Welcome!

- CSC445 – Models Of Computation
- Dr. Lutz Hamel
- Tyler 251
- hamel@cs.uri.edu

https://fbeedle.com/content/formal-language-practical-introduction
The Course

• Special Features:
 – Course website with lecture notes
 – Online gradebook
Introduction
and
Chapter One: Fundamentals
Why Study Formal Language?

• Connected...
 – ...to many other branches of knowledge
• Rigorous...
 – ...mathematics with many open questions at the frontiers
• Useful...
 – ...with many applications in computer systems, particularly in programming languages and compilers
• Accessible...
 – ...no advanced mathematics required
• Stable...
 – ...the basics have not changed much in the last thirty years
Outline

• 1.1 Alphabets
• 1.2 Strings
• 1.3 Languages
Alphabets

• An alphabet is any finite set of symbols
 – \{0,1\}: binary alphabet
 – \{0,1,2,3,4,5,6,7,8,9\}: decimal alphabet
 – ASCII, Unicode: machine-text alphabets
 – Or just \{a,b\}: enough for many examples
 – \{\}: a legal but not usually interesting alphabet

• We will usually use \(\Sigma\) as the name of the alphabet we’re considering, as in \(\Sigma = \{a,b\}\)
Alphabets Uninterpreted

• Informally, we often describe languages interpretively
 – “the set of even binary numbers”
• But our goal is to describe them rigorously, and that means avoiding intuitive interpretations
 – “the set of strings of 0s and 1s that end in 0”
• We don’t further define what a symbol is, and we don’t ascribe meaning to symbols
Outline

• 1.1 Alphabets
• 1.2 Strings
• 1.3 Languages
Strings

• *A string* is a finite sequence of zero or more symbols

• Length of a string: $|abbb| = 4$

• *A string over the alphabet* Σ *means a string all of whose symbols are in* Σ

 – The set of all strings of length 2 over the alphabet $\{a,b\}$ is $\{aa, ab, ba, bb\}$
Empty String

• The empty string is written as ε
• Like "" in some programming languages
• $|\varepsilon| = 0$
• Don't confuse empty set and empty string:
 $\emptyset \neq \varepsilon$
 $\emptyset \neq \{\varepsilon\}$
Symbols And Variables

- Sometimes we will use variables that stand for strings: $x = abbb$
- In programming languages, syntax helps distinguish symbols from variables
 - String $x = \text{"abbb"}$;
- In formal language, we rely on context and naming conventions to tell them apart
- We'll use the first letters, like $a, b, \text{and } c$, as symbols
- The last few, like $x, y, \text{and } z$, will be string variables
Concatenation

• The *concatenation* of two strings x and y is the string containing all the symbols of x in order, followed by all the symbols of y in order

• We show concatenation just by writing the strings next to each other

• If $x = abc$ and $y = def$, then $xy = abcdef$

• For any x, $\varepsilon x = x\varepsilon = x$
Numbers

- We use \mathbb{N} to denote the set of natural numbers: $\mathbb{N} = \{0, 1, \ldots\}$
Exponents

• Exponent \(n \) concatenates a string with itself \(n \) times

 – If \(x = ab \), then
 • \(x^0 = \varepsilon \)
 • \(x^1 = x = ab \)
 • \(x^2 = xx = abab \), etc.

 – We use parentheses for grouping exponentiations (assuming that \(\Sigma \) does not contain the parentheses)
 • \((ab)^7 = ababababababab \)
Outline

• 1.1 Alphabets
• 1.2 Strings
• 1.3 Languages
Languages

- A *language* is a set of strings over some fixed alphabet
- *Not* restricted to finite sets: in fact, finite sets are not usually interesting languages
- All our alphabets are finite, and all our strings are finite, but most of the languages we're interested in are infinite
Kleene Star

• The Kleene closure of an alphabet Σ, written as Σ^*, is the language of all strings over Σ
 – $\{a\}^*$ is the set of all strings of zero or more as:
 $$\{\varepsilon, a, aa, aaa, \ldots\}$$
 – $\{a,b\}^*$ is the set of all strings of zero or more symbols, each of which is either a or b
 $$= \{\varepsilon, a, b, aa, bb, ab, ba, aaa, \ldots\}$$
 – $x \in \Sigma^*$ means x is a string over Σ

• Unless $\Sigma = \{\}$, Σ^* is infinite

• If $\Sigma = \{\}$ then what is Σ^*?
Set Formers

- A set written with extra constraints or conditions limiting the elements of the set:

\[
\{x \in \{a, b\}^* \mid |x| \leq 2\} = \{\varepsilon, a, b, aa, bb, ab, ba\}
\]

\[
\{xy \mid x \in \{a, aa\} \text{ and } y \in \{b, bb\}\} = \{ab, aab, abbb, aabb\}
\]

\[
\{x \in \{a, b\}^* \mid x \text{ contains one } a \text{ and two } bs\} = \{abb, bab, bba\}
\]

\[
\{a^n b^n \mid n \geq 1\} = \{ab, aabb, aaabbb, aaaaabbbb, \ldots\}
\]
The Quest

• Using set formers to describe complex languages is challenging
• They can often be vague, ambiguous, or self-contradictory
• A big part of our quest in the study of formal language is to develop better tools for defining and classifying languages