Computational Aspects of KD

- Data Access
 - read.csv
 - write.csv
 - edit

- Visualization
 - scatter plots

- Data Manipulation
 - attribute-oriented approach
 - observation-oriented approach

- Model Building and Evaluation

- Model Deployment
Data Manipulation

Recall that a data frame is a data table representation in R,

```r
> mammals.df
   Legs Wings Fur Feathers Mammal
1   4      no   yes      no   true
2   2     yes   no      yes   false
3   4      no   no      no   false
4   4     yes   yes      no   true
5   3      no   no      no   false
```
Attribute-oriented Approach

We can access any attribute in the mammals data frame with the \$ notation.

```r
> mammals.df$Legs
[1] 4 2 4 4 3
> mammals.df$Mammal
[1] true false false true false
Levels: false true
```

R allows us to select groups of attributes with the `subset` function,

```r
> subset(mammals.df, select=Fur:Mammal)
   Fur Feathers Mammal
 1 yes   no    true
 2 no    yes   false
 3 no    no    false
 4 yes   no    true
 5 no    no    false

> subset(mammals.df, select=-Mammal)
   Legs Wings Fur Feathers
 1 4   no    yes    no
 2 2   yes   no     yes
 3 4   no    no     no
 4 4   yes   yes    no
 5 3   no    no     no
```
Observation-oriented Approach

We can use the `subset` function also for observation-oriented data manipulation.

```r
> subset(mammals.df, Legs == 4)
    Legs Wings Fur Feathers Mammal
1    4    no    yes     no    true
3    4    no     no     no     false
4    4    yes    yes     no    true
```

Another, slightly more complicated example,

```r
> mammal.levels <- levels(mammals.df$Mammal)
> mammal.levels
[1] "false"  "true"
> true.level <- mammal.levels[2]
> subset(mammals.df, Mammal == true.level)
    Legs Wings Fur Feathers Mammal
1    4    no    yes     no    true
4    4    yes    yes     no    true
```
We use the library 'e1071' (don't ask :) for building support vector machine models.

```r
> library(e1071)
```

Now we can construct a support vector machine model of our mammals data with the `svm` function,

```r
> model<-svm(Mammal ~ .,data=mammals.df,kernel="linear")
```

At this point we can evaluate our model by checking how it performs on the training set.

```r
> mammals.df$Mammal == fitted(model)
[1] TRUE TRUE TRUE TRUE TRUE TRUE
```

\(^a\) The library is available through the Package Installer.
Model deployment means applying your model in an appropriate context. In R we use the `predict` function to compute the value of the dependent attribute for some object. Given that R is a programming language we could program appropriate functionality around the predict function.

```r
> independent.df <- subset(mammals.df, select=-Mammal)
> predict(model, independent.df)
1 2 3 4 5
true false false true false
Levels: false true
```

How could we test in R whether these predictions are correct with respect to the original data set `mammals.df`?