Constraint Satisfaction Problems (CSP)

- What is a CSP?
 - Finite set of variables V_1, V_2, \ldots, V_n
 - Nonempty domain of possible values for each variable $D_{V_1}, D_{V_2}, \ldots, D_{V_n}$
 - Finite set of constraints C_1, C_2, \ldots, C_m
 - Each constraint C_i limits the values that variables can take,
 - e.g., $V_3 > 0$ or $V_1 \neq V_2$,

- A state is defined as an assignment of values to some or all variables.

- Consistent assignment
 - assignment does not violate the constraints

- Complete assignment
 - when every variable is mentioned in the assignment
Constraint Satisfaction Problems (CSP)

- A *solution* to a CSP is a complete assignment that satisfies all constraints.
- If a solution to a CSP exists then it can be found with a *backtracking search* over the states (assignments).
- Scheduling a meeting of X number of people with constraints on their available time is the premier example of a CSP.
function BACKTRACKING-SEARCH(csp)
 return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp)
 if assignment is complete then
 return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES(csp), assignment)
 for each value in DOMAIN-VALUES(var) do
 if value is consistent with assignment according to CONSTRAINTS(csp) then
 add {var=value} to assignment
 solution ← RECURSIVE-BACKTRACKING(assignment, csp)
 if solution ≠ failure then
 return solution
 remove {var=value} from assignment
 return failure

Note: csp is the representation of our constraint satisfaction problem, VARIABLES(csp) and CONSTRAINTS(csp) are accessor functions that access the respective parts of the respective parts of the representation.
Our CSP:
- Two variables: X, Y
- Domains: [1,9] (for both vars)
- Constraint: X+Y=X*Y
- Problem: Find a value for X and Y that satisfies the constraint.

It is easy to see that the complete assignment \{X=2, Y=2\} is a solution.

Compute the solution with recursive backtracking.
Scheduling

- Schedule a meeting:
 - Variables: Peter, Paul, Mary
 - Domains: available times
 - Peter: {10-11, 11-12, 2-3}
 - Paul: {11-12, 1-2}
 - Mary: {10-11, 11-12, 3-4}
 - Problem: Find a common meeting time.
Scheduling (over-constrained problems)

- Schedule a meeting:
 - Variables: Peter, Paul, Mary
 - Domains: available times
 - Peter: {10-11,11-12,2-3}
 - Paul: {11-12,1-2}
 - Mary: {10-11,2-3,3-4}
 - Problem: Find a common meeting time.
- Over-constrained problems do not have solutions!
Map Coloring

- Perhaps the most famous CSP: Color a map such that no two adjacent areas have the same color.

- CSP:
 - Variables: areas on the map
 - Domain: a set of colors (turns out for maps we only need four different colors - the four color theorem)
 - Constraint: no two adjacent areas can have the same color.
Map Coloring
Map Coloring
Map Coloring
Solutions are assignments satisfying all constraints, e.g.

\{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green\}
Reading

- Chapter 4 (up to including 4.4)