Predicate Logic: Predicates and Quantifiers

Section 1.4
Propositional Logic Not Enough

• If we have:
 “All men are mortal.”
 “Socrates is a man.”
 ∴ “Socrates is mortal”

 Compare to:
 “If it is snowing, then I will study discrete math.”
 “It is snowing.”
 ∴ “I will study discrete math.”

• This *not* a valid argument in propositional logic.

→ Need a language that talks about objects, their properties, and their relations.
Introducing Predicate Logic

- Predicate logic uses the following new features:
 - Variables: x, y, z
 - Predicates: P, M
 - Quantifiers: \forall, \exists

- Propositional functions are a generalization of propositions.
 - They contain variables and a predicate, e.g., $P(x)$
 - Variables can be replaced by elements from their domain, e.g. the domain of integers.
Propositional Functions

- Propositional functions become propositions (and have truth values) when their variables are each replaced by a value from the domain (or bound by a quantifier, as we will see later).
- The statement $P(x)$ is said to be the value of the propositional function $P(x)$ at x.
- For example, let $P(x)$ denote “$x > 0$” and the domain be the integers. Then:
 - $P(-3)$ is false.
 - $P(0)$ is false.
 - $P(3)$ is true.
- Often the domain is denoted by U. So in this example U is the integers.
Examples of Propositional Functions

- Let “$x + y = z$” be denoted by $R(x, y, z)$ and U (for all three variables) be the integers. Find these truth values:
 - $R(2, -1, 5)$
 - Solution: F
 - $R(3, 4, 7)$
 - Solution: T
 - $R(x, 3, z)$
 - Solution: Not a Proposition

- Now let “$x - y = z$” be denoted by $Q(x, y, z)$, with U as the integers. Find these truth values:
 - $Q(2, -1, 3)$
 - Solution: T
 - $Q(3, 4, 7)$
 - Solution: F
 - $Q(x, 3, z)$
 - Solution: Not a Proposition
Connectives from propositional logic carry over to predicate logic.

If \(P(x) \) denotes “\(x > 0 \),” find these truth values:

\[
\begin{align*}
P(3) \lor P(-1) & \quad \text{Solution: } T \\
P(3) \land P(-1) & \quad \text{Solution: } F \\
P(3) \rightarrow P(-1) & \quad \text{Solution: } F \\
P(3) \rightarrow P(-1) & \quad \text{Solution: } T
\end{align*}
\]

Expressions with variables are not propositions and therefore do not have truth values. For example,

\[
\begin{align*}
P(3) \land P(y) \\
P(x) \rightarrow P(y)
\end{align*}
\]

When used with quantifiers (to be introduced next), these expressions (propositional functions) become propositions.
Quantifiers

- We need quantifiers to express the meaning of English words including *all* and *some*:
 - “All men are Mortal.”
 - “Some cats do not have fur.”
- The two most important quantifiers are:
 - *Universal Quantifier*, “For All,” symbol: ∀
 - *Existential Quantifier*, “There Exists,” symbol: ∃
- We write as in ∀x P(x) and ∃x P(x).
- ∀x P(x) asserts P(x) is true for every x in the domain.
- ∃x P(x) asserts P(x) is true for some x in the domain.
- The quantifiers are said to bind the variable x in these expressions.
Universal Quantifier

- $\forall x \, P(x)$ is read as “For All x, $P(x)$”

Examples:

1) If $P(x)$ denotes “$x > 0$” and U is the integers, then $\forall x \, P(x)$ is false.

2) If $P(x)$ denotes “$x > 0$” and U is the positive integers, then $\forall x \, P(x)$ is true.

3) If $P(x)$ denotes “x is even” and U is the integers, then $\forall x \, P(x)$ is false.
Existential Quantifier

\(\exists x \ P(x) \) is read as “There Exists an \(x \) such that \(P(x) \)”

Examples:

1. If \(P(x) \) denotes “\(x > 0 \)” and \(U \) is the integers, then \(\exists x \ P(x) \) is true. It is also true if \(U \) is the positive integers.
2. If \(P(x) \) denotes “\(x < 0 \)” and \(U \) is the positive integers, then \(\exists x \ P(x) \) is false.
3. If \(P(x) \) denotes “\(x \) is even” and \(U \) is the integers, then \(\exists x \ P(x) \) is true.
Thinking about Quantifiers

- When the domain of discourse is finite, we can think of quantification as looping through the elements of the domain.
- To evaluate $\forall x \ P(x)$ loop through all x in the domain.
 - If at every step $P(x)$ is true, then $\forall x \ P(x)$ is true.
 - If at a step $P(x)$ is false, then $\forall x \ P(x)$ is false and the loop terminates.
- To evaluate $\exists x \ P(x)$ loop through all x in the domain.
 - If at some step, $P(x)$ is true, then $\exists x \ P(x)$ is true and the loop terminates.
 - If the loop ends without finding an x for which $P(x)$ is true, then $\exists x \ P(x)$ is false.
- Even if the domains are infinite, we can still think of the quantifiers this fashion, but it would not be practical to implement it this way...
Properties of Quantifiers

- The truth value of $\exists x \, P(x)$ and $\forall x \, P(x)$ depend on both the propositional function $P(x)$ and on the domain U.

Examples:

1. If U is the positive integers and $P(x)$ is the statement “$x < 2$”, then $\exists x \, P(x)$ is true, but $\forall x \, P(x)$ is false.

2. If U is the negative integers and $P(x)$ is the statement “$x < 2$”, then both $\exists x \, P(x)$ and $\forall x \, P(x)$ are true.

3. If U consists of 3, 4, and 5, and $P(x)$ is the statement “$x > 2$”, then both $\exists x \, P(x)$ and $\forall x \, P(x)$ are true. But if $P(x)$ is the statement “$x < 2$”, then both $\exists x \, P(x)$ and $\forall x \, P(x)$ are false.
Precedence of Quantifiers

- The quantifiers \forall and \exists have higher precedence than all the logical operators.
- For example, $\forall x \ P(x) \lor Q(x)$ means $(\forall x \ P(x)) \lor Q(x)$
- $\forall x \ (P(x) \lor Q(x))$ means something different.
- Unfortunately, often people write $\forall x \ P(x) \lor Q(x)$ when they mean $\forall x \ (P(x) \lor Q(x))$.
- To avoid any confusion just put brackets right after every quantifier you use, i.e.

 $\forall \ x \ [P(x) \lor Q(x)]$
- Proposition then becomes very easy to read
Translating from English to Logic

Example 1: Translate the following sentence into predicate logic: “Every student in this class has taken a course in Java.”

Solution:
First decide on the domain U.

Solution 1: If U is all students in this class, define a propositional function $J(x)$ denoting “x has taken a course in Java” and translate as $\forall x \, J(x)$.

Solution 2: But if U is all people, also define a propositional function $S(x)$ denoting “x is a student in this class” and translate as $\forall x \, [S(x) \rightarrow J(x)]$.
Translating from English to Logic

Example 2: Translate the following sentence into predicate logic: “Some student in this class has taken a course in Java.”

Solution:
First decide on the domain U.

Solution 1: If U is all students in this class, translate as
\[\exists x \, J(x) \]

Solution 1: But if U is all people, then translate as
\[\exists x \, [S(x) \land J(x)] \]
Returning to the Socrates Example

- Introduce the propositional functions \(\text{man}(x) \) denoting “\(x \) is a man” and \(\text{mortal}(x) \) denoting “\(x \) is mortal.” Specify the domain as all people.

- The two premises are:
 \[
 \forall x [\text{man}(x) \rightarrow \text{mortal}(x)]

 \text{man}(\text{Socrates})
 \]

- The conclusion is:
 \[
 \therefore \text{mortal}(\text{Socrates})
 \]

- Later we will show how to prove that the conclusion follows from the premises.
Equivalences in Predicate Logic

- Statements involving predicates and quantifiers are logically equivalent if and only if they have the same truth value
 - for every predicate substituted into these statements and
 - for every domain of discourse used for the variables in the expressions.
- The notation $S \equiv T$ indicates that S and T are logically equivalent.
- Example: $\forall x \neg \neg S(x) \equiv \forall x S(x)$
Equivalences

- To show that two quantified expressions are equivalent, we need to show that both sides will be true under all predicates and all domains.
- Here is a way to prove it.

\[\forall x[\neg \neg P(x)] \equiv \forall x[P(x)] \]

Assume that the right side holds, also assume that \(a \in U \) is any element in \(U \), where \(U \) is any domain, then

\[\forall x[P(x)] \text{ implies } P(a) \text{ implies } \neg \neg P(a) \text{ implies } \forall x[\neg \neg P(x)] \]

Now, assume that the left side holds, then

\[\forall x[\neg \neg P(x)] \text{ implies } \neg \neg P(a) \text{ implies } P(a) \text{ implies } \forall x[P(x)] \]

\[\therefore \forall x[\neg \neg P(x)] \equiv \forall x[P(x)] \]
Negating Quantified Expressions

- Consider $\forall x J(x)$
 “Every student in your class has taken a course in Java.”
 Here $J(x)$ is “x has taken a course in Java” and the domain is students in your class.

- Negating the original statement gives “It is not the case that every student in your class has taken Java.”
 This implies that “There is a student in your class who has not studied Java.”

 Symbolically $\neg \forall x J(x)$ and $\exists x \neg J(x)$ are equivalent
Negating Quantified Expressions (continued)

• Now Consider $\exists x J(x)$
 “There is a student in this class who has taken a course in Java.”
 Where $J(x)$ is “x has taken a course in Java.”

• Negating the original statement gives “It is not the case that there is a student in this class who has taken Java.” This implies that “Every student in this class has not taken Java”
 Symbolically $\neg \exists x J(x)$ and $\forall x \neg J(x)$ are equivalent
De Morgan’s Laws for Quantifiers

It can be shown that the following holds:

\[\neg \forall x P(x) \equiv \exists x \neg P(x) \]

\[\neg \exists x P(x) \equiv \forall x \neg P(x) \]
Translation from English to Logic

Examples:

1. “Some student in this class has visited Mexico.”

 Solution: Let $M(x)$ denote “x has visited Mexico” and $S(x)$ denote “x is a student in this class,” and U be all people.

 $\exists x \left[S(x) \land M(x) \right]$

2. “Every student in this class has visited Canada or Mexico.”

 Solution: Add $C(x)$ denoting “x has visited Canada.”

 $\forall x \left[S(x) \rightarrow (M(x) \lor C(x)) \right]
Nested Quantifiers

Section 1.5
Nested Quantifiers

- Nested quantifiers are often necessary to express the meaning of sentences in English as well as important concepts in computer science and mathematics.

- **Example**: “Every real number has an inverse” is \(\forall x \exists y [x + y = 0] \) where the domains of \(x \) and \(y \) are the real numbers.
Thinking of Nested Quantification

- Nested Loops
 - To see if $\forall x \forall y [P(x,y)]$ is true, loop through the values of x:
 - At each step, loop through the values for y.
 - If for some pair of x and y, $P(x,y)$ is false, then $\forall x \forall y [P(x,y)]$ is false and both the outer and inner loop terminate.

 $\forall x \forall y [P(x,y)]$ is true if the outer loop ends after stepping through each x.

 - To see if $\forall x \exists y [P(x,y)]$ is true, loop through the values of x:
 - At each step, loop through the values for y.
 - The inner loop ends when a pair x and y is found such that $P(x,y)$ is true.
 - If no y is found such that $P(x,y)$ is true the outer loop terminates as $\forall x \exists y [P(x,y)]$ has been shown to be false.

 $\forall x \exists y [P(x,y)]$ is true if the outer loop ends after stepping through each x.

 - If the domains of the variables are infinite, then this process cannot actually be carried out.
Order of Quantifiers

The order of quantification matters!

Examples:

1. Let $P(x,y)$ be the statement “$x + y = y + x$.” Assume that U is the real numbers. Then $\forall x \ \forall y P(x,y)$ and $\forall y \ \forall x P(x,y)$ have the same truth value.

2. However, let $Q(x,y)$ be the statement “$x + y = 0$.” Assume that U is the real numbers. Then $\forall x \ \exists y P(x,y)$ is true, but $\exists y \ \forall x P(x,y)$ is false.
Translating Nested Quantifiers into English

Example: Translate the statement

\[
\forall x \left[C(x) \lor \exists y \left[C(y) \land F(x, y) \right] \right]
\]

where \(C(x) \) is “\(x \) has a computer,” and \(F(x, y) \) is “\(x \) and \(y \) are friends,” and the domain for both \(x \) and \(y \) consists of all students in your school.

Solution: First we can rewrite the expression:

\[
\forall x \left[C(x) \lor \exists y \left[C(y) \land F(x, y) \right] \right] \equiv \forall x \left[C(x) \right] \lor \forall x \exists y \left[F(x, y) \land C(y) \right]
\]

Every student in your school has a computer or has a friend who has a computer.
Translating Mathematical Statements into Predicate Logic

Example: Translate “The sum of two positive integers is always positive” into a logical expression.

Solution:

1. Rewrite the statement to make the implied quantifiers and domains explicit:
 “For every two integers, if these integers are both positive, then the sum of these integers is positive.”

2. Introduce the variables \(x \) and \(y \), and specify the domain, to obtain:
 “For all positive integers \(x \) and \(y \), \(x + y \) is positive.”

3. The result is:
 \[\forall x \forall y ((x > 0) \land (y > 0) \rightarrow (x + y > 0)) \]
 where the domain of both variables consists of all integers