
Chapter Five:
Nondeterministic Finite Automata

From DFA to NFA

•  A DFA has exactly one transition from every state on
every symbol in the alphabet.

•  By relaxing this requirement we get a related but
more flexible kind of automaton: the nondeterministic
finite automaton or NFA.

Outline

•  5.1 Relaxing a Requirement
•  5.2 Spontaneous Transitions
•  5.3 Nondeterminism
•  5.4 The 5-Tuple for an NFA
•  5.5 The Language Accepted by an NFA

Not A DFA

•  Does not have exactly one transition from
every state on every symbol:
–  Two transitions from q0 on a
–  No transition from q1 (on either a or b)

•  Though not a DFA, this can be taken as
defining a language, in a slightly different way

q1

a,b

q0
a

Possible Sequences of Moves

•  We'll consider all possible sequences of moves the machine
might make for a given string

•  For example, on the string aa there are three:
–  From q0 to q0 to q0, rejecting
–  From q0 to q0 to q1, accepting
–  From q0 to q1, getting stuck on the last a

•  Our convention for this new kind of machine: a string is in L(M) if
there is at least one accepting sequence

q1

a,b

q0
a

Nondeterministic Finite
Automaton (NFA)

•  L(M) = the set of strings that have at least one accepting
sequence

•  In the example above, L(M) = {xa | x ∈ {a,b}*}
•  A DFA is a special case of an NFA:

–  An NFA that happens to be deterministic: there is exactly one
transition from every state on every symbol

–  So there is exactly one possible sequence for every string
•  NFA is not necessarily deterministic

q1

a,b

q0
a

NFA Example

•  This NFA accepts only
those strings that end in
01

•  Running in “parallel
threads” for string
1100101

q0Start q1 q2
0 1

0,1

q0

q0

q0

q0

q0

1

1

0

0

q1 - stuck

q0

q0

1

1

0

q0

q1

q2 - stuck

q1

q2 - accept

q0

q0

q0

q0

q0

1

1

0

0

q1 - stuck

q0

q0

1

1

0

q0

q1

q2 - stuck

q1

q2 - accept

Nondeterminism

•  The essence of nondeterminism:
–  For a given input there can be more than one legal

sequence of steps
–  The input is in the language if at least one of the legal

sequences says so
•  We can achieve the same result by computing all

legal sequences in parallel and then deterministically
search the legal sequences that accept the input,
but…

•  ...this nondeterminism does not directly correspond to
anything in physical computer systems

•  In spite of that, NFAs have many practical
applications

Nondeterminism DFA:

0

0
0

1

1

1
1

0

q0 q1

q2 q3

NFA:

0,1

0,1

1

q0 q1 q2

Now consider string: 0110

DFAs and NFAs

•  DFAs and NFAs both define languages
•  DFAs do it by giving a simple computational procedure for

deciding language membership:
–  Start in the start state
–  Make one transition on each symbol in the string
–  See if the final state is accepting

•  NFAs do it by considering all possible transitions in parallel.

NFA Advantage
•  An NFA for a language can be smaller and easier to construct than a

DFA
•  Let L={x ∈ {0,1}*|where x is a string whose next-to-last symbol is 1}
•  Construct both a DFA and NFA for recognizing L.

DFA:

0

0
0

1

1

1
1

0

NFA:

0,1

0,1

1

Outline

•  5.1 Relaxing a Requirement
•  5.2 Spontaneous Transitions
•  5.3 Nondeterminism
•  5.4 The 5-Tuple for an NFA
•  5.5 The Language Accepted by an NFA

Spontaneous Transitions

•  An NFA can make a state transition
spontaneously, without consuming an input
symbol

•  Shown as an arrow labeled with ε
•  For example, {a}* ∪ {b}*:

q0

a q1

q2

ε

ε b

ε-Transitions To Accepting States

•  An ε-transition can be made at any time
•  For example, there are three sequences on the empty string

–  No moves, ending in q0, rejecting
–  From q0 to q1, accepting
–  From q0 to q2, accepting

•  Any state with an ε-transition to an accepting state ends up
working like an accepting state too

q0

a q1

q2

ε

ε b

ε-transitions For NFA Combining

•  ε-transitions are useful for combining smaller
automata into larger ones

•  This machine is combines a machine for {a}*
and a machine for {b}*

•  It uses an ε-transition at the start to achieve
the union of the two languages

q0

a q1

q2

ε

ε b

Revisiting Union
A = {an | n is odd}

B = {bn | n is odd}

A ∪ B

a

a

b

b

a

a

b

b

ε

ε

Concatenation
A = {an | n is odd}

B = {bn | n is odd}

{xy | x ∈ A and y ∈ B}

a

a

b

b

ε

a

a

b

b

Some Exercises
What is the language accepted by the following NFAs?

a) b)

c)

•  Let Σ = {a, b, c}. Give an NFA M that accepts:

 L = {x | x is in Σ* and x contains ab}

q1 q0 q2
a

a,b,c

b

a,b,c

More Exercises

•  Let Σ = {a, b}. Give an NFA M that accepts:

 L = {x | x is in Σ* and the third to the last symbol in x is b}

q1 q0
b q3

a/b

a/b

q2
a/b

One More Exercise

NFA Exercise

•  Construct an NFA that will accept strings over
alphabet {1, 2, 3} such that the last symbol appears
at least twice, but without any intervening higher
symbol, in between:
–  e.g., 11, 2112, 123113, 3212113, etc.

•  Trick: use start state to mean “I guess I haven't seen
the symbol that matches the ending symbol yet.”
Use three other states to represent a guess that the
matching symbol has been seen, and remembers
what that symbol is.

NFA Exercise (answer)

Outline

•  5.1 Relaxing a Requirement
•  5.2 Spontaneous Transitions
•  5.3 Nondeterminism
•  5.4 The 5-Tuple for an NFA
•  5.5 The Language Accepted by an NFA

Powerset

•  If S is a set, the powerset of S is the set of all subsets of S:

 P(S) = {R | R ⊆ S}

•  This always includes the empty set and S itself
•  For example,

P({1,2,3}) = {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}

The 5-Tuple

•  The only change from a DFA is the transition function δ
•  δ takes two inputs:

–  A state from Q (the current state)
–  A symbol from Σ∪{ε} (the next input, or ε for an ε-transition)

•  δ produces one output:
–  A subset of Q (the set of possible next states - since multiple transitions can

happen in parallel!)

An NFA M is a 5-tuple M = (Q, Σ, δ, q0, F), where:
 Q is the finite set of states
 Σ is the alphabet (that is, a finite set of symbols)
 δ ∈ (Q × (Σ∪{ε}) → P(Q) is the transition function
 q0 ∈ Q is the start state
 F ⊆ Q is the set of accepting states

Example:

•  Formally, M = (Q, Σ, δ, q0, F), where
–  Q = {q0,q1,q2}
–  Σ = {a,b} (we assume: it must contain at least a and b)
–  F = {q2}
–  δ(q0,a) = {q0,q1}, δ(q0,b) = {q0}, δ(q0,ε) = {q2},
δ(q1,a) = {}, δ(q1,b) = {q2}, δ(q1,ε) = {}
δ(q2,a) = {}, δ(q2,b) = {}, δ(q2,ε) = {}

•  The language defined is {a,b}*

q0 q1

a q2
b

ε

a,b

Outline

•  5.1 Relaxing a Requirement
•  5.2 Spontaneous Transitions
•  5.3 Nondeterminism
•  5.4 The 5-Tuple for an NFA
•  5.5 The Language Accepted by an NFA

The δ* Function

•  The δ function gives 1-symbol moves
•  We'll define δ* so it gives whole-string results

(by applying zero or more δ moves)
•  For DFAs, we used this recursive definition

–  δ*(q,ε) = q
–  δ*(q,xa) = δ(δ*(q,x),a)

•  The intuition is similar for NFAs taking parallel
transitions into account, but the
ε-transitions add some technical difficulties

NFA IDs

•  An instantaneous description (ID) is a
description of a point in an NFA's execution

•  It is a pair (q,x) where
–  q ∈ Q is the current state
–  x ∈ Σ* is the unread part of the input

•  Initially, an NFA processing a string x has the
ID (q0,x)

•  An accepting sequence of moves ends in an
ID (f,ε) for some accepting state f ∈ F

The One-Move Relation On IDs

•  We write

if I is an ID and J is an ID that could follow
from I after one move of the NFA

•  That is, for any string x ∈ Σ* and any a ∈ Σ or
a = ε,

€

I J

€

q,ax() r,x() if and only if r ∈ δ q,a()

The Zero-Or-More-Move Relation

•  We write

if there is a sequence of zero or more moves
that starts with I and ends with J:

•  Because it allows zero moves, it is a reflexive
relation: for all IDs I,

€

I ∗ J

€

I J

€

I∗ I

The δ* Function

•  Now we can define the δ*
function for NFAs:

•  Intuitively, δ*(q,x) is the set of all
states the NFA might be in after
starting in state q and reading x

€

δ∗ q,x() = r q,x()∗ r,ε(){ }

M Accepts x

•  Now δ*(q,x) is the set of states M may end in,
starting from state q and reading all of string x

•  So δ*(q0,x) tells us whether M accepts x by
computing all possible states by executing all
possible transitions in parallel on the string x:

A string x ∈ Σ* is accepted by an NFA M = (Q, Σ, δ, q0, F)
if and only if the set δ*(q0, x) contains at least one
element of F.

For any NFA M = (Q, Σ, δ, q0, F), L(M) denotes
the language accepted by M, which is

 L(M) = {x ∈ Σ* | δ*(q0, x) ∩ F ≠ {}}.

The Language An NFA Defines

Exercise

•  Compute the results of
the following transitions:
–  δ*(q1,ε)
–  δ*(q1,0110)

Exercise

•  Theorem: Let M be an NFA with a single accepting
state, show how to construct the 5-tuple for a new
NFA, say N, with

L(N) = { xy | x∈ L(M) and y∈ L(M)}.

Show that the language of construct NFA is indeed
L(N) as specified.

•  Proof Idea: The idea here is to make two copies of
the NFA, linking the accepting state of the first to the
start state of the second. The accepting state of the
second copy becomes the only accepting state in the
new machine.

Assignment

•  Assignment #3 – see website

