Chapter Thirteen:
Stack Machines
Stack Machines

- Stacks are ubiquitous in computer programming, and they have an important role in formal language as well.
- A stack machine is a kind of automaton that uses a stack for auxiliary data storage.
 - The size of the stack is unbounded—it never runs out of space—and that gives stack machines an edge over finite automata.
 - In effect, stack machines have infinite memory, though they must use it in stack order.
- The set of languages that can be defined using a stack machine is exactly the same as the set of languages that can be defined using a CFG: the context-free languages.
Outline

• 13.1 Stack Machine Basics
• 13.2 A Stack Machine for \(\{a^n b^n\} \)
• 13.3 A Stack Machine for \(\{xx^R\} \)
• 13.4 Stack Machines, Formally Defined
• 13.5 Example: Equal Counts
• 13.6 Example: A Regular Language
• 13.7 A Stack Machine for Every CFG
• 13.8 A CFG For Every Stack Machine
Stacks

- A stack machine maintains an unbounded stack of symbols
- We'll represent these stacks as strings
- Left end of the string is the top of the stack
 - For example, abc is a stack with a on top and c on the bottom
 - Popping abc gives you the symbol a, leaving bc on the stack
 - Pushing b onto abc produces the stack $babc$
Stack Machine Moves

- A stack machine is an automaton for defining languages, but unlike DFA and NFA: no states!
- It is specified by a table that shows the moves it is allowed to make. For example:

<table>
<thead>
<tr>
<th>read</th>
<th>pop</th>
<th>push</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
<td>a b c</td>
</tr>
</tbody>
</table>

- Meaning:
 - If the current input symbol is a, and
 - if the symbol on top of the stack is c, it may make this move:
 - pop off the c, push abc, and advance to the next input symbol
Leaving The Stack Unchanged

• Every move pops one symbol off, then pushes a string of zero or more symbols on.
• To specify a move that leaves the stack unchanged, you can explicitly push the popped symbol back on:

<table>
<thead>
<tr>
<th>read</th>
<th>pop</th>
<th>push</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

• Meaning:
 – If the current input symbol is a, and
 – if the symbol on top of the stack is c, it may make this move:
 – pop off the c, push it back on, and advance to the next input symbol.
Popping The Stack

- Every move pushes a string onto the stack
- To specify a move that pops but does not push, you can explicitly push the empty string:

<table>
<thead>
<tr>
<th>read</th>
<th>pop</th>
<th>push</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
<td>ε</td>
</tr>
</tbody>
</table>

- Meaning:
 - If the current input symbol is a, and
 - if the symbol on top of the stack is c, it may make this move:
 - pop off the c, push nothing in its place, and advance to the next input symbol
Moves On No Input

• The first column can be ε
• Like a ε-transition in an NFA, this specifies a move that is made without reading an input symbol

<table>
<thead>
<tr>
<th>read</th>
<th>pop</th>
<th>push</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>c</td>
<td>ab</td>
</tr>
</tbody>
</table>

• Meaning:
 – Regardless of what the next input symbol (if any) is,
 – if the symbol on top of the stack is c, it may make this move:
 – pop off the c, and push ab in its place
Stack Machines

- A stack machine starts with a stack that contains just one symbol, the start symbol S.
- On each move it can alter its stack, but only as we have seen: only in stack order.
- Like an NFA, a stack machine may be nondeterministic: it may have more than one sequence of legal moves on a given input.
- A string is in the language if there is at least one sequence of legal moves that reads the entire input string and ends with the stack empty.
Example

<table>
<thead>
<tr>
<th>read</th>
<th>pop</th>
<th>push</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ε</td>
<td>S</td>
</tr>
<tr>
<td>2.</td>
<td>a</td>
<td>S</td>
</tr>
<tr>
<td>3.</td>
<td>a</td>
<td>S</td>
</tr>
</tbody>
</table>

- Consider input a (and, as always, initial stack S):
- Three possible sequences of moves
 - Move 1 first: no input is read and the stack becomes ab; then stuck, rejecting since input not finished and stack not empty
 - Move 2 first: a is read and the stack becomes ef; rejecting since stack not empty
 - Move 3 first: a is read and the stack becomes empty; accepting
Outline

• 13.1 Stack Machine Basics
• 13.2 A Stack Machine for \(a^n b^n\)
• 13.3 A Stack Machine for \(xx^R\)
• 13.4 Stack Machines, Formally Defined
• 13.5 Example: Equal Counts
• 13.6 Example: A Regular Language
• 13.7 A Stack Machine for Every CFG
• 13.8 A CFG For Every Stack Machine
Strategy For \(\{a^n b^n\} \)

- We'll make a stack machine that defines the language \(\{a^n b^n\} \)
- As always, the stack starts with S
- Reading the input string from left to right:
 1. For each \(a \) you read, pop off the S, push a 1, then push the S back on top
 2. In the middle of the string, pop off the S; at this point the stack contains just a list of zero or more 1s, one for each \(a \) that was read
 3. For each \(b \) you read, pop a 1 off the stack
- This ends with all input read and the stack empty, if and only if the input was in \(\{a^n b^n\} \)
Stack Machine For \(\{a^nb^n\} \)

<table>
<thead>
<tr>
<th>read</th>
<th>pop</th>
<th>push</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(a)</td>
<td>(S)</td>
</tr>
<tr>
<td>2.</td>
<td>(\varepsilon)</td>
<td>(S)</td>
</tr>
<tr>
<td>3.</td>
<td>(b)</td>
<td>(1)</td>
</tr>
</tbody>
</table>

- That strategy again:
 1. For each \(a\) you read, pop off the \(S\), push a 1, then push the \(S\) back on top.
 2. In the middle of the string, pop off the \(S\); at this point the stack contains just a list of zero or more 1s, one for each \(a\) that was read.
 3. For each \(b\) you read, pop a 1 off the stack.
<table>
<thead>
<tr>
<th>read</th>
<th>pop</th>
<th>push</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>a</td>
<td>S</td>
</tr>
<tr>
<td>2.</td>
<td>ε</td>
<td>S</td>
</tr>
<tr>
<td>3.</td>
<td>b</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Accepting **aaabbb:**
 - **Start:** input: _aaabbb_; stack: _S_
 - **Move 1:** input: _aaabbb_; stack: _S_1
 - **Move 1:** input: _aaabbb_; stack: _S_11
 - **Move 1:** input: _aaabbb_; stack: _S_111
 - **Move 2:** input: _aaabbb_; stack: _1_11
 - **Move 3:** input: _aaabbb_; stack: _1_
 - **Move 3:** input: _aaabbb_; stack: _1_
 - **Move 3:** input: _aaabbb_; stack empty
A rejecting sequence for \textit{aaabbb}:

- Start: input: \textit{aaabbb}; stack: S
- Move 1: input: \textit{aaabbb}; stack: S 1
- Move 2: input: \textit{aaabbb}; stack: 1
- No legal move from here

But, as we've seen, there is an accepting sequence, so \textit{aaabbb} is in the language defined by the stack machine.

What happens with string \textit{aabbb} and \textit{aab}?
Nondeterminism

- This stack machine can pop the S off the top of the stack at any time
- But there is only one correct time: it must be popped off in the middle of the input string
- This uses the nondeterminism of stack machines
- We can think of these machines as making a guess about where the middle of the input is
- All the sequences with a wrong guess reject
- But the one sequence that makes the right guess accepts, and one is all it takes
Outline

• 13.1 Stack Machine Basics
• 13.2 A Stack Machine for \(\{a^n b^n\} \)
• 13.3 A Stack Machine for \(\{xx^R\} \)
• 13.4 Stack Machines, Formally Defined
• 13.5 Example: Equal Counts
• 13.6 Example: A Regular Language
• 13.7 A Stack Machine for Every CFG
• 13.8 A CFG For Every Stack Machine
The 4-Tuple

- A stack machine M is a 4-tuple $M = (\Gamma, \Sigma, S, \delta)$
 - Γ is the stack alphabet
 - Σ is the input alphabet
 - $S \in \Gamma$ is the initial stack symbol
 - $\delta \in ((\Sigma \cup \{\varepsilon\}) \times \Gamma) \rightarrow P(\Gamma^*)$ is the transition function
- The stack alphabet and the input alphabet may or may not have symbols in common
Transition Function

• Type is $\delta \in ((\Sigma \cup \{\varepsilon\}) \times \Gamma \rightarrow P(\Gamma^*))$
• That is, in $\delta(x,y) = Z$:
 – x is an input symbol or ε
 – y is a stack symbol
 – The result Z is a set of strings of stack symbols
• The result is a set because the stack machine is nondeterministic
• For a given input symbol x and top-of-stack symbol y, there may be more than one move
• So, there may be more than one string that can be pushed onto the stack in place of y
Example

\[
\begin{array}{ccc}
\text{read} & \text{pop} & \text{push} \\
1. & \varepsilon & S & ab \\
2. & a & S & ef \\
3. & a & S & \varepsilon \\
\end{array}
\]

- \(M = (\Gamma, \Sigma, S, \delta) \) where
 - \(\Gamma = \{S, a, b, e, f\} \)
 - \(\Sigma = \{a\} \)
 - \(\delta(\varepsilon, S) = \{ab\} \)
 - \(\delta(a, S) = \{\varepsilon, ef\} \)
Instantaneous Descriptions

• At any point in a stack machine's operation, its future depends on two things:
 – That part of the input string that is still to be read
 – The current contents of the stack

• An instantaneous description (ID) for a stack machine is a pair \((x, y)\) where:
 – \(x \in \Sigma^*\) is the unread part of the input
 – \(y \in \Gamma^*\) is the current stack contents

• As always, the left end of the string \(y\) is considered to be the top of the stack
A One-Move Relation On IDs

- We will write $I \mapsto J$ if I is an ID and J is ID that follows from I after one move of the stack machine.
- Technically: \mapsto is a relation on IDs, defined by the δ function for the stack machine as follows:
 - Regular transitions: $(ax, Bz) \mapsto (x, yz)$ if and only if $y \in \delta(a,B)$
 - ε-transitions: $(x, Bz) \mapsto (x, yz)$ if and only if $y \in \delta(\varepsilon,B)$.
- Note no move is possible when stack is empty.
Zero-Or-More-Move Relation

• As we did with grammars and NFAs, we extend this to a zero-or-more-move \rightarrow^*

• Technically, \rightarrow^* is a relation on IDs, with $I \rightarrow^* J$ if and only if there is a sequence of zero or more relations that starts with I and ends with J

• Note this is reflexive by definition: we always have $I \rightarrow^* I$ by a sequence of zero moves
A Stack Machine's Language

• The language accepted by a stack machine is the set of input strings for which there is at least one sequence of moves that ends with the whole string read and the stack empty.

• Technically, \(L(M) = \{ x \in \Sigma^* | (x, S) \xrightarrow{*} (\varepsilon, \varepsilon) \} \)
Previous Example

<table>
<thead>
<tr>
<th></th>
<th>read</th>
<th>pop</th>
<th>push</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>a</td>
<td>S</td>
<td>$S1$</td>
</tr>
<tr>
<td>2.</td>
<td>ε</td>
<td>S</td>
<td>ε</td>
</tr>
<tr>
<td>3.</td>
<td>b</td>
<td>1</td>
<td>ε</td>
</tr>
</tbody>
</table>

Accepting $aaabbb$:

- **Start**: input: $aaabbb$; stack: S
- **Move 1**: input: $aaabbb$; stack: $S1$
- **Move 1**: input: $aaabbb$; stack: $S11$
- **Move 1**: input: $aaabbb$; stack: $S111$
- **Move 2**: input: $aaabbb$; stack: 111
- **Move 3**: input: $aaabbb$; stack: 1
- **Move 3**: input: $aaabbb$; stack empty
Example, Continued

- $M = \{ \{a,b, S\}, \{a,b\}, S, \delta \}$, where
 - $\delta(a, S) = \{S1\}$
 - $\delta(\varepsilon, S) = \{\varepsilon\}$
 - $\delta(b, 1) = \{\varepsilon\}$

- The accepting sequence of moves for $abbbba$ is
 - $(a a a b b b, S) \mapsto (a a b b b, S1) \mapsto (a b b b, S11) \mapsto (b b b, S111) \mapsto (b b b, 111) \mapsto (b b, 11) \mapsto (b, 1) \mapsto (\varepsilon, \varepsilon)$

- $(a a a b b b, S) \mapsto^* (\varepsilon, \varepsilon)$ and so $aaabbb \in L(M)$
Outline

• 13.1 Stack Machine Basics
• 13.2 A Stack Machine for \{a^n b^n\}
• 13.3 A Stack Machine for \{xx^R\}
• 13.4 Stack Machines, Formally Defined
• 13.5 Example: Equal Counts
• 13.6 Example: A Regular Language
• 13.7 A Stack Machine for Every CFG
• 13.8 A CFG For Every Stack Machine
Simulating DFAs

- A stack machine can easily simulate any DFA
 - Use the same input alphabet
 - Use the states as stack symbols
 - Use the start state as the start symbol
 - Use a transition function that keeps exactly one symbol on the stack: the DFA's current state
 - Allow accepting states to be popped; that way, if the DFA ends in an accepting state, the stack machine can end with an empty stack
Example

• $M = (\{q_0, q_1, q_2, q_3\}, \{0,1\}, q_0, \delta)$
 - $\delta(0,q_0) = \{q_0\}$ $\delta(1,q_0) = \{q_1\}$
 - $\delta(0,q_1) = \{q_2\}$ $\delta(1,q_1) = \{q_3\}$
 - $\delta(0,q_2) = \{q_0\}$ $\delta(1,q_2) = \{q_1\}$
 - $\delta(0,q_3) = \{q_2\}$ $\delta(1,q_3) = \{q_3\}$
 - $\delta(\varepsilon,q_2) = \{\varepsilon\}$ $\delta(\varepsilon,q_3) = \{\varepsilon\}$

• Accepting sequence for 0110:
 - $(0110, q_0) \mapsto (110, q_0) \mapsto (10, q_1) \mapsto (0, q_3) \mapsto (\varepsilon, q_2) \mapsto (\varepsilon, \varepsilon)$
DFA To Stack Machine

- Such a construction can be used to make a stack machine equivalent to any DFA
- It can be done for NFAs too
- It tells us that the languages definable using a stack machine include, at least, all the regular languages
- In fact, regular languages are a snap: we have an unbounded stack we barely used
- We won't give the construction formally, because we can do better…
Outline

• 13.1 Stack Machine Basics
• 13.2 A Stack Machine for \(\{a^n b^n\} \)
• 13.3 A Stack Machine for \(\{xx^R\} \)
• 13.4 Stack Machines, Formally Defined
• 13.5 Example: Equal Counts
• 13.6 Example: A Regular Language
• 13.7 A Stack Machine for Every CFG
• 13.8 A CFG For Every Stack Machine
From CFG To Stack Machine

• A CFG defines a string rewriting process
• Start with S and rewrite repeatedly, following the rules of the grammar until fully terminal
• We want a stack machine that accepts exactly those strings that could be generated by the given CFG
• Our strategy for such a stack machine:
 – Do a derivation, with the string in the stack
 – Match the derived string against the input
Strategy

- Two types of moves:
 1. A move for each production \(X \rightarrow y \)
 2. A move for each terminal \(a \in \Sigma \)
- The first type lets it do any derivation
- The second matches the derived string and the input
- Their execution is interlaced:
 - type 1 when the top symbol is nonterminal
 - type 2 when the top symbol is terminal

<table>
<thead>
<tr>
<th>read</th>
<th>pop</th>
<th>push</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\epsilon)</td>
<td>(X)</td>
<td>(y)</td>
</tr>
<tr>
<td>(a)</td>
<td>(a)</td>
<td>(\epsilon)</td>
</tr>
</tbody>
</table>
Example: \{xx^R \mid x \in \{a,b\}^*\}

\[S \rightarrow aSa \mid bSb \mid \varepsilon\]

- Derivation for \textit{abbbba}:

 \[S \Rightarrow aSb \Rightarrow abSba \Rightarrow abbbSbb \Rightarrow abbbba\]

- Accepting sequence of moves on \textit{abbbba}:

 \[(abbbba, S) \leftrightarrow_1 (abbbba, aSa) \leftrightarrow_4 (bbbbba, Sa) \leftrightarrow_2 (bbbbba, bSba) \leftrightarrow_5\]

 \[(bbba, Sba) \leftrightarrow_2 (bbba, bSbbba) \leftrightarrow_5 (bbba, bbba) \leftrightarrow_3 (bbba, bba) \leftrightarrow_5\]

 \[(ba, ba) \leftrightarrow_5 (a, a) \leftrightarrow_4 (\varepsilon, \varepsilon)\]
Lemma 13.7

If $G = (V, \Sigma, S, P)$ is any context-free grammar, there is some stack machine M with $L(M) = L(G)$.

- Proof sketch: by construction
- Construct $M = (V \cup \Sigma, \Sigma, S, \delta)$, where
 - for all $v \in V$, $\delta(\varepsilon, v) = \{x \mid (v \rightarrow x) \in P\}$
 - for all $a \in \Sigma$, $\delta(a, a) = \{\varepsilon\}$
- M accepts x if and only if G generates x, i.e.,
 $$(x, S) \Rightarrow^* (\varepsilon, \varepsilon)$$ if and only if $S \Rightarrow^* x$
- $L(M) = L(G)$
Summary

• We can make a stack machine for every CFL
• That's stronger than our demonstration of a stack machine for every regular language
• So now we know that the stack machines are at least as powerful as CFGs for defining languages
• Are they more powerful? Are there stack machines that define languages that are not CFLs?
Outline

- 13.1 Stack Machine Basics
- 13.2 A Stack Machine for \(a^n b^n\)
- 13.3 A Stack Machine for \(xx^R\)
- 13.4 Stack Machines, Formally Defined
- 13.5 Example: Equal Counts
- 13.6 Example: A Regular Language
- 13.7 A Stack Machine for Every CFG
- 13.8 A CFG For Every Stack Machine
From Stack Machine To CFG

• We can't just reverse the previous construction, since it produced restricted productions
• But we can use a similar idea
• The executions of the stack machine will be exactly simulated by derivations in the CFG
• To do this, we'll construct a CFG with one production for each move of the stack machine
Lemma 13.8.1

If $M = (\Gamma, \Sigma, S, \delta)$ is any stack machine, there is context-free grammar G with $L(G) = L(M)$.

- Proof by construction
- Assume that $\Gamma \cap \Sigma = \emptyset$ (without loss of generality)
- Construct $G = (\Gamma, \Sigma, S, P)$, where
 \begin{align*}
P = \{(A \rightarrow at) \mid A \in \Gamma, a \in \Sigma \cup \{\epsilon\}, \text{ and } t \in \delta(a, A)\}\end{align*}
 where $t \in \Gamma^*$
- Now leftmost derivations in G simulate runs of M:
 \begin{align*}S \Rightarrow^* x \text{ if and only if } (x, S) \Rightarrow^* (\epsilon, \epsilon)\end{align*}
 for any $x \in \Sigma^*$
- So $L(G) = L(M)$
• One-to-one correspondence:
 – Where the stack machine has \(t \in \delta(a,A) \)...
 – ... the grammar has \(A \rightarrow at \)

• Accepting sequence on \(aabb \):
 \[
 (aabb, S) \Rightarrow_1 (abb, SB) \Rightarrow_1 (bb, SBB) \Rightarrow_2 (bb, BB) \Rightarrow_3 (b, B) \Rightarrow_3 (\epsilon, \epsilon)
 \]

• Derivation of \(abab \):
 \[
 S \Rightarrow_1 aSB \Rightarrow_1 aaSBB \Rightarrow_2 aaBB \Rightarrow_3 aabB \Rightarrow_3 aabb
 \]
Disjoint Alphabets Assumption

• The stack symbols of the stack machine become nonterminals in the CFG
• The input symbols of the stack machine become terminals of the CFG
• That's why we need to assume $\Gamma \cap \Sigma = \{\}$: symbols in a grammar must be either terminal or nonterminal, not both
• This assumption is without loss of generality because we can easily rename stack machine symbols to get disjoint alphabets…
Renaming Example

- Given a stack machine with intersecting alphabets:

- We can rename the stack symbols (the pop and push columns only) to get disjoint alphabets:

- Then use the construction:

<table>
<thead>
<tr>
<th>read</th>
<th>pop</th>
<th>push</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>a</td>
<td>S</td>
</tr>
<tr>
<td>2.</td>
<td>ε</td>
<td>S</td>
</tr>
<tr>
<td>3.</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>read</th>
<th>pop</th>
<th>push</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>a</td>
<td>S</td>
</tr>
<tr>
<td>2.</td>
<td>ε</td>
<td>S</td>
</tr>
<tr>
<td>3.</td>
<td>b</td>
<td>B</td>
</tr>
</tbody>
</table>

$S \rightarrow aSBB \mid \varepsilon$
$B \rightarrow b$
Theorem 13.8

A language is context free if and only if it is $L(M)$ for some stack machine M.

• Proof: follows immediately from Lemmas 13.7 and 13.8.1.

• Conclusion: CFGs and stack machines have equivalent definitional power