LOGIC,
PROGRAMMING
AND PROLOG

Chapter 1: Preliminaries

Presented by David Brown

Chapter overview

e Sections:
* Logic formulas
e Semantics of Formulas
* Models and Logical Consequence
 Logical Inference
 Substitutions
* Big ideas (first two sections):
¢ Logic, Inference, and Formal Logic
e Syntax
e Semantics

The discussion of Chapter 1 will be split into two sessions; the first will cover 1.1 and 1.2;
the second will cover 1.3, 1.4, and 1.5.

Logic

Surak, a legendary
logician in the
fictional Star Trek
universe

http://memory-alpha.org/wiki/File:Surak_TOS.jpg. Copyright Paramount/CBS. Actually,
Vulcan “logic” isn’t going to help us here at all.

What is Logic?

¢ A dozen definitions collected by Wikipedia make
repeated reference to:
e “true,” “false,” “truth”
* “reason,” “reasoning”

e “thought,” “operations of the mind,” “understanding”
e “science”

e “art” (?)

e “laws,” “rules”

* Informally, “Logic is the study of what counts as a good
reason, for what, and why.”

Priest, Graham. Logic: A very Short Introduction. Oxford, 2000.

Reasoning by inference

¢ Premises + Inference = conclusion

e Example:

1. All men are mortal. (premise)

2. Socrates is a man. (premise)

3. (apply appropriate rules of inference)

4. Therefore, Socrates is mortal. (conclusion)
¢ More on inference in section 1.4...

Why we need a formal system

¢ Another example:
1. Nothing is better than lifelong happiness.
2. A cheese sandwich is better than nothing.

3. Therefore, a cheese sandwich is better than lifelong
happiness.

e Natural languages can be imprecise

¢ A formal language has a defined, simple syntax and
reasonably straightforward semantic rules.

Example from: Gowers, ed. Princeton Companion to Mathematics, page 14. “Simple”
(syntax) relative to natural languages, that is.

s(sem(past(seesl)(evl, name(jl, Jill'), the(d1, dogl(dl)))))

\

vp(sem(A(X, past(seesl)(evl, X, the(d1, dogl(dl)))). Synt ax

np(sem(name(j1, 'Jill'))) var(evl))
‘ np(sem(the(d1, dog1(d1))), var(d1)) A parse tree fora

v(sem(past(seesl)), var(evl)) Prolog program in
cnp(sem(dogl), var(d1)) natural language

name(sem('Jill)‘ var(j1)) det(sem(the), processing (Chapter

var(tl) | n(serln(dogl), var(d)) g of Allen, J.: Natural
Tl 'saw' 'the’ 'dog’ Language
Understanding, 2nd
ed., Benjamin
Cummings, 1995.)

http://www.cse.unsw.edu.au/~billw/cs9414/notes/nlp/seminterp/seminterp-2009.html

Syntax

* In natural language, syntax provides the rules by
which words can be formed into understandable
(grammatical) sentences.

e In alogic language, syntax provides the rules by which
symbols can be arranged into well-formed formulas
(wffs).

 To define the syntax, we start with symbols, collect
them in an alphabet, identify the terms we can form
from the alphabet, and finally construct formulas.

About symbols

* A symbol is a signifier: a token that represents
something else

e Some symbols are created in the structure of a specific

program; these denote things and relations in the
world

¢ Other symbols already exist in the logic system itself;
these access the computational mechanism

The symbols mentioned here seem to correspond to the Alpha and the Omega sets of a
propositional calculus.

Symbols that denote things

e Variables:
» Refer to some unspecified thing: X
e Constants:
e denote things in the world: tom
e Functor:
» denote composite things: family/3, child/2
family(bill, mary(child(tom,child(alice,none))))
¢ Predicates:

» denote relations in the world: child_of/2
child_of (tom,mary)

The family/3 and child/2 functors are particularly awkward first examples; they shows,
though, how you could use functors to build a list of arbitrary length.

10

Symbols to operate the system

* Logical connectives (operators)
* A (conjunction), V (disjunction), - (negation)
» o (logical equivalence), o (implication)
¢ Quantifiers
* V:universal quantifier “forall..”
* 3: existential quantifier “there exists some...”

e Auxiliary symbols (Prolog)

e used to facilitate notation; examples include...

e parentheses to group objects of a predicate
e comma to separate terms
e whitespace

11

Alphabet

* Definition 1.0 (Alphabet):
The alphabet (A) consists of...

e all the symbols for constants, variables, functors, and
predicates

¢ In Prolog, the alphanumeric label (tom, family) is an
“identifier”

e Functors and predicates also have an “arity” - the number of
arguments they take. This is notated as f/n where f'is the
identifier and n is the arity.

e Multiple distinct objects can have the same identifier when
their arity differs
e all the symbols for operating the computation
(connectives, quantifiers, auxiliaries)

This definition of an alphabet isn’t actually called out by number in the book. While Nilsson
includes the connectives/quantifiers/aux in the alphabet, | can’t find where that is actually
used.

Terms

* Definition 1.1: The set of terms J" over a given alphabet
A is the smallest set such that:
® any constantin A isin T;
e any variable in A isin T;
e if f/nisafunctorin Aand t; ...t, € T then f(¢t; ...t;,) €
T

e (Predicates are not terms.)

13

Formulas

¢ Definition 1.2: The set F of wff is the smallest set such

that:
e if p/nisapredicatein A and t; ...t, € T then
p(t; ..t,) €EF

e if Fand G € Fthensoare (=F), (FAG),(FVG),
(F 2 G),and (F « G);

e if F € F and X is a variable in A then (VXF) and (3XF)
EF

1) grab the predicates; 2) grab the basic operators; 3) include quantifiersActually, not-F is in
the set of wff even if G isn’t.

14

World-Logic Counterpart Review

The “real world” Predicate logic system

¢ universe (world) e structure

e things (individuals) e constants

e relations e predicates

¢ declarative sentences e formulas

¢ words e symbols

e lexicon (words in the * alphabet (collection of
language) symbols)

THIS SLIDE SHOULD PROBABLY COME LATER AS A SUMMARY

15

LSeMANTICSY
of a Structule

4

By 'lbm7

]] — carpot

]I = bowling pin

Semantics

Image: International
Association of Young

Linguists

http://www.iayl.org/site/Scientific_Board/Semantics/Semantics_200704187.html

16

Semantics

e Syntax tells us if a formula is well-formed; semantics
tells us the formula’s meaning.

¢ The meaning of a logic formula - a truth value - is
determined relative to an abstraction of the “real”
world called a structure.

¢ An interpretation links constants (and functors) and
predicates to the individuals (and composite entities)
and relations of the structure.

The meaning of a logic formula is simply a truth value: either true or false. Definitely a
“getting there is half the fun” situation!

17

Structure

¢ A structure consists of:
* a nonempty set of individuals (called the domain)
¢ relations defined on the domain
¢ functions defined on the domain

18

Interpretation

¢ Definition 1.3: An interpretation J of an alphabet A is
a non-empty domain D (sometimes denoted |J|) and a
mapping that associates:
» each constant ¢ € A with an element cx € D;
* each n-ary functor f € A with a function f5 € D™ — D;
* each n-ary predicate symbol p € A with a relation
ps €D X - XD.

In linguistic terms, the interpretation establishes the reference from a word/symbol to the
thing itself... or at least to the model of the thing itself. Okay, for the predicate thing, |
finally found something | couldn’t do in Equation Editor.

19

Semantics of variables

e Variables are either bound or free
* avariable X that occurs directly after a quantifier or
inside the formula which follows directly after VX or 3X
is “bound”

* a free variable can take on the value of some particular
object — more on this in section 1.5, substitution

e A formula with no free variables is closed.

You might think of a bound variable as being bound to servitude searching through the set
of all possible values

20

Semantics of variables: Valuation

e Variables are resolved by a mapping function (often
identified as ¢, “phi”) called a valuation.

¢ A valuation maps from variables of the alphabet to
elements in the domain of the interpretation.

¢ The notation ¢[X + t] denotes a valuation identical to
@ except that [X — t] maps X to t.

Extending a valuation with a new mapping is used in the semantics for quantification

21

Semantics of terms

* Definition 1.4: Let 3 be an interpretation, ¢ a valuation and
t a term. The meaning ¢«(t) of t is an element in |J|
defined as follows:

e if t isa constant ¢ then @< (t) = cx

e if t isavariable X then ¢«(t) == ¢(X)

e if't is of the form f(ty, ..., t,), then
P3(t) = fpgz(te), ..., p5(tn))-

e Interesting things to notice:

e The truth value of a closed formula (no free variables)

depends only on the interpretation; the valuation has no
effect.

e The valuation function for functors and predicates
[f(tq, ..., t)] is called recursively.

It appears that for variables and functors, the valuation function may need to be applied

multiple times. For constants, nothing changes; the interpretation is sufficient to provide
meaning.

Semantics of wif’s

e The meaning of a formula is a truth value determined
with respect to an interpretation J and a valuation .

¢ Definition 1.6: ... is too cumbersome to retype (you can
find it on page 9). To paraphrase...

* an atomic formula p(ty, ..., t,) is true if its counterpart
(px(t1), ..., px(t,)) is in the domain

» negation and the logical connectives work pretty much
just as you'd expect

* Quantification is a little more interesting:
I Ey (VXF) iff 3 Eyxe) F forevery t € |3
(existential quantification simply changes V to 3 and
“every” to “some”)

There does not seem to be a definition 1.5 in the book.

23

Bound vs. Free

* A bound variable has a scope: that part of the formula to
the right of its appearance (considering
nesting/parentheses)

* A bound variable in a formula gets its value from the
quantification process

 Nilsson says “whenever there are free occurrences of
variables in a formula its universal closure is considered
instead.” - I think he means to determine its meaning /
truth value in general.

* In Prolog queries, you get an existential closure, returning
the first possible solution; rules are still universal closure.

Sections 1.1, 1.2: Logic formulas (syntax), Semantics of Formulas
Big ideas: Logic, Inference, and Formal Logic; Syntax; Semantics

24

Syntax to Semantics

e For most purposes, the
4 e et
interpretation (),
domain (||, or D), and
the valuation function
(¢) can be combined.

* Simply consider ¢() to
be a function that maps

from syntax to
I semantics.

25

Chapter midpoint overview [

e Sections:
e Logic formulas
Semantics of Formulas
Models and Logical Consequence
Logical Inference
Substitutions
e Other Blg ideas (along with the headings of the last three sections):
e Satisfiable, unsatisfiable
» Logician’s toolbox: consequence, equivalence, inference
¢ Inconsistent
e Sound, complete

The discussion of Chapter 1 will be split into two sessions; the first will cover 1.1 and 1.2;
the second will cover 1.3, 1.4, and 1.5.

26

Models

“It may be a model,
Captain, but it’s
highly illogical”

http://www.fieldstonealliance.org/client/tools_you_can_use/07-27-05_Logic_Models.cfm

27

Model: definition

¢ Definition: An interpretation J is said to be a model
of [a set of closed formulas] P iff every formula of P is
true in 3.
e Interpretation = domain + mapping
* Domain = algebraic structure
* Mapping = from alphabet (syntax) to domain

e Think of model as a noun: a basis for something, like
an artist’s model is the reference for a portrait.

I”

Language is awkward here. I’'m used to “mode
model it in functions.

as a verb: the world exists and | try to

28

Model: satisfiability

¢ A set of closed formulas P can have any number of
interpretations

e When P is a “proper account of this world” (i.e., the
interpretation), the interpretation is a model of P

e There can be any number of models of a satisfiable set
of formulas.

e If the formulas include some contradiction - e.g.,
(F A =F) - then the set is unsatisfiable and can have
no models

29

Two models of one set of formulas

Ie v _m
Family model: f \vv/ Boxes model:
e @(tom) — {Tom) \ / e @(tom) - (A) n
* @(john) - (John) * @(john) - (B)
* @(mary) » (Mary) ﬂ s @(mary) »{C)
¢ @(loves/2) — (loves(Lover,Beloved)) » ¢(loves/2) — (is_above(Upper,Lower))
e @(child of /2) = e @(child_of /2) —
{child_of(Child,Parent)) (is_below(Lower,Upper)}
¢ @(mother/1) - {mother(Mom)) * @(mother/1) — (is_on_top(Top))
Formulas:

1) vX (\:/Y((mother(X) Achild_of (Y, X)) o loves(X, Y)))

2) mother(mary) A child_of (tom, mary)

3) loves(mary, tom)

30

Logical
Reasoning

A portrait statue of
Socrates in the
Louvre

Consequence, equivalence, and inference

31

Logical consequence

¢ Definition: Let P be a set of closed formulas. A closed
formula F [F & P] is called a logical consequence of P
(denoted P E F) iff Fis true in every model of P.

e Slight problem here: if P = F then there exist an
infinite number of models of {P U F}; could take a
while to check them all! (We'll get some help soon.)

¢ Unsatisfiability proposition might help a little:
P E F iff (P U {—F}) is unsatisfiable

e To show that F is not a logical consequence of P
(P ¥ F) is easier: show any model of P which is nota
model of F.

32

Logical equivalence

* Definition: Two formulas F and G are said to be logically
equivalent (denoted F = G) iff F and G have the same truth
value for all interpretations J§ and valuations «.

» Applies to bound and to unbound formulas.

¢ A number of equivalences - simple rewrite rules - are
given, including:
¢ Versions of DeMorgan’s law for quantification operations
¢ asort of commutative property of universal quantification
and disjunction:
vX(FVHX))=FvVvX(H(X))
(when F is closed w.r.t. X)

33

Logical inference

e Formalized “reasoning principles;” re-write rules that
can be used to generate new formulas from given ones
¢ Must be sound:

e whenever the premises are true, the conclusion obtained
must be true in the same world

e produces only logical consequences of the premises

» Examples (proven from semantic definitions):
F F2G

* elimination rule for implication (modus ponens):
. : . VXF(X
e elimination rule for universal quantifier: T())

. . . . FG
e introduction rule for conjunction: e

Logical inference

¢ A formula F that is obtained by applying inference rules to
a set of formulas P is derivable from P, denoted: P + F
(also, especially in semantics, “P entails F”)

e If the inference rules are sound, then any derived formula
must be a logical consequence of the premises: P = F
whenever P - F

* To be complete, a set of inference rules must be able to
derive all logically consequent formulas from a set of
premises: P - F whenever P E F

* “Soundness is an essential requirement; completeness isn’t
always possible. ... Completeness is one of the properties
that makes first-order logic nice.” (B. Partee)

Barbara H. Partee, Distinguished University Professor Emerita of Linguistics and
Philosophy University of Massachusetts Ling 726: Mathematical Linguistics, Lecture 10
Model Theory // V. Borschev and B. Partee, October 23, 2001
people.umass.edu/partee/726_01/lectures/lecturel10.pdf

Inconsistent premises

 Nilsson: “A set of premises is said to be inconsistent if any
formula can be derived from the set. Inconsistency is the
proof-theoretic counterpart of unsatisfiability, and when
the inference system is both sound and complete the two
are frequently used as synonyms.” (emphasis added)

* McGrew: “We resolve this [what happens when the set of
premises is inconsistent] by specifying the notion of
consequence a bit more tightly: the conclusion is a
consequence of the premises if and only if it is impossible
for all of the premises to be true and the conclusion to be
false. When the premises are inconsistent, this
requirement is automatically satisfied (since it is
impossible for all of the premises to be true). So on the
tightened definition, any formula is a consequence of an
inconsistent set of premises.”

Might want to skip this slide if running short on time.

Timothy J. McGrew (Western Michigan University, Philosophy Department):
http://homepages.wmich.edu/~mcgrew/Logiprob.htm

By the same tightened “notion of consequence” any conclusion from an empty set of
premises is also logically true.

36

, 1 Substitutions

f ;.’f'
'V substitution cipher

33085075 €7 07 ¢

g

Stick figure

Sherlock Holmes'
" THINK SUBSTITUTION aleot The
« w0t & smuoany Adventure of the

Dancing Men.”

(Translated: “AM
HERE ABE
SLANEY”)

http://www.zazzle.co.uk/think_substitution_cryptography_dancing_men_tshirt-
235708411090292608
A substitution cipher is a far simpler sort of substitution that we’re going to be looking at.

Substitutions

e Substitutions map free variables to terms (constants,
variables, and functors... but not to predicates).

» Definition: A substitution is a finite set of pairs of terms
{X,/t1,.... X, /t,} where each t; is a term and each X; a
variable such that:

e X; # t; (can’t map a variable to itself), and
* X; # X; if i # j (only one mapping per variable).

e The empty substitution is denoted ¢.

¢ Definition: The application E6 of a substitution 6 (“theta”)
to a formula E is the term or formula obtained by
simultaneously replacing t; for every free occurrence of X;
in E. EO is called an instance of E.

Xg = {tlf X/teo
X otherwise

A substitution seems to be essentially the same as the state as discussed in CSC 501.
Application of a substitution is like an operation of the state function.

Warning: Nilsson uses the format X/t but | found many writings online that reverse that:
Theorem: For all formulas, | |= |[{t1/x1,...,tn/xn}iff {t1/x1, ..., tn/xn} |=.

Substitutions

e Composition: Given two substitutions ¢ (“sigma”) and t (“tau”) and
some formula F, Fat = (Fa)t

e Examples of application:

e letg:={X/foo(Y)}and = {Y/b}:

F(X,Y)at = (F(foo(Y),Y))t = F(foo(b),b)
¢ contrast with single substitution: let 6 := {X/foo(Y),Y/b}:
F(X,Y)0 = F(foo(Y),b)

¢ Definition (of a composed substitution):

let 0 :=={X,/s1, ... Xp/spnyand 0 = {Y; /t,, ... Y/t }.
o= {X1/s10,....X,/5 a% | X; # s;0)
UV /ty, ... Y/t |V & {Xy .. X D)

e Informally...
¢ Step1:. Apply o toeach /term in 0
e Ste f§: Remove any resulting mappings of X/X (can’t map a variable to
itse
. Ste[f 3: Include also mappings from o, but only where Y is not an X in 6
(only one mapping per variable).

It’s easier to look at application of composition first. Note that composition of substitutions
is not commutative.

Honestly, Nilsson didn’t do too well with composition. The version on page 15 had an error
and its replacement in the errata is still hard to understand. I've modified it somewhat
(substitution is simultaneous; foo(Y) is not affected by Y/b.)

Examples from 2009 lecture notes for CS 141, Intro to Al taught by Amy Greenwald at
Brown University.
http://www.cs.brown.edu/courses/cs141/old/2009/lectures/first_order_logic.pdf

39

Substitutions

e Substitutions do not, cannot, and may not change the
meaning (truth value) of a formula (else the system
would be unsound)

e Substitutions cannot be made for bound variables.
e Substitutions cannot be made that bind variables.

& finis %

END WITH THIS SLIDE!!

40

