Chapter Five:
Nondeterministic Finite Automata
From DFA to NFA

- A DFA has exactly one transition from every state on every symbol in the alphabet.
- By relaxing this requirement we get a related but more flexible kind of automaton: the nondeterministic finite automaton or NFA.
Outline

• 5.1 Relaxing a Requirement
• 5.2 Spontaneous Transitions
• 5.3 Nondeterminism
• 5.4 The 5-Tuple for an NFA
• 5.5 The Language Accepted by an NFA
Not A DFA

- Does not have exactly one transition from every state on every symbol:
 - Two transitions from q_0 on a
 - No transition from q_1 (on either a or b)

- Though not a DFA, this can be taken as defining a language, in a slightly different way
Possible Sequences of Moves

• We'll consider all possible sequences of moves the machine might make for a given string
• For example, on the string aa there are three:
 – From q_0 to q_0 to q_0, rejecting
 – From q_0 to q_0 to q_1, accepting
 – From q_0 to q_1, getting stuck on the last a
• Our convention for this new kind of machine: a string is in $L(M)$ if there is at least one accepting sequence
Nondeterministic Finite Automaton (NFA)

- $L(M) =$ the set of strings that have \textit{at least one} accepting sequence
- In the example above, $L(M) = \{xa \mid x \in \{a,b\}^*\}$
- A DFA is a special case of an NFA:
 - An NFA that happens to be deterministic: there is exactly one transition from every state on every symbol
 - So there is exactly one possible sequence for every string
Nondeterminism

• The essence of nondeterminism:
 – For a given input there can be more than one legal sequence of steps
 – The input is in the language if at least one of the legal sequences says so
• We can achieve the same result by computing all legal sequences in parallel and then deterministically search the legal sequences that accept the input, but…
• ...this nondeterminism does not directly correspond to anything in physical computer systems
• In spite of that, NFAs have many practical applications
NFA Example

- This NFA accepts only those strings that end in 01
- Running in “parallel threads” for string 1100101
Nondeterminism

DFA:

NFA:

Now consider string: 0110
DFAs and NFAs

• DFAs and NFAs both define languages
• DFAs do it by giving a simple computational procedure for deciding language membership:
 – Start in the start state
 – Make one transition on each symbol in the string
 – See if the final state is accepting
• NFAs do it by considering all possible transitions *in parallel.*
NFA Advantage

- An NFA for a language can be smaller and easier to construct than a DFA
- Let $L = \{ x \in \{0,1\}^* | \text{where } x \text{ is a string whose next-to-last symbol is 1} \}$
- Construct both a DFA and NFA for recognizing L.

DFA:

NFA:
Outline

• 5.1 Relaxing a Requirement
• 5.2 Spontaneous Transitions
• 5.3 Nondeterminism
• 5.4 The 5-Tuple for an NFA
• 5.5 The Language Accepted by an NFA
Spontaneous Transitions

- An NFA can make a state transition spontaneously, without consuming an input symbol.
- Shown as an arrow labeled with \(\varepsilon \).
- For example, \(\{a\}^* \cup \{b\}^* \):

\[q_0 \xrightarrow{\varepsilon} q_1 \xrightarrow{a} q_0 \xrightarrow{\varepsilon} q_2 \xrightarrow{b} q_2 \]
\(\varepsilon \)-Transitions To Accepting States

- An \(\varepsilon \)-transition can be made at any time
- For example, there are three sequences on the empty string
 - No moves, ending in \(q_0 \), rejecting
 - From \(q_0 \) to \(q_1 \), accepting
 - From \(q_0 \) to \(q_2 \), accepting
- Any state with an \(\varepsilon \)-transition to an accepting state ends up working like an accepting state too
\(\varepsilon \)-transitions For NFA Combining

- \(\varepsilon \)-transitions are useful for combining smaller automata into larger ones
- This machine is combines a machine for \(\{a\}^* \) and a machine for \(\{b\}^* \)
- It uses an \(\varepsilon \)-transition at the start to achieve the union of the two languages
Revisiting Union

\[A = \{a^n \mid n \text{ is odd}\} \]

\[B = \{b^n \mid n \text{ is odd}\} \]

\[A \cup B \]
Concatenation

\[A = \{a^n \mid n \text{ is odd}\} \]

\[B = \{b^n \mid n \text{ is odd}\} \]

\[\{xy \mid x \in A \text{ and } y \in B\} \]
Some Exercises

What is the language accepted by the following NFAs?

a)

b)

c)
More Exercises

- Let $\Sigma = \{a, b, c\}$. Give an NFA M that accepts:

 $$L = \{x \mid x \text{ is in } \Sigma^* \text{ and } x \text{ contains } ab\}$$
One More Exercise

• Let $\Sigma = \{a, b\}$. Give an NFA M that accepts:

$$L = \{x \mid x \text{ is in } \Sigma^* \text{ and the third to the last symbol in } x \text{ is } b\}$$
NFA Exercise

• Construct an NFA that will accept strings over alphabet \{1, 2, 3\} such that the last symbol appears at least twice, but without any intervening higher symbol, in between:
 – e.g., 11, 2112, 123113, 3212113, etc.

• Trick: use start state to mean “I guess I haven't seen the symbol that matches the ending symbol yet.” Use three other states to represent a guess that the matching symbol has been seen, and remembers what that symbol is.

• Spoiler Alert: answer on the next slide!
NFA Exercise (answer)
Outline

• 5.1 Relaxing a Requirement
• 5.2 Spontaneous Transitions
• 5.3 Nondeterminism
• 5.4 The 5-Tuple for an NFA
• 5.5 The Language Accepted by an NFA
Powerset

• If S is a set, the powerset of S is the set of all subsets of S:

$$P(S) = \{R \mid R \subseteq S\}$$

• This always includes the empty set and S itself
• For example,

$P({1,2,3}) = \{\{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
The 5-Tuple

An NFA M is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$, where:

- Q is the finite set of states
- Σ is the alphabet (that is, a finite set of symbols)
- $\delta \in (Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow P(Q)$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accepting states

- The only change from a DFA is the transition function δ
- δ takes two inputs:
 - A state from Q (the current state)
 - A symbol from $\Sigma \cup \{\varepsilon\}$ (the next input, or ε for an ε-transition)
- δ produces one output:
 - A subset of Q (the set of possible next states - since multiple transitions can happen in parallel!)
Example:

• Formally, $M = (Q, \Sigma, \delta, q_0, F)$, where

 – $Q = \{q_0, q_1, q_2\}$

 – $\Sigma = \{a, b\}$ (we assume: it must contain at least a and b)

 – $F = \{q_2\}$

 – $\delta(q_0, a) = \{q_0, q_1\}$, $\delta(q_0, b) = \{q_0\}$, $\delta(q_0, \varepsilon) = \{q_2\}$,
 $\delta(q_1, a) = \{\}$, $\delta(q_1, b) = \{q_2\}$, $\delta(q_1, \varepsilon) = \{\}$
 $\delta(q_2, a) = \{\}$, $\delta(q_2, b) = \{\}$, $\delta(q_2, \varepsilon) = \{\}$

• The language defined is $\{a, b\}^*$
Outline

• 5.1 Relaxing a Requirement
• 5.2 Spontaneous Transitions
• 5.3 Nondeterminism
• 5.4 The 5-Tuple for an NFA
• 5.5 The Language Accepted by an NFA
The δ^* Function

• The δ function gives 1-symbol moves
• We'll define δ^* so it gives whole-string results (by applying zero or more δ moves)
• For DFAs, we used this recursive definition
 - $\delta^*(q,\varepsilon) = q$
 - $\delta^*(q,xa) = \delta(\delta^*(q,x),a)$
• The intuition is similar for NFAs taking parallel transitions into account, but the ε-transitions add some technical difficulties
NFA IDs

- An *instantaneous description* (ID) is a description of a point in an NFA's execution
- It is a pair \((q,x)\) where
 - \(q \in Q\) is the current state
 - \(x \in \Sigma^*\) is the *unread* part of the input
- Initially, an NFA processing a string \(x\) has the ID \((q_0,x)\)
- An accepting sequence of moves ends in an ID \((f,\varepsilon)\) for some accepting state \(f \in F\)
The One-Move Relation On IDs

• We write
 \[I \mapsto J \]
 if \(I \) is an ID and \(J \) is an ID that could follow from \(I \) after one move of the NFA

• That is, for any string \(x \in \Sigma^* \) and any \(a \in \Sigma \) or \(a = \epsilon \),

 \[(q, ax) \mapsto (r, x) \]
 if and only if \(r \in \delta(q, a) \)
The Zero-Or-More-Move Relation

• We write
 \[I \mapsto^* J \]
 if there is a sequence of zero or more moves that starts with \(I \) and ends with \(J \):
 \[I \mapsto \cdots \mapsto J \]

• Because it allows zero moves, it is a reflexive relation: for all IDs \(I \),
 \[I \mapsto^* I \]
The δ^* Function

- Now we can define the δ^* function for NFAs:

 $$\delta^*(q, x) = \left\{ r \mid (q, x) \xrightarrow{\star} (r, \epsilon) \right\}$$

- Intuitively, $\delta^*(q, x)$ is the set of all states the NFA might be in after starting in state q and reading x.
M Accepts x

- Now $\delta^*(q,x)$ is the set of states M may end in, starting from state q and reading all of string x.
- So $\delta^*(q_0,x)$ tells us whether M accepts x by computing all possible states by executing all possible transitions in parallel on the string x.

A string $x \in \Sigma^*$ is accepted by an NFA $M = (Q, \Sigma, \delta, q_0, F)$ if and only if the set $\delta^*(q_0, x)$ contains at least one element of F.
The Language An NFA Defines

For any NFA $M = (Q, \Sigma, \delta, q_0, F)$, $L(M)$ denotes the language accepted by M, which is

$$L(M) = \{x \in \Sigma^* \mid \delta^*(q_0, x) \cap F \neq \{\}\}.$$
Exercise

- Compute the results of the following transitions:
 - $\delta^*(q_1,\varepsilon)$
 - $\delta^*(q_1,0110)$
Assignment

• Assignment #3 – see website