Consider this binary classification data set:

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
We can describe this data set with the following decision tree:
Decision Trees

All observations in the data set are perfectly described by the tree.

Question: How do we build such trees?
Entrophy

The key to decision tree induction is the notion of entropy,

\[
\text{Entropy} \equiv \text{measure of randomness}
\]

Observation: Entropy is at its maximum if we have a 50%-50% split among the positive and negative examples.

Observation: Entropy is zero if we have all positive or all negative examples.
We can apply entropy to measure the “randomness” of our data set.

Let

\[D = \{(\vec{x}_1, y_1), \ldots, (\vec{x}_l, y_l)\} \subseteq A^n \times \{+1, -1\} \]

and

\[l_+ = |\{(\vec{x}, y) | (\vec{x}, y) \land y = +1\}| \]
\[l_- = |\{(\vec{x}, y) | (\vec{x}, y) \land y = -1\}| \]

then

\[Entropy(D) = -\frac{l_+}{l} \log_2\left(\frac{l_+}{l}\right) - \frac{l_-}{l} \log_2\left(\frac{l_-}{l}\right) \]

Now let \(p_+ = \frac{l_+}{l} \) and \(p_- = \frac{l_-}{l} \) then

\[
Entropy(D) = -p_+ \log_2(p_+) - p_- \log_2(p_-)
\]
Def: We say that an attribute is *informative* if, when the training set is split according to its attribute values, the overall entropy in the training data is reduced.

Example: Consider the attribute $A_k = \{v_1, v_2, v_3\}$ then the split D_{v_i} of D only contains instances that have value v_i of attribute A_k,

$$D_{v_i} = \{(x, y) \mid x_k = v_i\}$$

We can now split the data set D according to the values of attribute A_k,

If $E_{A_k} < E_D$ then attribute A_k is informative.
Information Gain

Rather than using the arithmetic mean we use the weighted mean,

\[\text{Entropy}(A_k) = \sum_{v_i \in A_k} \frac{|D_{v_i}|}{|D|} \text{Entropy}(D_{v_i}) \]

Formally we define information gain as,

\[\text{Gain}(D, A_k) = \text{Entropy}(D) - \text{Entropy}(A_k) \]

or

\[\text{Gain}(D, A_k) = \text{Entropy}(D) - \sum_{v_i \in A_k} \frac{|D_{v_i}|}{|D|} \text{Entropy}(D_{v_i}) \]

⇒ The larger the difference the more informative an attribute!
Information Gain

We can now use the gain to build a decision tree top-down (greedy heuristic).

Example: Consider our tennis data set with

Wind = \{Weak, Strong\}

Then

\[D = [9+, 5-] \]

\[D_{\text{Weak}} = [6+, 2-] \]

\[D_{\text{Strong}} = [3+, 3-] \]

Finally,

\[
\text{Gain}(D, \text{Wind}) = \text{Entropy}(D) - \sum_{v_i \in A_k} \frac{|D_{v_i}|}{|D|} \text{Entropy}(D_{v_i})
\]

\[
= .94 - \frac{8}{14} \cdot .811 - \frac{6}{14} \cdot 1
\]

\[
= .048
\]
Similarly, for Outlook, Humidity, and Temp,

\[
\begin{align*}
\text{Gain}(D, \text{Outlook}) &= .246 \\
\text{Gain}(D, \text{Humidity}) &= .151 \\
\text{Gain}(D, \text{Temp}) &= .029
\end{align*}
\]

⇒ This means the *Outlook* will become our root more.
Information Gain

Which attribute should be tested here?

\[S_{\text{sunny}} = \{D1, D2, D8, D9, D11\} \]

\[
\text{Gain} (S_{\text{sunny}}, \text{Humidity}) = 0.970 - \left(\frac{3}{5} \right) 0.0 - \left(\frac{2}{5} \right) 0.0 = 0.970
\]

\[
\text{Gain} (S_{\text{sunny}}, \text{Temperature}) = 0.970 - \left(\frac{2}{5} \right) 0.0 - \left(\frac{2}{5} \right) 1.0 - \left(\frac{1}{5} \right) 0.0 = 0.570
\]

\[
\text{Gain} (S_{\text{sunny}}, \text{Wind}) = 0.970 - \left(\frac{2}{5} \right) 1.0 - \left(\frac{3}{5} \right) 0.918 = 0.019
\]
Information Gain

Decision Tree Induction

Basic Algorithm:
1. \(A \leftarrow \) the "best" decision attribute for a node \(N \).
2. Assign \(A \) as decision attribute for the node \(N \).
3. For each value of \(A \), create new descendant of the node \(N \).
4. Sort training examples to leaf nodes.
5. IF training examples perfectly classified, THEN STOP.
 ELSE iterate over new leaf nodes.