
CSC402 - Assignment #4
Due Wednesday 10/18

Version 3.0

Introduction

The goal is to implement an interpreter for an abstract stack machine language.
Consider the following abstract stack machine bytecode instructions:

push NUM - pushes the integer value NUM on the stack.

push VAR - pushes the integer value stored in variable VAR on the stack.

pop - pops the value on the top of the stack and discards it.

print - pops the value on the top of the stack and prints it to the terminal
screen.

store VAR - pops the value on the top of the stack and stores it in the variable
VAR.

ask MSG - asks the user for an input value using the optional message MSG
and then pushes that value on the stack.

dup - duplicate the value on the top of the stack; pop top of stack → temp,
then push temp, and push temp again.

add - pop top of stack → temp1, pop top of stack → temp2, then push value
temp2 + temp1.

sub - pop top of stack → temp1, pop top of stack → temp2, then push value
temp2 - temp1.

mul - pop top of stack → temp1, pop top of stack → temp2, then push value
temp2 * temp1.

div - pop top of stack → temp1, pop top of stack → temp2, then push value
temp2 / temp1.

equ - pop top of stack → temp1, pop top of stack → temp2, then push value
(temp2 == temp1)?1:0.

leq - pop top of stack → temp1, pop top of stack → temp2, then push value
(temp2 <= temp1)?1:0.
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jumpT LABEL - pop top of stack → temp, if temp != 0 then jump to in-
struction labeled LABEL.

jumpF LABEL - pop top of stack → temp, if temp == 0 then jump to in-
struction labeled LABEL.

jump LABEL - jump to instruction labeled LABEL.

stop MSG - halts execution with an optional message string MSG.

noop - does nothing.

Notes

• Execution halts with an error if not enough operands are available on the
stack for an operation to complete.

• The bytecode language allows for labeled instructions, e.g.,

L1:
push 1;
push 1;
sub;
dup;
print;
jumpT L1;

• The language allows for C++/Java style ’//’ comments.

Example Program

Print out the sequence of integer values 10, 9, 8,...,1:

// print out a sequence of integers
push 10;

L1:
dup;
print;
push 1;
sub;
dup;
jumpT L1;
stop "all done!";

Problems:

1. Construct a lexer and a grammar for the stack machine bytecode and
show that your generated parser works by parsing some telling examples
(examples above are sufficient).

2. Implement an interpreter for this language (Hint: you will essentially
have to construct an abstract stack machine, see the implementation of the
exp1bytecode interpreter discussed in class). Show that your interpreter
works with the above two examples.
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3. (Extra Credit) Write a program in the stack machine bytecode that asks
the user for an input value and then computes and prints the factorial
value of that input value. Your program should test to make sure that
the input value is a valid value for the factorial computation and if not it
should terminate its computation. Definitions of the factorial computation
can be found here:

http://en.wikipedia.org/wiki/Factorial

Hand in your source code together with a Jupyter Notebook that shows that
your program works. To submit your work create a zip file of your sources and
the notebook and submit it through Sakai. Assignments submitted in formats
other than Jupyter Notebooks will not be graded and a failing grade will be
recorded.
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