BOBJ: A Quickstart for Software Engineers

Lutz Hamel
Dept. of Computer Science and Statistics
University of Rhode Island
Kingston, RI 02881
hamel@cs.uri.edu

~ DRAFT 3/7/06 —

Getting Started

BOBJ is a specification language based on equational logic and algebra. Infor-
mally, in equational logic axioms are expressed as equations with algebras as
models and term rewriting as operational semantics. Due to the efficient oper-
ational semantics, BOBJ specifications are executable; once you have specified
your system, you can actually run the specification and see if it behaves correctly.
Furthermore, due to the fact that BOBJ is rigorously based on mathematical
foundations you can use BOBJ to prove things about your specifications.

Specifications

The basic specification unit in BOBJ is called an object. objects themselves
consist of type definitions (called sorts in BOBJ lingo) and operator name defi-
nitions. Behavior is defined for the operators via a set of equations. The equa-
tions themselves can also contain variables. The following could be considered
a typical specification:

obj NUMBERS is
sort Nat .
op O : -> Nat .
op s : Nat -> Nat .
op _+_ : Nat Nat -> Nat .
var M : Nat .
var N : Nat .
eq M+ s(N) =s(M+ N)
eqM+0=NM.
endo

This specification defines the object NUMBERS. Within this object we define the
sort Nat as well as the three operator symbols: 0, s, and +. The notation

for the operator symbol declaration follows very closely standard mathematical

practice: op 0 : -> Nat defines a constant of type Nat,op s : Nat -> Nat
defines a unary function symbol that takes a value in domain Nat to its codomain
Nat, and op _+_ : Nat Nat -> Nat defines an infix binary operator. BOBJ

admits mixfix operator declarations, that is, we can define prefix, infix, or post-
fix operator symbols. When no special action is taken during the definition of
a function symbol it defaults to being a prefix function symbol. You can use
underscores to tell the BOBJ parser how the operator is to appear in the target
expressions. Following the operator declarations we have the variable declara-
tions. Finally, we assign some behavior to the + operator with the equations
appearing at the end of the object. The first equation states that computing
the successor of N and then adding that to M is the same as first adding M and N
and then computing the successor of the sum. The second equation states that
adding zero to a value will not change the value.

Running BOBJ

Before you can load a specification into BOBJ your have to start BOBJ, usually
by typing the keyword bobj at the Unix command prompt. The system will
respond:

[lutz]¥% java -jar bobj.jar
NARRRRRRRNRRRRRREYS
--- Welcome to BOBJ ---
AR R EAN
BOBJ version 2.0 built: 2000 Jun 20 Tue 20:18:45
Copyright 1988,1989,1991 SRI International
2002 Nov 21 Thu 7:33:22
BOBJ>

At this point you are ready to load specification files into BOBJ. Assume that
the above specification is called “numbers.bob”, then in order to load this into
BOBJ you type in numbers:

BOBJ> in numbers

obj NUMBERS
BOBJ>

Once the file is loaded we might want to demonstrate that our specification
behaves appropriately. BOBJ provides us with another keyword to accomplish
that : reduce. This keyword activates BOBJ’s theorem proving engine. Con-
sider that we want to show that the first equations holds during an actual
computation. We can type in the following command:

BOBJ> reduce s(0) + s(s(0)) == s(s(0) + s(0))
reduce in NUMBERS : s(0) + s(s(0)) == s(s(0) + s(0))
rewrites: 4

result Bool: true
BOBJ>

Note that we get back the result true. BOBJ has proven that the property
indeed holds, i.e., that the behavior defined by the equation is what we expected.
With the == symbol you are asking BOBJ to prove that the left term is equal
to the right term.

We can also use BOBJ to simulate actual computations within the specifi-
cation. Consider:

BOBJ> reduce s(0) + s(s(0))
reduce in NUMBERS : s(0) + s(s(0))
rewrites: 3

result Nat: s(s(s(0)))

BOBJ>

In this case we want to know what happens when we add the successor of zero
to the successor of the successor of zero. As the results show, we get back what
we expected, raising our confidence that our specification is indeed correct.

Built-ins

In the previous section we used the zero constant and successor function to
simulate integers. BOBJ allows us to use regular integer notation via a built-in
module. BOBJ includes a module INT and we can use it in our own specifica-
tions. Assume that we want to write a specification for a function that computes
the Fibonacci numbers:

obj FIB is

protecting INT .

op fib : Int -> Int .

var M : Int .

eq fib(0) =0 .

eq fib(1) =1 .

ceq fib(M) = fibM - 1) + fib(M - 2) if M =/= 0 and M =/= 1
endo

This specification introduces a number of new features in BOBJ. First, we have
the protecting keyword which allows us to import other modules, in this case
the built-in module INT. Within the equation section we have what is referred
to as a conditional equation which starts of with the keyword ceq and includes
an if clause to the right of its definition. Here we make sure that this equa-
tion is only applied when the variable M is neither 0 or 1. Again, we can use
the BOBJ theorem prover to convince ourselves that the specification behaves
appropriately:

BOBJ> reduce fib(10) == 55 .
reduce in FIB : fib(10) == 55

rewrites: 1058
result Bool: true
BOBJ>

Exercise 1 Write a specification for a function that computes the factorial of
a given integer. Use the reduce command to demonstrate that your function
specification works correctly for 0!, 1!, and 3!.

Exercise 2 Write a specification for a list of integers representation (hint: cons
function from Lisp; null to represent empty lists). Once you have the represen-
tation, write a function, say ladd, that returns the sum of the elements in an
integer list. Use the reduce command to demonstrate that your function speci-
fication works correctly.

Summary

In general, the structure of objects in BOBJ is as follows:

obj <object name> is
<include directives>
<type definitions>
<operator name definitions>
<variable declarations>
<equations>

endo

It worthwhile pointing out that each statement within an object needs to be
followed by a period. Also, the period needs to be separated from the text by a
space.

As we pointed out above, equations can have a simple format

eq lhs = rhs

or they can have the conditional format:

ceq lhs = rhs if cond

At the command line level, BOBJ provides two useful commands:
1. in — allows you to load object specifications into BOBJ.

2. reduce — activates the BOBJ theorem prover.

A Stack Specification

So far we looked at very simple specifications, but we are interested in specifying
software systems. Let’s take a look at a slightly more complicated specification.
The following is a specification of a stack.

obj STACK is
sort Stack .
sort Element
op top : Stack -> Element .
op push : Element Stack -> Stack .
op pop : Stack -> Stack .
var S : Stack .
var E : Element .
eq top(push(E,S))
eq pop(push(E,S))
endo

non
w0 ™

The specification follows the pattern defined in the previous section. We define
two sorts, one for the stack and one for the elements that can be pushed on
the stack. Then we define our operation symbols: top is an operation that
allows us to inspect the top of a stack, push allows us to push an element on a
stack, and finally pop allows us to pop the top of the stack. We also declare two
variables S and E. Finally, we give this specification our intended behavior with
the two equations. The first equation states that looking at the top of the stack
after something has been pushed will return the element that has been pushed.
The second equation states that popping a pushed element returns the original
stack.

Now we are ready to examine some properties of stacks. We introduce a
new feature of BOBJ to do that: proof scores. You can think of a proof score
as a program for BOBJ’s theorem prover. The following is our proof score that
demonstrates some basic properties of stacks.

***% Stack Proof Score *x**
open STACK .

op s : —> Stack .
op el : —> Element .
op €2 : —> Element .

***> demonstrate some basic properties of stacks
reduce pop(pop(push(el,push(e2,s)))) == s .
reduce top(pop(push(el,push(e2,s)))) == e2 .

close

Proof scores usually begin with opening the object that we want to prove things
about. This makes the operations and equations of the object available to the
theorem prover. In our case our object of interest is STACK. Once we have
access to our object we declare some constants as place holders for general
values. Here, s stands for all stacks and el and e2 are place holders for element
values. Once this is in place we can go ahead and demonstrate some system
properties by first loading the stack object and then its proof score.

[lutz]$ java -jar bobj.jar
NERRRRRRRRRRRRRNRYS
-—- Welcome to BOBJ ---
VAR REERERRRRRRERAN
BOBJ version 2.0 built: 2000 Jun 20 Tue 20:18:45
Copyright 1988,1989,1991 SRI International
2002 Nov 21 Thu 15:32:15
BOBJ> in stack

obj STACK
BOBJ> in stackscore

open STACK

op s : —> Stack .

op el : -> Element .

op €2 : —> Element .

***> demonstrate some basic properties of stacks

I
]
n

reduce in STACK : pop(pop(push(el,push(e2,s))))
rewrites: 3
result Bool: true

reduce in STACK : top(pop(push(el,push(e2,s)))) == e2
rewrites: 3
result Bool: true

close
BOBJ>

Exercise 3 Build a proof score that uses the reduce command to demonstrate
that a top of a pop of a push is just the top of the original stack, i.e., demonstrate
that top(pop(push(e,s))) = top(s).

A Queue Specification

Continuing with our notion of software specification, let’s specify a queue. A
queue is a list-like data structure but the operations on this list are constrained:
you are only able to add elements to the end of the list and you can only remove
elements from the beginning of the list. An BOBJ specification of a queue might
look somehting like the following;:

obj QUEUE is

sort Queue
sort Element
op peek : Queue -> Element
op remove : Queue -> Queue
op add : Element Queue -> Queue
op cons : Element Queue -> Queue .
op nil : -> Queue
var Q : Queue .
vars E E1 E2 : Element
eq peek(cons(E,Q)) = E .
eq remove(cons(E,Q)) = Q .
eq add(E1l,cons(E2,Q)) = cons(E2,add(E1,Q))
eq add(E,nil) = cons(E,nil)
endo

What is noteworthy about the specification is that we represent the internal
list structure with the cons operation symbol. An empty queue is represented
with the nil operation symbol. We have three functions that manipulate the
queue, namely: peek which returns the first element in the queue, remove which
removes the first element of the queue, and add which adds a new element to
the end of the queue.

Like in the previous example, we do all our demonstration and proving in a
proof score. What is new in this proof score is the notion of inductive proof:

*** proof score

open QUEUE .

op q : —> Queue .

op e : —> Element

op el : -> Element
op €2 : —> Element

***> show some basic properties of queues

reduce add(e,cons(el,nil)) == cons(el,cons(e,nil))
reduce add(e,cons(el,q)) == cons(el,add(e,q))
reduce remove(add(e,cons(el,q))) == add(e,q)

***> prove that remove and add are commutative on non-empty queues
**%*x> induction on the queue

***> base case: queue with one element
reduce remove(add(e,cons(el,nil))) == add(e,remove(cons(el,nil)))

***x> induction step:
eq remove(add(e,q)) = add(e,remove(q))
reduce remove(add(e,cons(el,q))) == add(e,remove(cons(el,q)))

close

What is noteworthy about this proof score is that we are going beyond just
demonstrating appropriate behavior, we actually prove commutativity of remove
and add for all non-empty queues. The proof is based on mathematical induction
on the size of the queue (sometimes also referred to as structural induction). We
use induction to show that add is commutative for all values on the non-empty
queue.

Here is a session with the queue specification and proof score:

[lutz]$ java -jar bobj.jar
NARRRRRRRNRRRRRREYS
--- Welcome to BOBJ ---
ZULTTTTEEEEEEETTTIN
BOBJ version 2.0 built: 2000 Jun 20 Tue 20:18:45
Copyright 1988,1989,1991 SRI International
2002 Nov 21 Thu 16:18:04
BOBJ> in queue

obj QUEUE
BOBJ> in queuescore

open QUEUE

op q : —> Queue .

op e : —> Element .
op el : -> Element .
op €2 : —> Element .

***> show some basic properties of queues

reduce in QUEUE : add(e,cons(el,nil)) == cons(el,cons(e,nil))
rewrites: 3
result Bool: true

reduce in QUEUE : add(e,cons(el,q)) == cons(el,add(e,q))
rewrites: 2
result Bool: true

reduce in QUEUE : remove(add(e,cons(el,q))) == add(e,q)
rewrites: 3
result Bool: true

***x> prove that remove and add are commutative on non-empty queues

***x> induction on the queue

***x> base case: queue with one element

reduce in QUEUE : remove(add(e,cons(el,nil))) == add(e,remove(cons(
el,nil)))

rewrites: 6

result Bool: true

***> induction step:

eq remove (add (e, q)) = add (e, remove (q))

reduce in QUEUE : remove(add(e,cons(el,q))) == add(e,remove(cons(el,
)

rewrites: 4

result Bool: true

close
BOBJ>

Exercise 4 Prove that peek is invariant for all non-empty queues as long as
no remove is performed.

A Calculator Specification

As our final example we take a look at the specification of a postfix style cal-
culator. The idea is that the calculator has four buttons: enter, add, sub, and
display, which let you enter a value into the calculator, perform an addition,
perform a subtraction, and display a value, respectively. Key to the specifica-
tion is the notion of a state which can remember values that were entered. Here
is the specification of the calculator:

obj CALCULATOR 1is
protecting INT .
sort State .
op remember : Int State -> State .
op enter : Int State -> State
op display : State -> Int .
op add : State -> State .
op sub : State -> State .
vars I I1 I2 : Int .
var S : State .
eq enter(I,S) = remember(I,S) .
eq display(remember(I,S)) = I .

eq add(remember(Il,remember(I2,S))) = remember(Il + I2,S)
eq sub(remember(Il,remember(I2,S))) remember (I2 - I1,S)
endo

We see that entering a value simply means remembering this value in the internal
state of the calculator. We also see that displaying a value is simply removing a
remembered value from the internal state and printing it out. What is striking
about adding and subtracting is the fact that as binary operations they remove
the two most recently remembered values from the calculator state and then
add the sum or difference of the two values, respectively, back to the calculator
state.

As before we use the notion of a proof score to demonstrate properties of
this specification:

**x* proof score
open CALCULATOR .

op 1l : ->1Int .
opm : —> Int .
opn : —> Int .
op s : —> State .

***x> demonstrate some system properties

reduce display(enter(3,s)) ==

reduce display(add(enter(3,enter(2,s)))) == 5 .
reduce display(add(enter(m,enter(n,s)))) ==m + n .

**x> prove associativity of add by induction

***> base case:

reduce add(add(remember(1l,remember (m,remember(0,s))))) ==

add (remember (1,add (remember (m,remember (0,s)))))

**%*x> induction step:

eq add(add(remember (1,remember (m,remember(n,s))))) =

add (remember (1,add (remember (m,remember (n,s)))))

reduce add(add(remember (1l,remember (m,remember(n + 1,s))))) ==
add (remember (1,add (remember (m,remember(n + 1,s)))))

close

Most striking is probably the proof of commutativity of addition in this proof
score accomplished by induction on n.
Here is a sample session with the calculator specification and proof score:

[lutz]$ java -jar bobj.jar
NERRRRRRRRRRRNAREY
--- Welcome to BOBJ ---

10

JULTTTTETET T EETTIN
BOBJ version 2.0 built: 2000 Jun 20 Tue 20:18:45
Copyright 1988,1989,1991 SRI International
2002 Nov 21 Thu 16:36:05
BOBJ> in calc

obj CALCULATOR
BOBJ> in calcscore

open CALCULATOR

opl : —-> Int .

opm : —-> Int .

opn : —> Int .

op s : —> State .

***x> demonstrate some system properties

reduce in CALCULATOR : display(enter(3,s)) ==
rewrites: 3
result Bool: true

reduce in CALCULATOR : display(add(enter(3,enter(2,s)))) == 5
rewrites: 6

result Bool: true

reduce in CALCULATOR : display(add(enter(m,enter(n,s)))) ==m + n

rewrites: 5
result Bool: true

***> prove associativity of add by induction

***> base case:

reduce in CALCULATOR : add(add(remember (1,remember (m,remember(0,s))))) ==
add (remember (1,add (remember (m,remember (0,s)))))

rewrites: 5

result Bool: true

***> induction step:

eq add (add (remember (1, remember (m, remember (n, s))))
) = add (remember (1, add (remember (m, remember (n, s))

11

)))

reduce in CALCULATOR : add(add(remember (1l,remember (m,remember(n + 1,
s))))) == add(remember (1,add(remember (m,remember(n + 1,s)))))

rewrites: 5

result Bool: true

close
BOBJ>

Exercise 5 Prove the commutativity of add.

12

