Compute the semantic value of the program $x := 2; y := 3$. Assume the initial state σ_0. We want to compute the value $\sigma \in \Sigma$ where

$$(x := 2; y := 3, \sigma_0) \mapsto \sigma$$

From our evaluation rules we have,

$$
\begin{align*}
(2, \sigma_0) & \mapsto 2 \\
(x := 2, \sigma_0) & \mapsto \sigma_0[2/x] \\
(3, \sigma_0[2/x]) & \mapsto 3 \\
(y := 3, \sigma_0[2/x]) & \mapsto (\sigma_0[2/x])[3/y] \\
(x := 2; y := 3, \sigma_0) & \mapsto (\sigma_0[2/x])[3/y]
\end{align*}
$$

We have $\sigma = (\sigma_0[2/x])[3/y]$. What is the value for $\sigma(y)$ and $\sigma(x)$? How about $\sigma(z)$, $z \in \textbf{Loc}$?
Compute the semantic value of the program \(x := 1; y := x + 1 \).
Assume the initial state \(\sigma_0 \). We want to compute the value \(\sigma \in \Sigma \) where

\[
(x := 1; y := x + 1, \sigma_0) \mapsto \sigma
\]

From our evaluation rules we have,

\[
\begin{align*}
(1, \sigma_0) & \mapsto 1 \\
(x := 1, \sigma_0) & \mapsto \sigma_0[1/x] \\
(x := 1; y := x + 1, \sigma_0) & \mapsto (\sigma_0[1/x])[2/y]
\end{align*}
\]

We have \(\sigma = (\sigma_0[1/x])[2/y] \).
Compute the semantic value of the program $x := 2; x := 4$. Assume the initial state σ_0. We want to compute the value $\sigma \in \Sigma$ where

$$(x := 2; x := 4, \sigma_0) \mapsto \sigma$$

From our evaluation rules we have,

$$(2, \sigma_0) \mapsto 2$$
$$(x := 2, \sigma_0) \mapsto \sigma_0[2/x]$$
$$(4, \sigma_0[2/x]) \mapsto 4$$
$$(x := 4, \sigma_0[2/x]) \mapsto \sigma_0[4/x]$$

We have $\sigma = \sigma_0[4/x]$. What is the value for $\sigma(y)$ and $\sigma(x)$? How about $\sigma(z)$, $z \in \text{Loc}$?
Program Evaluation

Compute the semantic value of the program

\[
\text{x := 1; if x = 1 then x := 2 else x := 3 end.}
\]

Assume the initial state \(\sigma_0\). We want to compute the value \(\sigma \in \Sigma\) where

\[
(x := 1; \text{if x = 1 then x := 2 else x := 3 end}, \sigma_0) \mapsto \sigma
\]

From our evaluation rules we have,

\[
\begin{align*}
(1, \sigma_0) & \mapsto 1 \\
(x := 1, \sigma_0) & \mapsto \sigma_0[1/x] \\
(x := 1; \text{if x = 1 then x := 2 else x := 3 end}, \sigma_0) & \mapsto \sigma_0[2/x]
\end{align*}
\]
Compute the semantic value of the program

\[x := 2; \textbf{if} \ x = 1 \ \textbf{then} \ x := 2 \ \textbf{else} \ x := 3 \ \textbf{end}. \]

Assume the initial state \(\sigma_0 \). We want to compute the value \(\sigma \in \Sigma \) where

\[(x := 2; \textbf{if} \ x = 1 \ \textbf{then} \ x := 2 \ \textbf{else} \ x := 3 \ \textbf{end}, \sigma_0) \mapsto \sigma\]

From our evaluation rules we have,

\[
\begin{align*}
 (2, \sigma_0) & \mapsto 2 \\
 (x := 2, \sigma_0) & \mapsto \sigma_0[2/x] \\
 (x, \sigma_0[2/x]) & \mapsto 2 \\
 (1, \sigma_0[2/x]) & \mapsto 1 \\
 (3, \sigma_0[2/x]) & \mapsto 3 \\
 (x := 1, \sigma_0[2/x]) & \mapsto \text{false} \\
 (if \ x = 1 \ then \ x := 2 \ else \ x := 3 \ end, \sigma_0[2/x]) & \mapsto \sigma_0[3/x]
\end{align*}
\]
Compute the semantic value of the program

\[x := 1; \textbf{while} \ x = 1 \ \textbf{do} \ x := 2 \ \textbf{end}. \]

Assume the initial state \(\sigma_0 \). We want to compute the value \(\sigma \in \Sigma \) where

\[(x := 1; \textbf{while} \ x = 1 \ \textbf{do} \ x := 2 \ \textbf{end}, \sigma_0) \mapsto \sigma\]
We do this evaluation in parts otherwise it is too unmanageable. Let

\[(x := 1, \sigma_0) \mapsto \sigma'\]

for \(\sigma' \in \Sigma\).

\[
\frac{(1, \sigma_0) \mapsto 1}{(x := 1, \sigma_0) \mapsto \sigma_0[1/x]} \]

Therefore, \(\sigma' = \sigma_0[1/x]\).
We now compute,

\[(\textbf{while } x = 1 \textbf{ do } x := 2 \textbf{ end}, \sigma') \mapsto \sigma\]

or

\[(\textbf{while } x = 1 \textbf{ do } x := 2 \textbf{ end}, \sigma_0[1/x]) \mapsto \sigma\]

\[
\begin{align*}
(x = 1, \sigma_0[1/x]) & \mapsto \text{true} \\
(x := 2, \sigma_0[1/x]) & \mapsto \sigma_0[2/x] \\
(\textbf{while } x = 1 \textbf{ do } x := 2 \textbf{ end}, \sigma_0[2/x]) & \mapsto \sigma_0[2/x] \\
(x = 1, \sigma_0[2/x]) & \mapsto \text{false}
\end{align*}
\]

Therefore, \(\sigma = \sigma_0[2/x]\).
Given $c_0, c_1 \in \textbf{Com}$, then we can define program equivalence as

$$c_0 \sim c_1 \text{ iff } \forall \sigma \in \Sigma, \exists \sigma' \in \Sigma. \ (c_0, \sigma) \mapsto \sigma' \land (c_1, \sigma) \mapsto \sigma'$$
Program Equivalence

Show that $x := 1; y := x \sim x := 1; y := 1$ for $x, y \in \textbf{Loc}$ and $1 \in I$.

Proof: We show that

$\forall \sigma, \exists \sigma'. (x := 1; y := x, \sigma) \mapsto \sigma' \land (x := 1; y := 1, \sigma) \mapsto \sigma'$

for $\sigma, \sigma' \in \Sigma$. Consider $(x := 1; y := x, \sigma) \mapsto \sigma'$, our semantics gives us the following derivation,

\[
\begin{align*}
(1, \sigma) & \mapsto 1 \\
(x := 1, \sigma) & \mapsto \sigma[1/x] \\
(y := x, \sigma[1/x]) & \mapsto (\sigma[1/x])[1/y] \\
(x := 1; y := x, \sigma) & \mapsto (\sigma[1/x])[1, y]
\end{align*}
\]

with $\sigma' = (\sigma[1/x])[1, y]$.
Now consider \((x := 1 ; y := 1, \sigma) \mapsto \sigma'\), our semantics gives us the following derivation,

\[
\begin{align*}
(1, \sigma) & \mapsto 1 \\
(x := 1, \sigma) & \mapsto \sigma[1/x] \\
(y := 1, \sigma[1/x]) & \mapsto (\sigma[1/x])[1/y] \\
(x := 1; y := 1, \sigma) & \mapsto (\sigma[1/x])[1, y]
\end{align*}
\]

with \(\sigma' = (\sigma[1/x])[1, y]\).

This concludes the proof. \(\square\)
Program Equivalence

Show that \(x := x \sim \text{skip} \) for \(x \in \text{Loc} \).

Proof: We show that

\[
\forall \sigma, \exists \sigma'. (x := x, \sigma) \mapsto \sigma' \land (\text{skip}, \sigma) \mapsto \sigma'
\]

for \(\sigma, \sigma' \in \Sigma \) and \(x \in \text{Loc} \). Consider \((x := x, \sigma) \mapsto \sigma'\) with some states \(\sigma, \sigma' \in \Sigma \) and \(x \in \text{Loc} \). We then have a derivation

\[
\frac{(x, \sigma) \mapsto \sigma(x)}{(x := x, \sigma) \mapsto \sigma'} , \text{ where } \sigma' = \sigma[\sigma(x)/x]
\]

We now show that \(\sigma' = \sigma \). It is easy to see that for any \(y \in \text{Loc} \) with \(y \neq x \) we have \(\sigma'(y) = \sigma[\sigma(x)/x](y) = \sigma(y) \). Also note that \(\sigma'(x) = \sigma[\sigma(x)/x](x) = \sigma(x) \). These are the only two possibilities and therefore we have \(\sigma'(z) = \sigma(z) \) for all \(z \in \text{Loc} \). Functions that agree on the co-domain values over their whole domains are considered to be equal. This implies that \(\sigma' = \sigma \) and therefore \((x := x, \sigma) \mapsto \sigma\). That is, the statement \(x := x \) preserves the state.
Now consider \((\text{skip}, \sigma) \mapsto \sigma'\) with \(\sigma, \sigma' \in \Sigma\). Our operational semantics gives us a derivation

\[
(\text{skip}, \sigma) \mapsto \sigma', \text{ where } \sigma' = \sigma
\]

It follows that the statement \text{skip} preserves the state.

This concludes the proof. \(\square\)
How would you show $x := 1; y := x \sim y := 1; x := y$? What is the problem here? How would you solve it?
Program Equivalence

Are the programs

\[p \equiv c_0; \textbf{if } b \textbf{ then } c_1 \textbf{ else } c_2 \textbf{ end} \]

and

\[p' \equiv \textbf{if } b \textbf{ then } (c_0; c_1) \textbf{ else } (c_0; c_2) \textbf{ end} \]

equivalent? For all \(c_0, c_1, c_2 \in \textbf{Com} \) and \(b \in \textbf{Bexp} \).
Program Equivalence

Proposition: $p \not\sim p'$.
Proof: It suffices to show that there exists some program fragment c_0, c_1, c_2 or boolean expression b such that the two programs p and p' do not compute the same final state σ' given the same initial state σ. One such choice is: $c_0 \equiv x := 1$, $c_1 \equiv x := 2$, $c_2 \equiv x := 3$, and $b \equiv x = 1$. With this assignment we have

$$p \equiv x := 1; \text{if } x = 1 \text{ then } x := 2 \text{ else } x := 3 \text{ end}$$

and

$$p' \equiv \text{if } x = 1 \text{ then } (x := 1; x := 2) \text{ else } (x := 1; x := 3) \text{ end.}$$

Program equivalence implies that for all $\sigma, \sigma' \in \Sigma$ we have $(p, \sigma) \leadsto \sigma'$ and $(p', \sigma) \leadsto \sigma'$. Since this must hold for all states, it must also hold for some state $\sigma[0/x]$. However, it is easily verified that $(p, \sigma[0/x])$ and $(p', \sigma[0/x])$ evaluate to different semantic values and therefore p and p' cannot be equivalent. □
HW#2 – see webpage