Animat: Sense, Think, Act

- **Sense**
 - Gather input sensor changes
 - Update state with new values
- **Think**
 - *Decide what to do*
- **Act**
 - Execute (any changes to) actions
Questions

- Can we learn appropriate decision making by observation?
- If so, can the design of the ‘think step’ or decision module be automated?

⇒ Decision trees are ideal for this, easy to learn and transparent.
Building Decision Trees

Training Dataset

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Rain</td>
<td>Hot</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rain</td>
<td>Cold</td>
<td>Normal</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Cold</td>
<td>Normal</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Mild</td>
<td>Normal</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Test Dataset

How good is the learned DT?

Train

DT

Outlook

Humidity

Sunny

High

Normal

No

Yes

Overcast

High

Normal

No

Yes

Rain

High

Normal

No

Yes

Outlook

Temperature

Humidity

Wind

PlayTennis

High

Normal

Strong

Yes

No

Yes

Test

DT
Train & Test Datasets

- The **training dataset** encodes the observations of the task we want the decision tree to learn.
- The **test dataset** looks just like the training dataset except that the decision tree algorithm never sees this data during DT construction time.
- We apply the DT to the *independent* attributes of the test set …
- … and then compare the answer of the decision tree with the value of the target attribute for each row in the test set, respectively.
Where do these datasets come from?

- In games they are usually hand constructed by the AI engineers.
- In other areas they tend to be observations/records collected over many years.
Integrating DTs into QII

Sense → Decision Module → Act

Tree Builder

Decision Table:

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>No</td>
</tr>
<tr>
<td>Cloudy</td>
<td>Yes</td>
</tr>
<tr>
<td>Cloudy</td>
<td>No</td>
</tr>
<tr>
<td>Rainy</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>No</td>
</tr>
</tbody>
</table>

Data Table:

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>No</td>
</tr>
<tr>
<td>Cloudy</td>
<td>Yes</td>
</tr>
<tr>
<td>Cloudy</td>
<td>No</td>
</tr>
<tr>
<td>Rainy</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>No</td>
</tr>
</tbody>
</table>

Decision Tree:

- If Outlook is Sunny
 - If Temperature is High
 - If Humidity is High
 - If Windy is False
 - Predict Yes
 - If Humidity is Low
 - Predict No
 - If Temperature is Low
 - Predict No
- If Outlook is Cloudy
 - Predict Yes
- If Outlook is Rainy
 - Predict Yes
The ID3 Tree Builder

Independent Attributes

<table>
<thead>
<tr>
<th>OUTLOOK</th>
<th>TEMP</th>
<th>HUMIDITY</th>
<th>WINDY</th>
<th>PLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>FALSE</td>
<td>no</td>
</tr>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>TRUE</td>
<td>no</td>
</tr>
<tr>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>FALSE</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>mild</td>
<td>high</td>
<td>FALSE</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>cool</td>
<td>normal</td>
<td>FALSE</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>cool</td>
<td>normal</td>
<td>TRUE</td>
<td>no</td>
</tr>
<tr>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>TRUE</td>
<td>yes</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>FALSE</td>
<td>no</td>
</tr>
<tr>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>FALSE</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>mild</td>
<td>normal</td>
<td>FALSE</td>
<td>yes</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>TRUE</td>
<td>yes</td>
</tr>
<tr>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>TRUE</td>
<td>yes</td>
</tr>
<tr>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>FALSE</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>mild</td>
<td>high</td>
<td>TRUE</td>
<td>no</td>
</tr>
</tbody>
</table>

Observations or Training Examples

NOTE: the ID3 tree builder always assumes that the last attribute is the target attribute.
class DecisionModule {
 // attribute values
 // values for OUTLOOK
 public static final int sunny = 0;
 public static final int overcast = 1;
 public static final int rainy = 2;
 // values for TEMP
 public static final int hot = 0;
 public static final int mild = 1;
 public static final int cool = 2;
 // values for HUMIDITY
 public static final int high = 0;
 public static final int normal = 1;
 // values for WINDY
 public static final int FALSE = 0;
 public static final int TRUE = 1;
 // values for PLAY
 public static final int no = 0;
 public static final int yes = 1;

 // decision function
 public static int tree(int OUTLOOK, int TEMP, int HUMIDITY, int WINDY) {
 if (OUTLOOK == sunny) {
 if (HUMIDITY == high) {
 return no;
 } else if (HUMIDITY == normal) {
 return yes;
 }
 } else if (OUTLOOK == overcast) {
 return yes;
 } else if (OUTLOOK == rainy) {
 if (WINDY == FALSE) {
 return yes;
 } else if (WINDY == TRUE) {
 return no;
 }
 }
 return -1;
 }
}
Teaching Quagents to Walk

- Assume we have an infrastructure that can sense the environment appropriately.
- Also assume that we have an infrastructure that can adequately interpret commands.
- **Goal:** Learn the ‘think step’ - learn the decision module.
NOTE: you need to build a table in following format:

<table>
<thead>
<tr>
<th>Left</th>
<th>Right</th>
<th>Front</th>
<th>Navigate</th>
</tr>
</thead>
<tbody>
<tr>
<td>lclear</td>
<td>rclear</td>
<td>fclear</td>
<td>walk</td>
</tr>
<tr>
<td>lclear</td>
<td>rclear</td>
<td>fblocked</td>
<td>left</td>
</tr>
<tr>
<td>lblocked</td>
<td>rclear</td>
<td>fblocked</td>
<td>right</td>
</tr>
</tbody>
</table>

Attribute Values:

Left: lclear, lblocked
Right: rclear, rblocked
Front: fclear, fblocked
Navigate: walk, left, right

To build the decision module run it through the ID3 tree builder:

```
java -classpath . ID3 traindata.txt
```
class DecisionModule
{
 // attribute values
 // values for Left
 public static final int lclear = 0;
 public static final int lblocked = 1;
 // values for Right
 public static final int rclear = 0;
 public static final int rblocked = 1;
 // values for Front
 public static final int fclear = 0;
 public static final int fblocked = 1;
 // values for Navigate
 public static final int walk = 0;
 public static final int left = 1;
 public static final int right = 2;
 // decision function
 public static int tree(int Left, int Right, int Front) {
 if (Front == fclear) {
 return walk;
 }
 if (Front == fblocked) {
 if (Left == lclear) {
 return left;
 }
 if (Left == lblocked) {
 return right;
 }
 }
 return -1;
 }
}
// loop forever -- that is until the bot dies of old age
try {
 while(true) {
 q.rays(4);
 cmd = think(q.events());
 navigate(cmd);
 }
} catch (QDiedException e) { // the quagent died -- catch that exception
 System.out.println("bot died!");
}
public int think(Events events) throws Exception {
 String[] words = parseRaysEvents(events);

 // this is what the event looks like:
 // OK (ask rays 4)
 // 1 worldspawn 379.969 0 0
 // 2 worldspawn -7.62939e-006 247.969 0
 // 3 player -43.9688 0 0
 // 4 worldspawn 0 -247.969 0

double xf = Double.parseDouble(words[6]);
double yf = Double.parseDouble(words[7]);
double df = Math.sqrt(xf*xf + yf*yf);
int f = df > blockDistance?
 DecisionModule.fclear : DecisionModule.fblocked;

double xl = Double.parseDouble(words[11]);
double yl = Double.parseDouble(words[12]);
double dl = Math.sqrt(xl*xl + yl*yl);
int l = dl > blockDistance?
 DecisionModule.lclear : DecisionModule.lblocked;

double xr = Double.parseDouble(words[16]);
double yr = Double.parseDouble(words[17]);
double dr = Math.sqrt.xr*xr + yr*yr);
int r = dr > blockDistance?
 DecisionModule.rclear : DecisionModule.rblocked;

 ///// CALL THE DECISION MODULE ////
 int n = DecisionModule.tree(l, r, f);

 return n;
}
public void navigate(int cmd)
 throws Exception
{
 // interpret the commands from the decision module
 switch(cmd) {
 case DecisionModule.left:
 q.turn(90);
 break;
 case DecisionModule.right:
 q.turn(-90);
 break;
 case DecisionModule.walk:
 q.walk(100);
 break;
 default:
 throw new Exception("unknown navigation command");
 }
}