Chapter Eighteen: Uncomputability
Review: Computability

- A language is recursive if and only if it is $L(M)$ of some total TM M.
- A function is (Turing) computable if and only if a total TM computes it.
- But we have:
 - For every language L we can define a corresponding function, such as $f(x) = 1$ if $x \in L$, 0 if $x \notin L$
 - For every function f we can define a corresponding language, such as $L = \{x\#y \mid y = f(x)\}$
- Therefore, L is recursive if and only if it is (Turing) computable.
- Church-Turing Thesis: Anything an Algorithm can do a TM can do, and vice versa.
The Church-Turing Thesis gives a definition of computability, like a border surrounding the algorithmically solvable problems.

Beyond that border is a wilderness of uncomputable problems. This is one of the great revelations of twentieth-century mathematics: the discovery of simple problems whose algorithmic solution would be very useful but is forever beyond us.
Outline

• 18.1 Decision and Recognition Methods
 • 18.2 The Language L_u
 • 18.3 The Halting Problems
 • 18.4 Reductions Proving a Language Is Recursive
 • 18.5 Reductions Proving a Language is Not Recursive
 • 18.6 Rice's Theorem
 • 18.7 Enumerators
 • 18.8 Recursively Enumerable Languages
 • 18.9 Languages That Are Not RE
 • 18.10 Language Classifications Revisited
 • 18.11 Grammars and Computability
 • 18.12 Oracles
 • 18.13 Mathematical Uncomputabilities
Switching To Java-Like Syntax

- In this chapter we switch from using Turing machines to using a Java-like syntax
- All the following ideas apply to any Turing-equivalent formalism
- Java-like syntax is easier to read than TMs
- It is just a different way of stating an algorithm and we know: for every algorithm we have a TM, and vice versa (Church-Turing Thesis)
- Note, this is not real Java; no limitations
- In particular, no bounds on the length of a string or the size of an integer
Decision Methods

- Total TMs correspond to *decision methods* in our Java-like notation
- A *decision method* takes a *String* parameter and returns a boolean value
- Another way of saying computable: it always returns, and does not run forever.
- Example, \(\{ax \mid x \in \Sigma^*\} \):

```java
boolean ax(String p) {
    return (p.length() > 0 && p.charAt(0) == 'a');
}
```
Decision Method Examples

- {}:

  ```java
  boolean emptySet(String p) {
    return false;
  }
  ```

- Σ^*:

  ```java
  boolean sigmaStar(String p) {
    return true;
  }
  ```

- As with TMs, the language accepted is $L(m)$:
 - $L(\text{emptySet}) = \{\}$
 - $L(\text{sigmaStar}) = \Sigma^*$
Recursive Languages

• Previous definition: L is a recursive language if and only if it is $L(M)$ for some total TM M
• New definition: L is a recursive language if and only if it is $L(m)$ for some decision method m
• Recursive Language = (Turing) Decidable Language
Recognition Methods

• For methods that might run forever, a broader term

• A recognition method takes a `String` parameter and either returns a boolean value or runs forever

• A decision method is a special kind of recognition method, just as a total TM is a special kind of TM
Recursively Enumerable Languages

• Previous definition: \(L \) is a recursively enumerable language if and only if it is \(L(M) \) for some TM \(M \)

• New definition: \(L \) is a recursively enumerable language if and only if it is \(L(m) \) for some recognition method \(m \)

• **Recursively Enumerable Language = (Turing) Recognizable Language**
{a^n b^n c^n} Recognition Method

```java
boolean anbncn1(String p) {
    String as = "", bs = "", cs = "";
    while (true) {
        String s = as+bs+cs;
        if (p.equals(s)) return true;
        as += 'a'; bs += 'b'; cs += 'c';
    }
}
```

- Highly inefficient, but we don’t care about that
- We do care about termination; this recognition method loops forever if the string is not accepted
- It demonstrates only that \{a^n b^n c^n\} is RE; we know it is recursive, so there is a decision method for it…
\{a^n b^n c^n\} Decision Method

```java
boolean anbncn2(String p) {
    String as = "", bs = "", cs = "";
    while (true) {
        String s = as+bs+cs;
        if (s.length()>p.length()) return false;
        else if (p.equals(s)) return true;
        as += 'a'; bs += 'b'; cs += 'c';
    }
}
```

- \(L(\text{anbncn1}) = L(\text{anbncn2}) = \{a^n b^n c^n\}\)
- But \text{anbncn2} is a \textit{decision method}, showing that the language is recursive and not just RE
Universal Java Machine

- A universal TM performs a simulation to decide whether the given TM accepts the given string
- It is possible to implement the same kind of thing in Java; a `run` method like this:

```java
/**
 * run(p, in) takes a String ‘p’ which is the text
 * of a recognition method, and a String ‘in’ which is
 * the input for that method. We compile the method,
 * run it on the given parameter string, and return
 * whatever result it returns. (If it does not
 * return, neither do we.)
 */

boolean run(String p, String in) {
    ... // don't care about the details here
}
```
run Examples

• \texttt{sigmaStar("abc")} returns true, so the \texttt{run} in this fragment would return true:

\begin{verbatim}
String s = "boolean sigmaStar(String p) {return true;}";
run(s,"abc");
\end{verbatim}

• \texttt{ax("ba")} returns false, so the \texttt{run} in this fragment would return false:

\begin{verbatim}
String s =
 "boolean ax(String p) {
 " +
 " return (p.length()>0 && p.charAt(0) =='a'); " +
 "}"
run(s,"ba");
\end{verbatim}
Examples, Continued

• anbncnl("abbc") runs forever, so the run in this fragment would never return:

```java
String s =
    "boolean anbncnl(String p) {               " +
    "  String as = ", bs = ", cs = "; " +
    "  while (true) {                          " +
    "    String s = as+bs+cs;                  " +
    "    if (p.equals(s)) return true;         " +
    "    as += 'a'; bs += 'b'; cs += 'c';      " +
    "  }                                       " +
    " }                                         " +
";                                               
run(s,"abbc");
```

跑去！‘run’ is a recognition method!
Outline

• 18.1 Decision and Recognition Methods
• **18.2 The Language** L_u
 • 18.3 The Halting Problems
 • 18.4 Reductions Proving a Language Is Recursive
 • 18.5 Reductions Proving a Language is Not Recursive
• 18.6 Rice's Theorem
• 18.7 Enumerators
• 18.8 Recursively Enumerable Languages
• 18.9 Languages That Are Not RE
• 18.10 Language Classifications Revisited
• 18.11 Grammars and Computability
• 18.12 Oracles
• 18.13 Mathematical Uncomputabilities
The Perils Of Infinite Computation

```java
int j = 0;
for (int i = 0; i < 100; j++) {
    j += f(i);
}
```

- You run a program, and wait… and wait…
- You ask, “Is this stuck in an infinite loop, or is it just taking a long time?”
- No sure way for a person to answer such questions
- No sure way for a computer to find the answer for you…
The Language L_u

- $L_u = L(\text{run}) = \{(p,\text{in}) \mid p \text{ is a recognition method and } \text{in} \in L(p)\}$
- (Remember u for universal)
- A corresponding language for universal TMs:
 - $L_u = \{m\#x \mid m \text{ encodes a TM and } x \text{ is a string it accepts}\}$
- We have a recognition method for it, so we know L_u is RE
- Is it recursive?
Is L_u Recursive?

• That is, **is it possible** to write a *decision* method with this specification:

```java
/**
 * shortcut(p,in) returns true if run(p,in) would return true, and returns false if run(p,in)
 * would return false or run forever.
 */
boolean shortcut(String p, String in) {
    ...
}
```

• Just like the `run` method, but does not run forever, even when `run(p,in)` would
Example

• For example, the shortcut in this fragment:

```java
String x =
"boolean anbncn1(String p) {
  String as = "", bs = "", cs = "";
  while (true) {
    String s = as+bs+cs;
    if (p.equals(s)) return true;
    as += 'a'; bs += 'b'; cs += 'c';
  }
}"
shortcut(x,"abbc")
```

• It would return false, even though `anbncn1("in")` would run forever
Is This Possible?

• Presumably, **shortcut** would have to simulate the input program as **run** does
• But it would have to detect infinite loops
• Some are easy enough to detect:
  ```java
  while(true) {} 
  ```
• A program might even be clever enough to reason about the nontermination of **anbncn1**
• It would be very useful to have a debugging tool that could reliably alert you to infinite computations
The Bad News

• No such shortcut method exists and we can prove it!

• Our proof is by contradiction:
 – Assume by way of contradiction that L_u is recursive, so some implementation of shortcut exists
 – Then we could use it to implement this…
nonSelfAccepting

/**
 * nonSelfAccepting(p) returns false if run(p,p)
 * would return true, and returns true if run(p,p)
 * would return false or run forever.
 */
boolean nonSelfAccepting(String p) {
 return !shortcut(p,p);
}

• This determines what the given program would decide, given itself as input, then it returns the opposite
• So $L(\text{nonSelfAccepting})$ is the set of recognition methods that do not accept themselves
nonSelfAccepting

Example

```java
nonSelfAccepting(
    "boolean sigmaStar(String p) {return true;}"
);
```

- `sigmaStar("boolean sigmaStar...")` returns true: `sigmaStar` accepts everything, so it certainly accepts itself
- So it is self-accepting, and `nonSelfAccepting` returns false
nonSelfAccepting

Example

```java
nonSelfAccepting(
    "boolean ax(String p) {
        " +
        "    return (p.length()>0 && p.charAt(0)!='a'); " +
        "    }
    }
);
```

• `ax("boolean ax...")` returns false: `ax` accepts everything starting with `a`, but its own source code starts with `b`

• So it is not self-accepting, and `nonSelfAccepting` returns true
Back to the Proof

• We assumed by way of contradiction that shortcut could be implemented
• Using it, we showed an implementation of nonSelfAccepting
• Now comes the tricky part: what happens if we call nonSelfAccepting, giving it itself as input?
• We can easily arrange to do this:
Does nonSelfAccepting Accept Itself?

boolean nonSelfAccepting(String p) {
 return !shortcut(p,p);
};

String s = "boolean nonSelfAccepting(p) { " +
 " return !shortcut(p,p); " +
 " } ";

nonSelfAccepting(s);

• Now consider:
 – shortcut("nonSelfAccepting…","nonSelfAccepting…") = true, but
 – nonSelfAccepting("nonSelfAccepting…") = false
 – Contradiction, not possible
• Or
 – shortcut("nonSelfAccepting…","nonSelfAccepting…") = false, but
 – nonSelfAccepting("nonSelfAccepting…") = true
 – Contradiction, not possible
• These are the only two outcomes because shortcut is a decision method by assumption.
Proof Summary

• We assumed by way of contradiction that shortcut could be implemented
• Using it, we showed an implementation of nonSelfAccepting
• We showed that applying nonSelfAccepting to itself results in a contradiction
• By contradiction, no program satisfying the specifications of shortcut exists
• In other words…
Theorem 18.2

\[L_u \text{ is not recursive.} \]

• Our first example of a problem that is outside the borders of computability:
 – \(L_u \) is not recursive
 – The shortcut function is not computable
 – The machine-\(M \)-accepts-string-\(x \) property is not decidable

• This implies: No total TM can be a universal TM
Outline

• 18.1 Decision and Recognition Methods
• 18.2 The Language L_u
• **18.3 The Halting Problems**
• 18.4 Reductions Proving a Language Is Recursive
• 18.5 Reductions Proving a Language is Not Recursive
• 18.6 Rice's Theorem
• 18.7 Enumerators
• 18.8 Recursively Enumerable Languages
• 18.9 Languages That Are Not RE
• 18.10 Language Classifications Revisited
• 18.11 Grammars and Computability
• 18.12 Oracles
• 18.13 Mathematical Uncomputabilities
Another Example

- Consider this recognition method:

```java
/**
 * haltsRE(p, in) returns true if run(p, in) halts.
 * It just runs forever if run(p, in) runs forever.
 */

boolean haltsRE(String p, String in) {
    run(p, in);
    return true;
}
```

- It defines an RE language...
The Language L_h

- $L_h = L(\text{haltsRE}) = \{(p,\text{in}) \mid p \text{ is a recognition method that halts on}\ \text{in}\}$
- (Remember h for halting)
- A corresponding language for universal TMs:
 $L_h = \{m\#x \mid m \text{ encodes a TM that halts on}\ x\}$
- We have a recognition method for it, so we know L_h is RE
- Is it recursive?
Is L_h Recursive?

• That is, is it possible to write a decision method with this specification:

```java
/**
 * halts(p,in) returns true if run(p,in) halts, and
 * returns false if run(p,in) runs forever.
 */
boolean halts(String p, String in) {
    ...
}
```

• Just like the `haltsRE` method, but does not run forever, even when `run(p,in)` would
More Bad News

- From our results about L_u, you might guess that L_h is not going to be recursive either.
- Intuitively, the only way to tell what p will do when run on n is to simulate it.
- If that runs forever, we won’t get an answer.
- But how do we know there isn’t some other way of determining whether p halts, a way that doesn’t involve actually running it?
- Proof is by contradiction: assume L_h is recursive, so an implementation of halts exists.
- The we can use it to implement…
narcissist

```java
/**
 * narcissist(p) returns true if run(p,p) would run forever, and runs forever if run(p,p) would halt.
 */
boolean narcissist(String p) {
    if (halts(p,p)) while(true) {} 
    else return true;
}
```

- This halts (returning true) if and only if program \(p \) will contemplate itself forever
- So \(L(\text{narcissist}) \) is the set of recognition methods that run forever, given themselves as input
- Recall:
 - /**
 * halts(p,in) returns true if run(p,in) halts, and
 * returns false if run(p,in) runs forever.
 */
Back to the Proof

• We assumed by way of contradiction that \texttt{halts} could be implemented
• Using it, we showed an implementation of \texttt{narcissist}
• Now comes the tricky part: what happens if we call \texttt{narcissist}, giving it itself as input?
• We can easily arrange to do this:
Is narcissist a Narcissist?

```java
narcissist(
    "boolean narcissist(p) { " +
    "if (halts(p,p)) while(true) {} " +
    "else return true; " +
    "}"
)
```

• Now consider:
 – halts("narcissist…","narcissist…") = true, but
 – narcissist("narcissist…") runs forever.
 – Contradiction

• Or
 – halts("narcissist…","narcissist…") = false , but
 – narcissist("narcissist…") halts and returns true.
 – Contradiction

• These are the only possible outcomes because halts is a decision method by assumption.
Proof Summary

• We assumed by way of contradiction that \texttt{halts} could be implemented
• Using it, we showed an implementation of \texttt{narcissist}
• We showed that applying \texttt{narcissist} to itself results in a contradiction
• By contradiction, no program satisfying the specifications of \texttt{halts} exists
• In other words…
Theorem 18.3

L_h is not recursive.

- A classic undecidable problem: a *halting problem*
- Many variations:
 - Does a program halt on a given input?
 - Does it halt on any input?
 - Does it halt on every input?
- It would be nice to have a program that could check over your code and warn you about all possible infinite loops
- Unfortunately, it is impossible: the halting problem in all these variations, is undecidable
The Picture So Far

- The non-recursive languages don't stop there
- There are uncountably many languages beyond the computability border