
Statistical Learning
Theory

Up to this point we have developed support vector machines purely based on

linear algebra

maximum margin

⇒ The key insight was that the maximum margin classifier is the best classifier when
considering all possible hyperplanes that separate two classes – we based this
argument on optimization theory.

Here we will look at statistical learning theory that makes the notion of maximum margin
classifier as the optimal classifier rigorous via statistical arguments.

At the heart of this theory is the notion of VC-dimension.
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VC-Dimension
Informally, the VC-dimension is a measure of the complexity of a classifier.

It is a measure of how well the classifiers can separate the points in the input space or
model these points without any error.

– p. 2/1



VC-Dimension
More formally, consider the class of all classifiers with a margin γ of some fixed size, let
F̂ [γ] be that class.

Now consider some dataset D, then the VC-dimension of classifiers with the margin γ is
the size of the largest subset of points from D that can be separated by classifiers in
F̂ [γ] without any errors for all possible binary label assignments.

If all points in D can be separated for all possible label assignments then we say that
F̂ [γ] shatters the dataset D.

Definition: The VC-dimension of a model class F̂ [γ] defined over some
data set D is the size of the largest finite subset of D shattered by F̂ [γ].
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VC-Dimension
Example: Consider a class of classifiers F̂ [γ1] with γ1 denoting a margin of some fixed size.

Let our dataset be a set of points in two dimensional real space, D ⊂ R
2.

Let |D| = 3, that is D contains three points.

Given a size of γ1 such that we can separate all three points for all possible label assignments, then
the VC-dimension is,

h1 = 3.

}

}

}

}

}

}

Now, since h = |D|, we say that F̂ [γ1] shatters D.
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VC-Dimension
Example: Consider a second class of classifiers F̂ [γ2] over the same dataset D with γ2 > γ1. In
particular, the size of γ2 is such that the classifiers will not be able to separate all points perfectly.

}

}}
}

}}

Here we see that the maximum number of points that can be separated by the classifiers in F̂ [γ2] is
2. Therefore, we say that the VC-dimension is h2 = 2.

Observe that with γ2 > γ1 we have h2 < h1, that is, models with large margins are less complex
that models with small margins.
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VC-Dimension
High VC-dimension numbers represent classes of models with high complexity and vice
versa,

Model Complexity ∝ VC-Dimension.

The VC-dimension can be thought of as a formalization of the trade-off between
complexity and accuracy of a model. Classifiers with small margins and large
VC-dimensions will induce accurate but very complex decision surfaces whereas
classifiers with large margins and small VC-dimensions will induce less accurate and
less complex decision surfaces.

It turns out that statistical learning theory sheds some light on exactly this trade-off in
what is called expected risk minimization.
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VC-Dimension
Observation: The VC-dimension of a classifier is data dependent.

Note, the above dataset VC-dimension h = 2 regardless the size of the margin γ in the
class of classifiers F̂ [γ] considered for modeling this dataset.
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Mathematical
Expectation

E[g] =

Z
x

g(x)P (x)dx,

where g(x) is a function over some domain X such that x ∈ X and P (x) is a probability
distribution over X.

E[g] represents the sum of function evaluations over the domain X weighted by their
probabilities.

If the domain X is discrete with k elements x1, . . . , xk, then the expectation is
expressed as,

E[g] =
1

k

kX
i=1

g(xi).

Typically we call the expected value E[f ] the average or mean over all function
evaluation over the domain X.
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Expected Risk

Assume that P (x, y) is the joint probability of the data instances x ∈ R
n and their

corresponding labels y ∈ {+1,−1}, also assume that L is the 0-1 loss function, then the
expected loss for some model f̂ ∈ F̂ [γ] defined over the data universe is,

E[L(y, f̂(x))] =

Z
L(y, f̂(x)) dP (x, y).

In other words, the expected loss is the expected number of mistakes a model will
commit over the underlying data universe.

We often write

R[f̂ ] = E[L(y, f̂(x))],

where R[f̂ ] is called the expected risk.
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Risk Minimization
The goal in statistical learning is to find a model f̂∗ ∈ F̂ that minimizes the expected risk

f̂∗ = argmin
f̂∈F̂

R[f̂ ],

where F̂ represents the class of all model classes such that F̂ [γ] ⊂ F̂ for all margins γ.

Unfortunately, this is impossible in the present formulation of the expected risk because
we do not know the probability distribution P (x, y).

If we did, there would be nothing to learn.
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Empirical Risk
However, we do have some information on the joint probability distribution in the form of samples in
our dataset D,

D = {(x1, y1), . . . , (xl, yl)} ⊂ R
n × {+1,−1}.

We can use these samples to estimate the risk, we call this the empirical risk Remp[f̂ ] of some model
f ∈ F and define it as

Remp[f̂ ] = E[L(y, f̂(x))] =
1

l

lX
i=1

L(yi, f̂(xi)),

where (xi, yi) ∈ D. Then,

f̂∗ = argmin
f̂∈F̂

Remp[f̂ ]

= argmin
f̂∈F̂

 
1

l

lX
i=1

L(yi, f̂(xi))

!
.

However, minimizing this equation is overly optimistic, since we can always find some model which
fits the sample data extremely well.a

aCompare this to the training error of a model.
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VC-Confidence
In order to use the empirical risk for estimating the best model for the expected risk, Vapnik
introduced a new term called the VC-confidence which together with the empirical risk can be
considered a bound on the expected risk,

R[f̂ ] ≤ Remp[f̂ ] +

VC-confidencez }| {
v(l, h, η)| {z }

VC generalization bound

,

where h is the VC-dimension of f̂ and η is some small number such that 0 < η < 1. Typically
η = 0.05 for the 95% confidence interval, since the theory states that the bound holds with
probability 1 − η.

The VC-confidence term is defined as follows,

v(l, h, η) =

s
h(log( 2l

h ) + 1) − log( η
4 )

l
.

Notice that the right side of the above equations do not depend the joint probability distribution
P (x, y).

Observation: v is directly proportional to h and indirectly proportional to the number of training
instances l.
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Generalization
Bound

Model Complexity

Error

high

low

highlow

generalization bound

The figure illustrates the relationship between the empirical risk Remp[f̂ ] and the VC-confidence
v(l, h, η).

Note that as the complexity of the models increases the empirical risk decreases. That is, complex
models allow us to model the training data well.

On the other hand, as model complexity increases so does the VC-confidence. Here, complex
models will commit more errors on data not contained in the training data.

The generalization bound can be considered the envelope of these two curves. It is interesting to
note that minimizing the generalization bound is equivalent to making just the right trade-off between
model complexity and error rate ⇒ f̂∗. – p. 13/1



Structural Risk
Minimization

With the generalization bound we now have a way to characterize models that optimally
trade off complexity and error.

The question remains, how do we find these models?

Our notion of model class F̂ is most likely infinite and we have to traverse this class of
models to find the optimal model f̂∗ that minimizes the generalization bound.

An effective way to traverse this model class in search for an optimal model is structural
risk minimization.
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Structural Risk
Minimization

suppose we have a class of linear models F̂ with

F̂ [γ1], . . . , F̂ [γk] ⊂ F̂ ,

where

F̂ [γ1] ⊂ F̂ [γ2] ⊂ . . . ⊂ F̂ [γk] if h1 < h2 < . . . < hk,

where hi is the VC-dimension of model class F̂ [γi].

Given that we assume linear models, the equation above implies that the margins of the
various model classes are also partially ordered,

γk < . . . < γ2 < γ1.

This gives us an effective procedure to find the optimal model: We start with the least
complex model class F̂ [γ1] and minimize the generalization bound. We then move on to
the next model class, in this case F̂ [γ2], and compute the optimal model f̂∗

2 in a similar
fashion. We terminate our search if we find that the generalization bound of some model
f̂∗

i+1 ∈ F̂ [γi+1] is larger than the generalization bound of the model f̂∗
i ∈ F̂ [γi]. In this

case, f̂∗
i is the optimal model.
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Structural Risk
Minimization

Model Complexity

Error

high

low

generalization bound

...

Here we see that statistical learning theory and our intuitive notion of maximum margin
classifier coincide.

In addition, statistical learning theory provides a nice mathematical framework for our
intuitions.
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