observations: 

• All phases are present in this model and we are told how they are connected 
• You can move back and forth between phases as often as necessary – a 

misconception about the waterfall model 



Notes on the Waterfall Model 
• Characterized by 

o Feedback loops 
o Documentation driven 

• Advantages 
o Documentation is properly generated 
o Natural generation of project milestones 
o Maintenance easier 

• Disadvantages 
o First functionality is only seen very late in the game 
o That means the real litmus test whether the right product is being built 

happens at the end of the life-cycle model – before that that all just paper – 
difficult to visualize, especially for the customer. 

 
� The disadvantages can be mitigated by a modified waterfall model: rapid prototyping 

• Here a rapid prototype is substituted for the requirements phase in 
the standard waterfall model above. 

• A rapid prototype is a working model functionally equivalent to a 
subset of the product. 

• A prototype should NEVER become the product! 
 



Our Life-Cycle Model 
 

 
 
 


