Computational Aspects of KD

- Data Access
 - read.csv
 - write.csv
 - edit
- Visualization
 - scatter plots
- Data Manipulation
 - attribute-oriented approach
 - observation-oriented approach
- Model Building and Evaluation
- Model Deployment
Recall that a data frame is a data table representation in R,

```r
> mammals.df
          Legs Wings Fur Feathers Mammal
1        4    no   yes     no     true
2        2   yes    no  yes    false
3        4    no    no    no     false
4        4   yes   yes    no     true
5        3    no    no    no     false
```
Data Manipulation

Attribute-oriented Approach
We can access any attribute in the mammals data frame with the $ notation.

```r
> mammals.df$Legs
[1] 4 2 4 4 3
> mammals.df$Mammal
[1] true false false true false
Levels: false true
```

R allows us to select groups of attributes with the `subset` function,

```r
> subset(mammals.df, select=Fur:Mammal)
  Fur Feathers Mammal
1  yes     no     true
2  no      yes    false
3  no      no      false
4  yes     no     true
```

```r
> subset(mammals.df, select=-Mammal)
  Legs Wings Fur Feathers
1  4     no    yes     no
2  2     yes    no      yes
3  4     no     no      no
4  4     yes    yes     no
5  3     no     no      no
```
Data Manipulation

Observation-oriented Approach
We can use the `subset` function also for observation-oriented data manipulation.

```r
> subset(mammals.df, Legs == 4)
   Legs Wings Fur Feathers Mammal
1   4   no  yes  no  true
3   4   no  no   no false
4   4    yes yes  no  true
```

Another, slightly more complicated example,

```r
> mammal.levels <- levels(mammals.df$Mammal)
> mammal.levels
[1] "false" "true"
> true.level <- mammal.levels[2]
> subset(mammals.df, Mammal == true.level)
   Legs Wings Fur Feathers Mammal
1   4   no  yes  no  true
4   4    yes yes  no  true
```
We use the library 'e1071' (don’t ask :) for building support vector machine models.

```r
> library(e1071)
```

Now we can construct a support vector machine model of our mammals data with the `svm` function,

```r
> model<-svm(Mammal ~ ., data=mammals.df, kernel="linear")
```

At this point we can evaluate our model by checking how it performs on the training set.

```r
> mammals.df$Mammal == fitted(model)
[1] TRUE TRUE TRUE TRUE TRUE
```
Model deployment means applying your model in an appropriate context. In R we use the `predict` function to compute the value of the dependent attribute for some object. Given that R is a programming language we could program appropriate functionality around the `predict` function.

```r
> independent.df <- subset(mammals.df, select=-Mammal)
> predict(model, independent.df)
   1     2     3     4     5
true false false true false
Levels: false true
```

How could we test in R whether these predictions are correct with respect to the original data set `mammals.df`?