
Chapter Five: 
Nondeterministic Finite Automata 



From DFA to NFA 

•  A DFA has exactly one transition from every state on 
every symbol in the alphabet.   

•  By relaxing this requirement we get a related but 
more flexible kind of automaton: the nondeterministic 
finite automaton or NFA. 
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Not A DFA 

•  Does not have exactly one transition from 
every state on every symbol: 
–  Two transitions from q0 on a 
–  No transition from q1 (on either a or b) 

•  Though not a DFA, this can be taken as 
defining a language, in a slightly different way 
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Possible Sequences of Moves 

•  We'll consider all possible sequences of moves the machine 
might make for a given string 

•  For example, on the string aa there are three: 
–  From q0 to q0 to q0, rejecting 
–  From q0 to q0 to q1, accepting 
–  From q0 to q1, getting stuck on the last a 

•  Our convention for this new kind of machine: a string is in L(M) if 
there is at least one accepting sequence 
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Nondeterministic Finite 
Automaton (NFA) 

•  L(M) = the set of strings that have at least one accepting 
sequence 

•  In the example above, L(M) = {xa | x ∈ {a,b}*} 
•  A DFA is a special case of an NFA: 

–  An NFA that happens to be deterministic: there is exactly one 
transition from every state on every symbol 

–  So there is exactly one possible sequence for every string 
•  NFA is not necessarily deterministic 
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NFA Example 

•  This NFA accepts only 
those strings that end in 
01 

•  Running in “parallel 
threads” for string 
1100101 
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Nondeterminism 

•  The essence of nondeterminism: 
–  For a given input there can be more than one legal 

sequence of steps 
–  The input is in the language if at least one of the legal 

sequences says so 
•  We can achieve the same result by computing all 

legal sequences in parallel and then deterministically 
search the legal sequences that accept the input, 
but…  

•  ...this nondeterminism does not directly correspond to 
anything in physical computer systems 

•  In spite of that, NFAs have many practical 
applications 
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Now consider string: 0110 



DFAs and NFAs 

•  DFAs and NFAs both define languages 
•  DFAs do it by giving a simple computational procedure for 

deciding language membership: 
–  Start in the start state 
–  Make one transition on each symbol in the string 
–  See if the final state is accepting 

•  NFAs do it by considering all possible transitions in parallel. 



NFA Advantage 
•  An NFA for a language can be smaller and easier to construct than a 

DFA 
•  Let L={x ∈ {0,1}*|where x is a string whose next-to-last symbol is 1} 
•  Construct both a DFA and NFA for recognizing L. 
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Spontaneous Transitions 

•  An NFA can make a state transition 
spontaneously, without consuming an input 
symbol 

•  Shown as an arrow labeled with ε 
•  For example, {a}* ∪ {b}*: 
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ε-Transitions To Accepting States 

•  An ε-transition can be made at any time 
•  For example, there are three sequences on the empty string 

–  No moves, ending in q0, rejecting 
–  From q0 to q1, accepting 
–  From q0 to q2, accepting 

•  Any state with an ε-transition to an accepting state ends up 
working like an accepting state too 
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ε-transitions For NFA Combining 

•  ε-transitions are useful for combining smaller 
automata into larger ones 

•  This machine is combines a machine for {a}* 
and a machine for {b}* 

•  It uses an ε-transition at the start to achieve 
the union of the two languages 
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Revisiting Union 
A = {an |  n is odd} 

B = {bn |  n is odd} 

A ∪ B  
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Concatenation 
A = {an |  n is odd} 

B = {bn |  n is odd} 

{xy |  x ∈ A and y ∈ B} 

 

  
a 

a 

  
b 

b 

ε 

 

  
a 

a 

  

b 

b 



Some Exercises 
What is the language accepted by the following NFAs? 

a) b) 

c) 



•  Let Σ = {a, b, c}. Give an NFA M that accepts: 

  L = {x | x is in Σ* and x contains ab} 
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More Exercises 



•  Let Σ = {a, b}. Give an NFA M that accepts: 

  L = {x | x is in Σ* and the third to the last symbol in x is b} 
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NFA Exercise 

•  Construct an NFA that will accept strings over 
alphabet {1, 2, 3} such that the last symbol appears 
at least twice, but without any intervening higher 
symbol, in between: 
–  e.g., 11, 2112, 123113, 3212113, etc. 

•  Trick: use start state to mean “I guess I haven't seen 
the symbol that matches the ending symbol yet.”  
Use three other states to represent a guess that the 
matching symbol has been seen, and remembers 
what that symbol is. 



NFA Exercise (answer) 
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Powerset 

•  If S is a set, the powerset of S is the set of all subsets of S: 
 

 P(S) = {R | R ⊆ S} 
 

•  This always includes the empty set and S itself 
•  For example, 

  
P({1,2,3}) = {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}} 



The 5-Tuple 

•  The only change from a DFA is the transition function δ 
•  δ takes two inputs: 

–  A state from Q (the current state) 
–  A symbol from Σ∪{ε}  (the next input, or ε for an ε-transition) 

•  δ produces one output: 
–  A subset of Q (the set of possible next states - since multiple transitions can 

happen in parallel!) 

An NFA M is a 5-tuple M = (Q, Σ, δ, q0, F), where: 
 Q is the finite set of states 
 Σ is the alphabet (that is, a finite set of symbols) 
 δ ∈ (Q × (Σ∪{ε}) → P(Q) is the transition function 
 q0 ∈ Q is the start state 
 F ⊆ Q is the set of accepting states 



Example: 

•  Formally, M = (Q, Σ, δ, q0, F), where 
–  Q = {q0,q1,q2} 
–  Σ = {a,b}  (we assume: it must contain at least a and b) 
–  F = {q2} 
–  δ(q0,a) = {q0,q1}, δ(q0,b) = {q0}, δ(q0,ε) = {q2},  
δ(q1,a) = {}, δ(q1,b) = {q2}, δ(q1,ε) = {} 
δ(q2,a) = {}, δ(q2,b) = {}, δ(q2,ε) = {} 

•  The language defined is {a,b}* 
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The δ* Function 

•  The δ function gives 1-symbol moves 
•  We'll define δ* so it gives whole-string results 

(by applying zero or more δ moves) 
•  For DFAs, we used this recursive definition 

–  δ*(q,ε) = q 
–  δ*(q,xa) = δ(δ*(q,x),a) 

•  The intuition is similar for NFAs taking parallel 
transitions into account, but the  
ε-transitions add some technical difficulties 



NFA IDs 

•  An instantaneous description (ID) is a 
description of a point in an NFA's execution 

•  It is a pair (q,x) where 
–  q ∈ Q is the current state 
–  x ∈ Σ* is the unread part of the input 

•  Initially, an NFA processing a string x has the 
ID (q0,x) 

•  An accepting sequence of moves ends in an 
ID (f,ε) for some accepting state f ∈ F 



The One-Move Relation On IDs 

•  We write  
 
if I is an ID and J is an ID that could follow 
from I after one move of the NFA 

•  That is, for any string x ∈ Σ* and any a ∈ Σ  or 
a = ε,  
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The Zero-Or-More-Move Relation 

•  We write  
 
if there is a sequence of zero or more moves 
that starts with I and ends with J: 
 

•  Because it allows zero moves, it is a reflexive 
relation: for all IDs I,  
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The δ* Function 

•  Now we can define the δ* 
function for NFAs: 
 
 

•  Intuitively, δ*(q,x) is the set of all 
states the NFA might be in after 
starting in state q and reading x 
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M Accepts x 

•  Now δ*(q,x) is the set of states M may end in, 
starting from state q and reading all of string x 

•  So δ*(q0,x) tells us whether M accepts x by 
computing all possible states by executing all 
possible transitions in parallel on the string x:  

A string x ∈ Σ* is accepted by an NFA M = (Q, Σ, δ, q0, F) 
if and only if the set δ*(q0, x) contains at least one 
element of F. 



For any NFA M = (Q, Σ, δ, q0, F), L(M) denotes 
the language accepted by M, which is  
 

 L(M) = {x ∈ Σ* |  δ*(q0, x) ∩ F ≠ {}}. 

The Language An NFA Defines 



Exercise 

•  Compute the results of 
the following transitions: 
–  δ*(q1,ε) 
–  δ*(q1,0110) 



Exercise 

•  Theorem: Let M be an NFA with a single accepting 
state, show how to construct the 5-tuple for a new 
NFA, say N, with 
 
L(N) = { xy | x∈ L(M) and y∈ L(M)}. 
 
Show that the language of construct NFA is indeed 
L(N) as specified. 

•  Proof Idea: The idea here is to make two copies of 
the NFA, linking the accepting state of the first to the 
start state of the second.  The accepting state of the 
second copy becomes the only accepting state in the 
new machine. 



Assignment 

•  Assignment #3 – see website 


