Artificial Neural Networks (ANNs)

Biologically inspired computational model:

(1) **Simple** computational units (neurons).
(2) **Highly interconnected** - connectionist view
(3) **Vast parallel** computation, consider:
 • Human brain has $\sim 10^{11}$ neurons
 • Slow computational units, switching time $\sim 10^{-3}$ sec
 (compared to the computer $> 10^{-10}$ sec)
 • Yet, you can recognize a face in $\sim 10^{-1}$ sec
 • This implies only about 100 sequential, computational neuron steps - this seems too low for something as complicated as recognizing a face

⇒ **Parallel processing**

ANNs are naturally parallel - each neuron is a self-contained computational unit that depends only on its inputs.
The Perceptron

- A simple, single layered neural “network” - only has a single neuron.
- However, even this simple neural network is already powerful enough to perform classification tasks.
The Architecture

Multiplication

Sum

Transfer Function

Inputs

Bias

Weights

Computational Unit

Output

Transfer Function:

\[\text{sgn}(k) = \begin{cases} +1 & \text{if } k \geq 0 \\ -1 & \text{otherwise} \end{cases} \]

Perceptron Computation:

\[y = \text{sgn} \left(b + \sum_{i=1}^{m} w_i x_i \right) \]

Note: \[y \in \{+1,-1\} \]

Binary Classification
A perceptron computes the value,

\[y = \text{sgn} \left(b + \sum_{i=1}^{m} w_i x_i \right) \]

Ignoring the activation function \text{sgn} and setting \(m = 1 \), we obtain,

\[y' = b + w_1 x_1 \]

But this is the equation of a line with slope \(w \) and offset \(b \).

Observation: For the general case the perceptron computes a hyperplane in order to accomplish its classification task,

\[y' = b + \sum_{i=1}^{m} w_i x_i = b + \vec{w} \cdot \vec{x} \]
In order for the hyperplane to become a classifier we need to find b and $w \Rightarrow$ learning!
Learning Algorithm

Let \(D = \{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\} \subset H \times \{-1, +1\} \)

\[
\begin{align*}
\overline{w} &\leftarrow 0 \\
b &\leftarrow 0 \\
R &\leftarrow \max_{1 \leq i \leq n} |\overline{x}_i| \\
\eta &\leftarrow 0 < \eta < 1 \\
\text{repeat} & \\
\text{for } i = 1 \text{ to } n & \\
&\text{if } \text{sign}(\overline{w} \cdot \overline{x}_i + b) \neq y_i \text{ then} \\
&\quad \overline{w} \leftarrow \overline{w} + \eta y_i \overline{x}_i \\
&\quad b \leftarrow b + \eta y_i R^2 \\
&\text{end if} \\
\text{end for} & \\
\text{until no mistakes made in the for-loop} & \\
\text{return } (\overline{w}, b)
\end{align*}
\]

Note: learning is very different here compared to decision trees…here we have many passes over the data until the perceptron converges on a solution.
Demo

R perceptron demo
Observations

- The learned information is represented as weights and the bias ⇒ sub-symbolic learning.
- In order to apply this learned information we need a neural network structure.
- The learned information is not directly accessible to us ⇒ non-transparent model.