Defining Language TWO

- Extend Language ONE with:
 - Variables
 - An ML-style `let` expression for defining them
TWO: Syntax

A subset of ML expressions
This grammar is unambiguous
A sample Language TWO expression:
 let val y = 3 in y*y end
What does the parse tree for the above expression look like?

TWO:

\[
\begin{align*}
<exp>* & ::= <exp> + <mulexp> | <mulexp>
\<mulexp> & ::= <mulexp> * <rootexp> | <rootexp>
\<rootexp> & ::= let val <variable> = <exp> in <exp> end \\
& \quad | (<exp>) | <variable> | <constant>
\end{align*}
\]
Additional abstract syntax nodes for language TWO:

1. \texttt{var(X)} dereferences a variable X
2. \texttt{let(X,E1,E2)} binds the variable X to expression E1 in the context of expression E2.

\textbf{Example}: the TWO program

\begin{verbatim}
let val y = 3 in y*y end
\end{verbatim}

will result in the AST

\begin{verbatim}
let(y, const(3), times(var(y), var(y)))
\end{verbatim}
Consider: \(2 \times \text{let } x = 5 \text{ in } 1+x \text{ end} \)
- Parse tree?
- AST?
- Prolog AST?
In order to provide semantics we need to remember the values assigned to variables -- binding environments, contexts.

In our case, for the Prolog based semantics, we let the terms `bind(X,K)` represent the binding of variable X to value K. A context is simply a list of these binding terms:

```
[bind(y,3), bind(q,20), bind(z,5)]
```

Given this binding structure, we can write a predicate, `lookup/3`, that returns a variable binding for a particular `Var`:

```
lookup(Var, [bind(Var,Value) | _ ], Value).
lookup(Var, [ _ |Rest], Value) :- lookup(Var,Rest,Value).
```

Finds the most recent binding of variable `Var` if there is one.
TWO: Prolog Interpreter

val2(plus(X,Y),C,Value) :-
 val2(X,C,XValue),
 val2(Y,C,YValue),
 Value is XValue + YValue.

val2(times(X,Y),C,Value) :-
 val2(X,C,XValue),
 val2(Y,C,YValue),
 Value is XValue * YValue.

val2(const(X),_,X).

val2(var(X),C,Value) :-
 lookup(X,C,Value).

val2(let(X,Exp1,Exp2),C,Value) :-
 val2(Exp1,C,XValue),
 val2(Exp2,[bind(X,XValue)|C],Value).

val2 / 3 - interpretation predicate, first argument: AST; second argument: context; third argument: semantic value.
Examples

let val y = 3 in y*y end

?- val2(let(y,const(3),times(var(y),var(y))),[],X).

X = 9

Yes

let val y = 3 in
 let val x = y*y in
 x*x
 end
end

let val y = 1 in
 let val y = 2 in
 y
 end
end
Exercises

- Use the semantics of TWO to show the following:
 - Assume that the context $C = \text{[bind}(y,3)]$ then the semantic value of ‘$2*y$’ is 6
 - The semantic value of ‘$2 \times \text{let } x = 3 \text{ in } x \times x \text{ end}$’ is 18
 - The semantic value of ‘$\text{let } x = 1 \text{ in } \text{let } y = x + 1 \text{ in } y \text{ end end}$’ is 2
Exercises

- Use these semantics to compute the meaning of the following expressions in TWO (use the rules given in the notes, the book has many typos):

1) `let val y = 3 in 2*y end`

2) `let val y = 1 in
 let val y = 2 in
 y
 end
 end`

Note: first construct an abstract syntax tree, then give the representation in Prolog notation, and then show the computation in our semantics.