NOTATION IN NILSSON

Conventions seen in Chapter 1 and Appendix B of: Nilsson, Ulf and Małuszyński, Logic, Programming and Prolog (2ed). http://www.ida.liu.se/~ulfni/lpp/

ROMAN ALPHABET

Description	Examples	typical use	
lowercase italic letters	a, b, c	constants	
	<i>f, g, h</i>	functors	
	p, q, r	predicates	
	s, t	terms	
uppercase italic letters	<i>F, G</i>	formula	
	P	set of premises (formulas)	
	S, T	sets (of terms)	
	<i>X, Y, Z</i>	variables	
script capitals	$\mathcal A$	alphabet	
	${\mathcal T}$	set of terms	
	${\mathcal F}$	set of (well-formed) functions	
	${\mathcal D}$	domain	
Fraktur/black-letter capitals	\mathfrak{I}	interpretation	
	3	domain	
double-struck capitals	N	Set of natural numbers	
	\mathbb{Z} , \mathbb{Q} , \mathbb{R}	Sets of integers, rationals, reals	

Usage of italic and script letters can be arbitrary and inconsistent; they can be reassigned as convenient. Meanings of double-struck and fraktur letters are fairly standard and well-defined.

GREEK ALPHABET

Arial	Cambria	Symbol	CMMI	Letter name	Usage
φ	φ	φ	φ	phi	a valuation
θ	θ	θ	θ	theta	a substitution
σ	σ	σ	σ	sigma	a substitution; a valuation
γ	γ	γ	γ	gamma	a substitution
δ	δ	δ	δ	delta	a substitution
3	ε	ε	ϵ	epsilon	the empty substitution

Different fonts can have confusingly different designs for Greek letters (at least, to my Roman-accustomed eyes). The typography in Nilsson uses "italic" forms of the Greek letters from Donald Knuth's Computer Modern font series (CMMI). For example, ϕ ("phi") tilts to the right and squishes a bit, becoming φ . (Greek typography doesn't have true italics; instead, these seem to approximate handwritten forms.)

Symbols

Glyph	Concept name	Example	Notes
Quantifiers			
A	universal quantifier	$\forall X$	"for all" or "for every"
3	existential quantifier	$\exists X$	"there exists some"
Logical connectives	-		
Λ	conjunction	$x \wedge y$	"and"
V	disjunction	$x \lor y$	"or"
7	negation	$\neg x$	"not"
⊃	implication	$F\supset G$	"if then" (if <i>F</i> then <i>G</i>)
←	implication	$G \leftarrow F$	"if then" (if <i>F</i> then <i>G</i>)
\leftrightarrow	equivalence		"if and only if" (" iff ")
≡	logical equivalence	$\neg \neg F \equiv F$	"is logically equivalent to"
	derivability	$P \vdash F$	"derives" or "F is derivable from P"
Sets			
E	belonging	$x \in S$	" x is in S " or " x is an element of S "
⊆	subset (improper)		"subset of or equal to"
U	union	$S \cup T$	elements found in either
Λ	intersection	$S \cap T$	elements found in both
×	Cartesian product	$\mathcal{D} imes \mathcal{D}$	
Ø	empty set		
{ }	set construction	{(Adam), (Eve)}	
()	(angle brackets)	$p_{\mathfrak{J}}\coloneqq\{\langle Eve\rangle\}$	denotes individual vs. symbol?
Miscellaneous			
	condition		"such that"
0	composition	$F \circ G$	
/	arity	p/n	
/	mapping (substitution)	$X/t \in \theta$	
premises	predicate logic notation	$F F \supset G$	"if F and F implies G , then G "
conclusion		\overline{G}	
:=	denotation, assignment	zero := 0	"zero denotes the number 0"
\mapsto	mapping (valuation)	$\varphi[X \mapsto t]$	
=	truth	$\mathfrak{I} \vDash_{\varphi} Q$	" Q is true with respect to ${\mathfrak J}$ and ϕ "
⊨	logical consequence	$P \models F$	"F is a logical consequence of P"
⊭	falsity	$\mathfrak{I} ot\models_{arphi} Q$	" Q is false with respect to $\mathfrak J$ and ϕ "