Sense, Think, Act

- **Sense**
 - Gather input sensor changes
 - Update state with new values
- **Think**
 - Decide what to do
- **Act**
 - Execute (any changes to) actions
Questions

- Can we learn appropriate decision making by observation?
- If so, can the design of the ‘think step’ or decision module be automated?

⇒ Decision trees are ideal for this, easy to learn and transparent.
Building Decision Trees

Train

Training Dataset

How good is the learned DT?

Testing Dataset

Test

DT
Train & Test Datasets

- The training dataset encodes the observations of the task we want the decision tree to learn.
- The test dataset looks just like the training dataset except that the decision tree algorithm never sees this data during DT construction time.
- We apply the DT to the independent attributes of the test set …
- …and then compare the answer of the decision tree with the value of the target attribute for each row in the test set, respectively
Where do these datasets come from?

- In games they are usually hand constructed by the AI engineers
- In other areas they tend to be observations/records collected over many years
Integrating DTs into QII

Sense → Decision Module → Tree Builder

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play/Tennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Wind</td>
<td>High</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Wind</td>
<td>High</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Rain</td>
<td>Windy</td>
<td>Normal</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Rain</td>
<td>Windy</td>
<td>Normal</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Windy</td>
<td>Normal</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Windy</td>
<td>Normal</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Rain</td>
<td>Windy</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Wind</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Windy</td>
<td>Normal</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Windy</td>
<td>Normal</td>
<td>False</td>
<td>No</td>
</tr>
</tbody>
</table>
The ID3 Tree Builder

<table>
<thead>
<tr>
<th>OUTLOOK</th>
<th>TEMP</th>
<th>HUMIDITY</th>
<th>WINDY</th>
<th>PLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>FALSE</td>
<td>no</td>
</tr>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>TRUE</td>
<td>no</td>
</tr>
<tr>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>FALSE</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>mild</td>
<td>high</td>
<td>FALSE</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>cool</td>
<td>normal</td>
<td>FALSE</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>cool</td>
<td>normal</td>
<td>TRUE</td>
<td>no</td>
</tr>
<tr>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>TRUE</td>
<td>yes</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>FALSE</td>
<td>no</td>
</tr>
<tr>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>FALSE</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>mild</td>
<td>normal</td>
<td>FALSE</td>
<td>yes</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>TRUE</td>
<td>yes</td>
</tr>
<tr>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>TRUE</td>
<td>yes</td>
</tr>
<tr>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>FALSE</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>mild</td>
<td>high</td>
<td>TRUE</td>
<td>no</td>
</tr>
</tbody>
</table>

NOTE: the ID3 tree builder always assumes that the last attribute is the target attribute.
Teaching Quagents to Walk

- Assume we have an infrastructure that can sense the environment appropriately.
- Also assume that we have an infrastructure that can adequately interpret commands.
- **Goal**: Learn the ‘think step’ - learn the decision module.
Building the Decision Module

NOTE: you need to build a table in following format:

<table>
<thead>
<tr>
<th>Left</th>
<th>Right</th>
<th>Front</th>
<th>Navigate</th>
</tr>
</thead>
<tbody>
<tr>
<td>lclear</td>
<td>rclear</td>
<td>fclear</td>
<td>walk</td>
</tr>
<tr>
<td>lclear</td>
<td>rclear</td>
<td>fblock</td>
<td>left</td>
</tr>
<tr>
<td>lblock</td>
<td>rclear</td>
<td>fblock</td>
<td>right</td>
</tr>
</tbody>
</table>

Attribute Values:

Left: lclear, lblock
Right: rclear, rblock
Front: fclear, fblock
Navigate: walk, left, right

To build the decision module run it through the ID3 tree builder:

```
java -classpath . ID3 traindata.txt
```
class DecisionModule
{
 // attribute values

 // values for Left
 public static final int lclear = 0;
 public static final int lblocked = 1;
 // values for Right
 public static final int rclear = 0;
 public static final int rblocked = 1;
 // values for Front
 public static final int fclear = 0;
 public static final int fblocked = 1;
 // values for Navigate
 public static final int walk = 0;
 public static final int left = 1;
 public static final int right = 2;

 // decision function

 public static int tree(int Left, int Right, int Front) {
 if (Front == fclear) {
 return walk;
 }
 if (Front == fblocked) {
 if (Left == lclear) {
 return left;
 }
 if (Left == lblocked) {
 return right;
 }
 }
 return -1;
 }
}
// loop forever -- that is until the bot dies of old age
try {
 while (true) {
 q.rays(4);
 cmd = think(q.events());
 navigate(cmd);
 }
} catch (QDiedException e) { // the quagent died -- catch that exception
 System.out.println("bot died!");
}
public int think(Events events)
 throws Exception
{
 String[] words = parseRaysEvents(events);

 // this is what the event looks like:
 // OK (ask rays 4)
 // 1 worldspawn 379.969 0 0
 // 2 worldspawn -7.62939e-006 247.969 0
 // 3 player -43.9688 0 0
 // 4 worldspawn 0 -247.969 0

double xf = Double.parseDouble(words[6]);
double yf = Double.parseDouble(words[7]);
double df = Math.sqrt(xf*xf + yf*yf);
int f = df > blockDistance ? DecisionModule.fclear : DecisionModule.fblocked;

double xl = Double.parseDouble(words[11]);
double yl = Double.parseDouble(words[12]);
double dl = Math.sqrt(xl*xl + yl*yl);
int l = dl > blockDistance ? DecisionModule.lclear : DecisionModule.lblocked;

double xr = Double.parseDouble(words[16]);
double yr = Double.parseDouble(words[17]);
double dr = Math.sqrt(xr*xr + yr*yr);
int r = dr > blockDistance ? DecisionModule.rclear : DecisionModule.rblocked;

 ///// CALL THE DECISION MODULE /////
 int n = DecisionModule.tree(l, r, f);

 return n;
}
The ‘Learner’ Infrastructure

```java
public void navigate(int cmd)
    throws Exception
{
    // interpret the commands from the decision module
    switch(cmd) {
    case DecisionModule.left:
        q.turn(90);
        break;
    case DecisionModule.right:
        q.turn(-90);
        break;
    case DecisionModule.walk:
        q.walk(100);
        break;
    default:
        throw new Exception("unknown navigation command");
    }
}
```