Dual Maximum Margin Optimization

Proposition: (The Maximum Margin Lagrangian Dual) Given the primal maximum margin optimization, \(^a\) then the Lagrangian dual optimization for maximum margin classifiers is

\[
\max_{\alpha} \phi'(\bar{\alpha}) = \max_{\alpha} \left(\sum_{i=1}^{l} \alpha_i - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_i \alpha_j y_i y_j \bar{x}_i \cdot \bar{x}_j \right),
\]

subject to the constraints

\[
\sum_{i=1}^{l} \alpha_i y_i = 0,
\]

\[
\alpha_i \geq 0,
\]

with \(i = 1, \ldots, l.\)

\(^a\)See lecture notes on maximum margin classifiers.
The Dual Decision Function

We also know that given the optimal Lagrangian multipliers α^* we can construct both \overline{w}^*,

$$\overline{w}^* = \sum_{i=1}^{l} \alpha_i^* y_i \overline{x}_i,$$

and b^*,

$$b^* = \sum_{i=1}^{l} \alpha_i^* y_i \overline{x}_i \cdot \overline{x}_{sv^+} - 1,$$

where we pick one support vector from the set of available support vectors,

$$(\overline{x}_{sv^+}, +1) \in \{(\overline{x}_i, +1) \mid (\overline{x}_i, +1) \in D \text{ and } \alpha_i^* > 0\},$$

The identity for b^* follows directly from the KKT complimentarity condition with $\alpha_j^* > 0$ for some point $(\overline{x}_j, y_j) \in D$, then $y_j (\overline{w}^* \cdot \overline{x}_j - b^*) - 1 = 0$ or,

$$\overline{w}^* \cdot \overline{x}_j = b^* + 1 \text{ if } y_j = +1,$$

$$\overline{w}^* \cdot \overline{x}_j = b^* - 1 \text{ if } y_j = -1.$$

Plugging in \overline{w}^* and solving for b^* gives us our required result.
The Dual Decision Function

Putting this all together gives us,

\[
\hat{f}(\bar{x}) = \text{sign}(\bar{w}^* \cdot \bar{x} - b^*)
\]

\[
= \text{sign} \left(\sum_{i=1}^{l} \alpha_i^* y_i \bar{x}_i \cdot \bar{x} - \sum_{i=1}^{l} \alpha_i^* y_i \bar{x}_i \cdot \bar{x}_{sv^+} + 1 \right).
\]

As we would expect, the dual decision function is completely determined by the Lagrangian multipliers \(\alpha^* \).

Observing that the decision function is completely determined by points \(\bar{x}_i \) with \(\alpha_i^* > 0 \), we can say that the dual decision function is completely determined by the support vectors.

We consider the dual decision function a support vector machine.
Linear SVMs

Given

■ a dot product space \(\mathbb{R}^n \) as our data universe with points \(\overline{x} \in \mathbb{R}^n \),

■ some target function \(f : \mathbb{R}^n \rightarrow \{+1, -1\} \),

■ a labeled, linearly separable training set,

\[
D = \{(\overline{x}_1, y_1), (\overline{x}_2, y_2), \ldots, (\overline{x}_l, y_l)\} \subseteq \mathbb{R}^n \times \{+1, -1\},
\]

where \(y_i = f(\overline{x}_i) \),

then compute a model \(\hat{f} : \mathbb{R}^n \rightarrow \{+1, -1\} \) using \(D \) such that,

\[
\hat{f}(\overline{x}) \approx f(\overline{x}),
\]

for all \(\overline{x} \in \mathbb{R}^n \).
Linear SVMs

Here we take as our models the linear support vector machines,

\[
\hat{f}(\bar{x}) = \text{sign} \left(\sum_{i=1}^{l} \alpha_i^* y_i \bar{x}_i \cdot \bar{x} - \sum_{i=1}^{l} \alpha_i^* y_i \bar{x}_i \cdot \bar{x}_{sv+} + 1 \right),
\]

and we compute our support vector models with the Lagrangian dual optimization for maximum margin classifiers,

\[
\bar{\alpha}^* = \arg\max_{\bar{\alpha}} \left(\sum_{i=1}^{l} \alpha_i - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_i \alpha_j y_i y_j \bar{x}_i \cdot \bar{x}_j \right),
\]

subject to the constraints

\[
\sum_{i=1}^{l} \alpha_i y_i = 0,
\]

\[
\alpha_i \geq 0,
\]

where \(i = 1, \ldots, l \).