Programming languages are used to specify computations – that is, computations are the meaning/semantics of programs.

Read Chap 3
Consider the simple language of expressions:

\[
G: \quad \langle \text{Exp} \rangle^* ::= \langle \text{Exp} \rangle + \langle \text{Exp} \rangle \\
| \quad \langle \text{Exp} \rangle \times \langle \text{Exp} \rangle \\
| \quad a \\
| \quad b \\
| \quad c
\]

When we write the sentence \(a + b \) we can build the parse tree:

We can say that this parse tree represents the computation \(a + b \).

If we let \(a \) and \(b \) be variables, then the parse tree gives us a procedure to compute \(a + b \) by starting at the leaves of the tree: (1) lookup the values of the variables (2) pass the values up along the parse tree branches (3) use the values to compute the value of the + operator.
Now consider the sentence $a + b \times c$, for this sentence we can construct two parse trees:

![Diagram of two parse trees]

The grammar G is ambiguous

Even though both parse trees derive the same terminal string, the computations they represent are very different:

1. left tree – first compute the product, then the addition
2. right tree – first compute the addition, then the product

Since we had written the original sentence without parentheses the left parse tree represents the intended computation according to algebraic conventions.

However, from a machine point of view, there is no way of knowing which parse tree to pick…
...we need additional information: **operator precedence**

Operator precedence means that some operators bind tighter than others, e.g. * binds tighter than +.

We can build operator precedence right into our grammar:

\[
G' : \langle AddExp \rangle^* ::= \langle AddExp \rangle + \langle AddExp \rangle \\
| \quad \langle MulExp \rangle \\
\langle MulExp \rangle ::= \langle MulExpr \rangle \times \langle MulExp \rangle \\
| \quad a \quad b \quad c
\]

Let’s try our problematic sentence \(a + b \times c \), only one parse tree is possible:

This is the only parse tree we can build, therefore, the grammar \(G' \) is not ambiguous.
However, our new grammar still has a problem, consider the sentence a+b+c; here we have two possible parse trees:

\[
G' : \text{<AddExp>} ::= \text{<AddExp>} + \text{<AddExp>}
\]
\[
| \quad \text{<MulExp>}
\]
\[
\text{<MulExp>} ::= \text{<MulExpr>} \ast \text{<MulExp>}
\]
\[
| \quad \text{a} \quad \text{b} \quad \text{c}
\]

The grammar G’ is ambiguous
Again, our grammar is ambiguous because the computation specified by the sentence \(a+b+c\) can be represented by two different parse trees.

We need more information!

There is one more algebraic property we have not yet explored – associativity

Most algebraic operators, including the + operator, are left-associative.

We can rewrite our grammar to take advantage of this additional information:

\[
G': \quad <E>* \ ::= \ <E> \ + \ <T> \ | \ <T> \\
 <T> \ ::= \ <T> \ * \ <P> \ | \ <P> \\
 <P> \ ::= \ a \ | \ b \ | \ c
\]
Let’s try our sentence a+b+c again with grammar $G’’$:

$$G’’: \quad <E>^* :: = <E> + <T> \mid <T>$$

$$<T> :: = <T> * <P> \mid <P>$$

$$<P> :: = a \mid b \mid c$$

There is no other way to derive this string from the grammar and thus the grammar is not ambiguous.
Grammars can be ambiguous in the sense that a derived string can have multiple distinct parse trees.

By taking additional information such as associativity and precedence about the operators of a language into account we can construct grammars that are not ambiguous.
Given the following grammar,

\[
G' : \quad <E>^* & ::= & <E> + <T> \mid <T>
\]
\[
<T> & ::= & <T> * <P> \mid <P>
\]
\[
<P> & ::= & a \mid b \mid c
\]

Add productions to the grammar that define the right-associative operator = at a lower precedence than any of the other operators.

This new operator should allow you to write expressions such as

\[
\begin{align*}
a &= b \\
a &= b &= c \\
a &= b &= b + c
\end{align*}
\]
Grammars and Semantics

a) Show that the following grammar is ambiguous.

\[G: \quad <S> \ ::= \ <S> \ <S> \\
| \quad (\ <S> \) \\
| \quad () \]

b) Rewrite the above grammar so that it is no longer ambiguous.
Assignment #2 – see website