Knowledge Representation

- Knowledge Representation
 - Concise representation of knowledge that is manipulatable in software.

- Types of Knowledge
 - Declarative knowledge (facts)
 - Procedural knowledge (how to do something)
 - Analogous knowledge (associations between knowledge)
 - Meta-knowledge (knowledge about knowledge)
Role of Knowledge

- Use knowledge to make intelligent decisions.
- Must be stored in a suitable format.
Knowledge Representation

A *representation* is a set of conventions about how to describe a class of things.

A *description* makes use of the conventions of a representation to describe some particular thing.
Good representations make the important things explicit.

They expose the *natural constraints*.
- Some transitions are possible, some are not.

They are *complete*.
- We are able say everything that needs to be said.

They are *concise*.
- We can say things efficiently.

They are *transparent*.
- We can understand what has been said.

They facilitate *computation*.
- We can store and retrieve information rapidly, representation is easily manipulated.

They *suppress detail*.
- We can access information at the appropriate level of abstraction.
Knowledge Representation

- Every problem has a set of *natural constraints*
 - E.g., in pathfinding we are not allowed to move instantly from one part of the space to another neither are we allowed to traverse through opaque space (e.g. walls).
- A solution must satisfy these constraints - *constraint satisfaction*
- Representations that allow for easy reasoning about constraints, *constraint propagation*, are preferred.
Line drawing interpretation

- Line constraints:
 - Concave: +
 - Convex: -
 - Boundary: →

- Once we label one of the lines, the constraints imposed by the real world force the interpretation of the other lines - *constraint propagation*
Knowledge Representation

- A line drawing without constraints is difficult to interpret.
 - Can you see the big cube flipping back and forth between the two perspectives?
 - What constraints should be put on big cube to represent the left bottom cube? The right bottom cube?
Knowledge Representation

- Symbolic constraint propagation offers a plausible explanation for one human information processing phenomenon, it offers also a good way to structure computer solutions.
- Processing constraints and regularities in the world make it possible for entities to be intelligent, be it human or machines.
Knowledge Representation

- Shading is also a real world constraint we use to interpret the world.
- Without shading the picture to the left is difficult to interpret.

Figure 3-19. Without shadows, there are several ways to interpret a cube: it may be suspended or it may be attached to a floor or a wall by one of its hidden faces.
A representation is a set of conventions about how to describe a class of things.

Representations used in AI:
- Symbols
- Predicate Logic (First-Order Logic)
- Attribute-value representation
- Frames
- Semantic networks
- List
Knowledge Representation

- Symbolic representation
 - Imperative languages
 - Weak
 - Groups of symbols with values assigned to them
 - Data structures are used to convey some relationships between the symbols - e.g. classes in OOP
 - Symbolic programming languages
 - The symbol itself becomes the carrier of knowledge/meaning, e.g. predication in logic programming.
 - A program is a collection of these symbols and a way to reason about them.
 - This makes Prolog so attractive as an AI language.
Knowledge Representation

- **Object-Attribute-Value**
 - Can often be represented as a table

<table>
<thead>
<tr>
<th>Object</th>
<th>Distance</th>
<th>Presence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left_obstacle</td>
<td>4.0</td>
<td>known</td>
</tr>
<tr>
<td>Right_obstacle</td>
<td>?</td>
<td>unknown</td>
</tr>
</tbody>
</table>
Knowledge Representation

- Frames
 - Records composed of slots and pointers
 - Stores values of objects and relationships between objects
 - When programming in Java/C++ you can use classes to achieve the same goal
 - Used in applications in cognitive modeling

Frame-left-obstacle:
- distance: 4.0
- presence: known
- pointer: (frame-fred) (frame-joe)
Knowledge Representation

- Semantic Networks
 - Stores the relationships between objects in a graph-like manner
 - Nodes represent concepts
 - Edges describe relationships
 - Interesting relationship to logic programming
 - the edges in a semantic network can be viewed as predicates.
Knowledge Representation

- Another semantic network (Wikipedia)
Knowledge Representation

- Lists
 - Similar objects are gathered together in a list
 - We can envision list operators almost like the operators from set theory: union, intersection, member-of, complement, etc.
 - Also considered a symbolic representation.
 - Powerful and natural representation, we keep lists of things, sort lists, etc.

Mammals = [dog, giraffe, elephant, mouse]
Shopping = [milk, coffee, bread, eggs]

Lisp = List Processor – most famous AI language based on list representation.