Gradient Ascent

Recall the following setting for training support vector machines.

Assume that we are given the training set,

\[D = \{(x_1, y_1), (x_2, y_2), \ldots, (x_l, y_l)\} \subseteq \mathbb{R}^n \times \{+1, -1\}. \]

We are interested in computing a classifier in the form of a support vector machine model,

\[\hat{f}(x) = \text{sign} \left(\sum_{i=1}^{l} y_i \alpha_i^* k(x_i, x) - b^* \right), \]

using a training algorithm based on the Lagrangian dual,

\[\alpha^* = \arg \max_{\alpha} \phi'(\alpha) = \arg \max_{\alpha} \left(\sum_{i=1}^{l} \alpha_i - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} y_i y_j \alpha_i \alpha_j k(x_i, x_j) \right), \]

subject to the constraints,

\[\sum_{i=1}^{l} y_i \alpha_i = 0, \]
\[C \geq \alpha_i \geq 0, \]

with \(i = 1, \ldots, l. \)
Gradient Ascent

In order to train SVMs we need to solve the optimization problem

$$\overline{\alpha}^* = \operatorname{arg\ max}_{\overline{\alpha}} \phi'(\overline{\alpha}).$$

Perhaps the most straightforward implementation of the Lagrangian dual optimization problem is by gradient ascent.

Formally, let h be a differentiable function with respect to $\overline{x} \in \mathbb{R}^n$, then the gradient of h is defined as,

$$\nabla h = \left(\frac{\partial h}{\partial x_1}, \ldots, \frac{\partial h}{\partial x_n} \right).$$

We often write,

$$\nabla_i h = \frac{\partial h}{\partial x_i},$$

for the i^{th} component of ∇h with $i = 1, \ldots, n$.

Now, $\nabla h(\overline{y})$ with $\overline{y} \in \mathbb{R}^n$ is a vector that points in the direction of the largest increase of h at point \overline{y}. We can use this to find the maximum of our dual ϕ' by simply following the gradient until the gradient becomes zero \Rightarrow gradient ascent.
let $\eta \in [0, 1]$
$\bar{\alpha} \leftarrow 0$

repeat
 $\bar{\alpha}_{\text{old}} \leftarrow \bar{\alpha}$
 for $i = 1$ to l do
 $\alpha_i \leftarrow \alpha_i + \eta \nabla_i \phi'(\bar{\alpha})$
 end for
until $\bar{\alpha} - \bar{\alpha}_{\text{old}} \approx 0$
return $\bar{\alpha}$

The gradient ascent algorithm.
Gradient Ascent

Observation: We have treated our optimization problem as an unconstrained optimization problem ignoring the constraints,

\[
\sum_{i=1}^{l} y_i \alpha_i = 0, \\
C \geq \alpha_i \geq 0,
\]

with \(i = 1, \ldots, l\). The first constraint is due to the optimization of the offset term \(b\) and the second constraint is the soft-margin constraint for the Lagrangian multipliers.

We can dispense with the first constraint by simply setting \(b = 0\).

The second constraint is easily implemented as a set of box constraints on \(\alpha\),

\[
\alpha_i \leftarrow \min \left\{ C', \max \left\{ 0, \alpha_i + \eta \nabla_i \phi'(\alpha) \right\} \right\}.
\]
The Kernel-Adatron

let $D = \{(\overline{x}_1, y_1), (\overline{x}_2, y_2), \ldots, (\overline{x}_l, y_l)\} \subset \mathbb{R}^n \times \{+1, -1\}$

let $\eta > 0$

let $C' > 0$

let $b = 0$

$\overline{\alpha} \leftarrow 0$

repeat

$\overline{\alpha}_{\text{old}} \leftarrow \overline{\alpha}$

for $i = 1$ to l do

$\alpha_i \leftarrow \min \left\{C', \max \left\{0, \alpha_i + \eta - \eta y_i \sum_{j=1}^{l} y_j \alpha_j k(\overline{x}_j; \overline{x}_i)\right\}\right\}$

end for

until $\overline{\alpha} - \overline{\alpha}_{\text{old}} \approx 0$

return $\overline{\alpha}, b$

The Kernel-Adatron algorithm.