Knowledge Representation

- Attribute-Value pairs, frames, and semantic networks allow you to represent knowledge very effectively, but...
 - ...accessing and reasoning with this knowledge is *ad hoc*.
- However, our reasoning does not seem *ad hoc*...we follow certain reasoning patterns or rules.
Rule-based Systems

- Rule-based systems try to mimic our reasoning steps with sets of if-then rules:

 if is-fresh(coffee) then pour(coffee)
 if not is-fresh(coffee) then make(coffee)

- This kind of reasoning was already studied by the ancient Greeks and is referred to as the *modus ponens*,

 if A then B
 A = true

 ∴ B = true

- Sometimes rules are also referred to as *productions* or *production rules*.

Rules:
If <condition> then <action>
Rule-based Systems

Computation step:
- The interpreter
 - selects a rule from the rulebase
 - applies the rule to the symbols in the working memory
 - updates the working memory

Rules can be selected in an arbitrary order only depending on the state of the computation.
A convenient framework for rule-based reasoning is **first-order logic** (predicate logic).

Rather than arbitrary data structures, first-order logic depends on:
- Quantified Variables
- Predicates
- Logical Connectives
- If-then Rules
First-Order Logic

- Quantified Variables
 - Universally quantified variables
 \[\forall X \quad \text{for all objects } X \]
 - Existentially quantified variables
 \[\exists Y \quad \text{there exists an object } Y \]
Predicates
- Predicates are functions that map their arguments into true/false.
- The signature of a predicate $p(X)$ is

 \[p: \text{Objects} \rightarrow \{ \text{true}, \text{false} \} \]

 with $X \in \text{Objects}$.
- Example: $\text{human}(X)$
 - $\text{human}: \text{Objects} \rightarrow \{ \text{true}, \text{false} \}$
 - $\text{human}(\text{tree}) = \text{false}$
 - $\text{human}(\text{paul}) = \text{true}$
- Example: $\text{mother}(X,Y)$
 - $\text{mother}: \text{Objects} \times \text{Objects} \rightarrow \{ \text{true}, \text{false} \}$
 - $\text{mother}(\text{betty},\text{paul}) = \text{true}$
 - $\text{Mother}(\text{giraffe},\text{peter}) = \text{false}$
First-Order Logic

- We can combine predicates and quantified variables to make statements on sets of objects
 - \(\exists X[\text{mother}(X,\text{paul})] \)
 - there exists an object \(X \) such that \(X \) is the mother of Paul
 - \(\forall Y[\text{human}(Y)] \)
 - for all objects \(Y \) such that \(Y \) is human
First-Order Logic

- Logical Connectives: and, or, not
 - $\exists F \forall C [\text{parent}(F,C) \text{ and } \text{male}(F)]$
 - There exists an object F for all object C such that F is a parent of C and F is male.
 - $\forall X [\text{day}(X) \text{ and } (\text{comfortable}(X) \text{ or } \text{rainy}(X))]$
 - For all objects X such that X is a day and X is either comfortable or rainy.
First-Order Logic

- If-then rules: \(A \rightarrow B \)
 - \(\forall X \forall Y [\text{parent}(X,Y) \text{ and female}(X) \rightarrow \text{mother}(X,Y)] \)
 - For all objects \(X \) and for all objects \(Y \) such that if \(X \) is a parent of \(Y \) and \(X \) is female then \(X \) is a mother.
 - \(\forall Q [\text{human}(Q) \rightarrow \text{mortal}(Q)] \)
 - For all objects \(Q \) such that if \(Q \) is human then \(Q \) is mortal.
First-Order Logic

\[\forall \emptyset \text{[female(pam)]}\]
\[\forall \emptyset \text{[female(liz)]}\]
\[\forall \emptyset \text{[female(ann)]}\]
\[\forall \emptyset \text{[female(pat)]}\]
\[\forall \emptyset \text{[male(tom)]}\]
\[\forall \emptyset \text{[male(bob)]}\]
\[\forall \emptyset \text{[male(jim)]}\]

\[\forall \emptyset \text{[parent(pam,bob)]}\]
\[\forall \emptyset \text{[parent(tom,bob)]}\]
\[\forall \emptyset \text{[parent(tom,liz)]}\]
\[\forall \emptyset \text{[parent(bob,ann)]}\]
\[\forall \emptyset \text{[parent(bob,pat)]}\]
\[\forall \emptyset \text{[parent(pat,jim)]}\]

\[\forall \forall \forall \text{[parent(X,Y) and female(X) \rightarrow mother(X)]}\]
\[\forall \forall \forall \text{[parent(X,Y) and male(X) \rightarrow father(X)]}\]
\[\forall \forall \forall \forall \forall \forall \text{[parent(X,Y) and parent(X,Z) and not same-person(Y,Z) \rightarrow siblings(Y,Z)]}\]

How about sister?
How about grandparent?

\[\text{NOTE: if we only consider the persons mentioned here, then we are making use of the closed world assumption.}\]
Facts:
\(\forall \emptyset \text{ [female(pam)]} \)

becomes

female(pam).

Rules:
\(\forall X \forall Y \text{ [parent}(X,Y) \text{ and female}(X) \rightarrow \text{ mother}(X)] \)

becomes

\(\text{mother}(X) \text{ :- parent}(X,Y), \text{ female}(X) \)

Observations:
☞ Think of :- as the ← arrow.
☞ Universal quantification is implied
☞ Only universally quantified rules are allowed
☞ Variables have to start with a capital letter
☞ Objects have to be all lower case letters
Prolog – Rules & Facts

We can execute this program by asking questions:

?- female(pam).
?- female(X). \exists X[female(X)]?
?- mother(pam).
?- father(Y).

Can we prove that ‘female(pam)’ is true?
Can we prove that there exists an object X that make ‘female(X)’ true?

etc

What about the ‘sameperson’ predicate?

female(pam).
female(liz).
female(ann).
female(pat).

male(tom).
male(bob).
male(jim).

parent(pam,bob).
parent(tom,bob).
parent(tom,liz).
parent(bob,ann).
parent(bob,pat).
parent(pat,jim).

mother(X) :- parent(X,Y) , female(X).
father(X) :- parent(X,Y) , male(X).
siblings(Y,Z) :- parent(X,Y) , parent(X,Z) , not(sameperson(Y,Z)).
Prolog – Rules & Facts

facts

- isa(cardinal, bird).
- isa(bluejay, bird).
- isa(boy, human).
- isa(girl, human).
- isa(computer, artifact).
- isa(airplane, artifact).
- isa(bird, animal).
- isa(human, animal).

- has(bird, feathers).
- has(bird, wings).
- has(human, intelligence).
- has(computer, intelligence).
- has(airplane, wings).

rules

- can_do(Thing, fly) :- has(Thing, wings).
- can_do(Thing, think) :- has(Thing, intelligence).
- can_do(Thing, live) :- isa(Thing, animal).

We can ask questions:

?- isa(cardinal,bird).
?- isa(bluejay,human).
?- can_do(human,think).

or:

?- isa(cardinal,X).
?- can_do(X,think).