Chapter Three: Closure Properties for Regular Languages
Closure Properties

• Once we have defined languages formally, we can consider combinations and modifications of those languages:
 – unions, intersections, complements, and so on.
• Such combinations and modifications raise important questions.
 – For example, is the intersection of two regular languages also regular—capable of being recognized directly by some DFA?
Outline

• 3.1 Closed Under Complement
• 3.2 Closed Under Intersection
• 3.3 Closed Under Union
• 3.4 DFA Proofs Using Induction
Language Complement

• For any language L over an alphabet Σ, the complement of L is

$$\overline{L} = \{ x \in \Sigma^* | x \notin L \}$$

• Example:

$$L = \{ 0x | x \in \{0,1\}^* \} = \text{strings that start with 0}$$

$$\overline{L} = \{ 1x | x \in \{0,1\}^* \} \cup \{\varepsilon\} = \text{strings that don’t start with 0}$$

• Given a DFA for any language, it is easy to construct a DFA for its complement
Example

$L = \left\{ 0x \mid x \in \{0,1\}^* \right\}$

$\bar{L} = \left\{ 1x \mid x \in \{0,1\}^* \right\} \cup \{\varepsilon\}$
Complementing a DFA

• All we did was to make the accepting states be non-accepting, and make the non-accepting states be accepting
• In terms of the 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$, all we did was to replace F with $Q-F$
• Using this construction, we have a proof that the complement of any regular language is another regular language
Theorem 3.1

The complement of any regular language is a regular language.

- Let L be any regular language
- By definition there must be some DFA $M = (Q, \Sigma, \delta, q_0, F)$ with $L(M) = L$
- Define a new DFA $M' = (Q, \Sigma, \delta, q_0, Q-F)$
- This has the same transition function δ as M, but for any string $x \in \Sigma^*$ it accepts x if and only if M rejects x
- Thus $L(M')$ is the complement of L
- Because there is a DFA for it, we conclude that the complement of L is regular
Closure Properties

• A shorter way of saying that theorem: the regular languages are closed under complement

• The complement operation cannot take us out of the class of regular languages

• Closure properties are useful shortcuts: they let you conclude a language is regular without actually constructing a DFA for it
Proofs using the Complement

• Show that the following language is regular:

\[L = \{ x \in \{a,b\}^* \mid x \text{ does not contain the string } aab \} \]
Outline

- 3.1 Closed Under Complement
- 3.2 Closed Under Intersection
- 3.3 Closed Under Union
- 3.4 DFA Proofs Using Induction
Language Intersection

- \(L_1 \cap L_2 = \{ x \mid x \in L_1 \text{ and } x \in L_2 \} \)
- Example:
 - \(L_1 = \{0x \mid x \in \{0,1\}^* \} = \) strings that start with 0
 - \(L_2 = \{x0 \mid x \in \{0,1\}^* \} = \) strings that end with 0
 - \(L_1 \cap L_2 = \{x \in \{0,1\}^* \mid x \text{ starts and ends with 0} \} \)
- Usually we will consider intersections of languages with the same alphabet, but it works either way
- Given two DFAs, it is possible to construct a DFA for the intersection of the two languages
Two DFAs

\[
L_1 = \{0x \mid x \in \{0,1\}^*\} \\
M_1 = (Q, \Sigma, \delta_1, q_0, F_1) \\
L_1 = L(M_1)
\]

\[
L_2 = \{x0 \mid x \in \{0,1\}^*\} \\
M_2 = (R, \Sigma, \delta_2, r_0, F_2) \\
L_2 = L(M_2)
\]
We'll make a DFA that keeps track of the pair of states \((q_i, r_j)\) the two original DFAs are in.

Initially, they are both in their start states:

- \(q_0\)
- \(r_0\)
• Working from there, we keep track of the pair of states \((q_i, r_j)\):
• Eventually state-pairs repeat; then we're almost done:
• For intersection, both original DFAs must accept:
Cartesian Product

- In that construction, the states of the new DFA are pairs of states from the two originals.
- That is, the state set of the new DFA is the Cartesian product of the two original sets:

\[Q \times R = \{(q, r) \mid q \in Q \text{ and } r \in R\} \]

- The construct we just saw is called the product construction.
Theorem 3.2

If L_1 and L_2 are any regular languages, $L_1 \cap L_2$ is also a regular language.

- Let L_1 and L_2 be any regular languages
- By definition there must be DFAs for them:
 - $M_1 = (Q, \Sigma, \delta_1, q_0, F_1)$ with $L(M_1) = L_1$
 - $M_2 = (R, \Sigma, \delta_2, r_0, F_2)$ with $L(M_2) = L_2$
- Define a new DFA $M_3 = (Q \times R, \Sigma, \delta, (q_0,r_0), F_1 \times F_2)$
- For δ, define it so that for all $q \in Q$, $r \in R$, and $a \in \Sigma$, we have $\delta((q,r),a) = (\delta_1(q,a), \delta_2(r,a))$
- M_3 accepts if and only if both M_1 and M_2 accept
- So $L(M_3) = L_1 \cap L_2$, so that intersection is regular
Notes

• Formal construction assumed that the alphabets were the same
 – It can easily be modified for differing alphabets
 – The alphabet for the new DFA would be $\Sigma_1 \cap \Sigma_2$

• Formal construction generated all pairs
 – When we did it by hand, we generated only those pairs actually reachable from the start pair
 – Makes no difference for the language accepted
 – The formal construction will just have a bunch of unreachable states in its set of states that have no impact on the language accepted by the machine.

• The new DFA runs both of the constituent DFAs simultaneously and accepts if and only if both DFAs accept.
Proofs using the Intersection

• Show that the following language is regular:

\[L = \left\{ x \in \{a,b\}^* \mid x \text{ contains both the strings } abb \text{ and } bba \right\} \]
Outline

• 3.1 Closed Under Complement
• 3.2 Closed Under Intersection
• 3.3 Closed Under Union
• 3.4 DFA Proofs Using Induction
Language Union

- $L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2 \text{ (or both)}\}$
- Example:
 - $L_1 = \{0x \mid x \in \{0,1\}^*\}$ = strings that start with 0
 - $L_2 = \{x0 \mid x \in \{0,1\}^*\}$ = strings that end with 0
 - $L_1 \cup L_2 = \{x \in \{0,1\}^* \mid x \text{ starts with 0 or ends with 0 (or both)}\}$
- Usually we will consider unions of languages with the same alphabet, but it works either way
Two DFAs

$L_1 = \{0x \mid x \in \{0,1\}^*\}$

$M_1 = (Q, \Sigma, \delta_1, q_0, F_1)$

$L_1 = L(M_1)$

$L_2 = \{x0 \mid x \in \{0,1\}^*\}$

$M_2 = (R, \Sigma, \delta_2, r_0, F_2)$

$L_2 = L(M_2)$
Theorem 3.3

If L_1 and L_2 are any regular languages, $L_1 \cup L_2$ is also a regular language.

• Proof 1: using DeMorgan's laws
 – Because the regular languages are closed for intersection and complement, we know they must also be closed for union:

 $$L_1 \cup L_2 = \overline{L_1 \cap \overline{L_2}}$$
Theorem 3.3

If \(L_1 \) and \(L_2 \) are any regular languages, \(L_1 \cup L_2 \) is also a regular language.

- **Proof 2**: by product construction
 - Same as for intersection, but with different accepting states
 - Accept where either (or both) of the original DFAs accept
 - Accepting state set is \((F_1 \times R) \cup (Q \times F_2) \)
 - Define a new DFA:
 \[
 M_3 = (Q \times R, \Sigma, \delta, (q_0, r_0), (F_1 \times R) \cup (Q \times F_2))
 \]
• For union, at least one original DFA must accept:
Proofs using the Union

• Show that the following language is regular:

\[L = \{ x \in \{a,b\}^* \mid x \text{ contains either the string } abb \text{ or } bba \text{ or both} \} \]
Assignment

• Assignment #2 – see website