Computability Summary
Recursive Languages

• The following are all equivalent:
 – A language B is recursive iff $B = L(M)$ for some total TM M.
 – A language B is (Turing) computable iff some total TM M computes B.
 – A language B is decidable iff $B = L(m)$ for some decision method m.
 – A language is recursive iff it is computable.
 – A language is recursive iff it is decidable.

Note: ‘iff’ = ‘if and only if’
Recursively Enumerable Languages

- The following are equivalent:
 - A language B is RE iff $B=L(M)$ for some TM M.
 - A language B is recognizable iff $B=L(m)$ for some recognition method m.
 - A language is RE iff it is recognizable.
RE Languages

• $L_u = \{(p, in) \mid p \text{ is a recognition method and } in \in L(p)\}$
 – We have shown that L_u is not decidable
 – We can show that it is recognizable, for each $(p, in) \in L_u$ we can apply the run method:
 \[
 \text{run}(p, in)
 \]
 which will halt if $in \in L(p)$
 – This means the property of p-accepts-in is not decidable.

• $L_h = \{(p, in) \mid p \text{ is a recognition method that halts on } in\}$
 – We have shown that L_h is not decidable
 – We can show that it is recognizable, for each $(p, in) \in L_h$ we can apply the run method:
 \[
 \text{run}(p, in)
 \]
 which will halt if $in \in L(p)$
 – This means the property of p-halts-on-in is not decidable.
Theorem 18.6: Rice’s Theorem

For all nontrivial properties α, the language $
\{\mathfrak{p} \mid \mathfrak{p} \text{ is a recognition method and } L(\mathfrak{p}) \text{ has property } \alpha\}$ is not recursive.

• To put it another way: all nontrivial properties of the RE languages are undecidable

• Some examples of languages covered by the Rice’s Theorem…
Rice’s Theorem Examples

\[L_e = \{ p \mid p \text{ is a recognition method and } L(p) \text{ is empty} \} \]
\[L_r = \{ p \mid p \text{ is a recognition method and } L(p) \text{ is regular} \} \]
\{ p \mid p \text{ is a recognition method and } L(p) \text{ is context free} \}
\{ p \mid p \text{ is a recognition method and } L(p) \text{ is recursive} \}
\{ p \mid p \text{ is a recognition method and } |L(p)| = 1 \}
\{ p \mid p \text{ is a recognition method and } |L(p)| \geq 100 \}
\{ p \mid p \text{ is a recognition method and } hello \in L(p) \}
\{ p \mid p \text{ is a recognition method and } L(p) = \Sigma^* \} \]
What “Nontrivial” Means

• A property is *trivial* if no RE languages have it, or if all RE languages have it

• Rice’s theorem does not apply to trivial properties such as these:

 \{p \mid p \text{ is a recognition method and } L(p) \text{ is RE}\}

 \{p \mid p \text{ is a recognition method and } L(p) \supset \Sigma^*\}
Languages That Are Not RE

• We’ve seen examples of nonrecursive languages like L_h and L_u
• Although not recursive, they are still RE: they can be defined using recognition methods (but not using decision methods)
• Are there languages that are not even RE?
• Yes, and they are easy to find…
Theorem 18.9

If a language is RE but not recursive, its complement is not RE.

- Proof is by contradiction
- Let L be any language that is RE but not recursive
- Assume by way of contradiction that the complement of L is also RE
- Then both L and its complement have recognition methods; call them l_{rec} and l_{bar}
- We can use them to implement a decision method for L...
If a language is RE but not recursive, its complement is not RE.

```java
boolean ldec(String s) {
    for (int j = 1; ; j++) {
        if (runLimited(lrec, s, j)) return true;
        if (runLimited(lbar, s, j)) return false;
    }
}
```

- For some \(j \), one of the two `runLimited` calls must return true
- So this is a decision method for \(L \)
- This is a contradiction; \(L \) is not recursive
- By contradiction, the complement of \(L \) is not RE
Closure Properties

- So the RE languages are not closed for complement
- But the recursive languages are
- Given a decision method ldec for L, we can construct a decision method for L’s complement:

  ```java
  boolean lbar(String s) {return !ldec(s);}
  ```
- That approach does not work for nonrecursive RE languages
- If the recognition method $\text{lrec}(s)$ runs forever, $\neg \text{lrec}(s)$ will too
Examples

• L_h and L_u are RE but not recursive
• By Theorem 18.9, their complements are not RE:

\[
\overline{L_u} \\
\overline{L_h}
\]

• These languages cannot be defined as $L(M)$ for any TM M, or with any Turing-equivalent formalism
The Big Picture

- RE languages
 - recursive languages
 - CFLs
 - regular languages
- $L(a^*b^*)$
- L_u
- $\overline{L_u}$
- $\{a^n b^n c^n\}$
- $\{a^n b^n\}$
Recursive

• When a language is *recursive*, there is an effective computational procedure that can definitely categorize all strings
 – Given a positive example it will decide yes
 – Given a negative example it will decide no

• A language that is *recursive*, a property that is *decidable*, a function that is *computable*

• All these terms refer to total-TM-style computations, computations that always halt
RE But Not Recursive

• There is a computational procedure that can effectively categorize positive examples:
 – Given a positive example it will decide yes
 – Given a negative example it may decide no, or may run forever

• A property like this is called *semi-decidable*

• Like the property of \((p, s) \in L_h\)
 – If \(p\) halts on \(s\), a simulation can answer yes
 – If not, neither simulation nor any other approach can always answer with a definite no
Not RE

- There is no computational procedure for categorizing strings that gives a definite yes answer on all positive examples.
- Consider \((p, s) \in \overline{L_h}\).
- One kind of positive example would be a recognition method \(p\) that runs forever on \(s\).
- But there is no algorithm to identify such pairs.
- Obviously, you can’t simulate \(p\) on \(s\), see if it runs forever, and then say yes.