Let’s take a look at ANN’s in R. The ‘neuralnet’ package works nicely and has a nice visual representation of the ANN’s built.

We will start building a neural network for classifying Iris flowers.
Train our ANN

load our data set
data(iris)

make sure the ANN library is available
library(neuralnet)

convert the labels into numeric labels and put them into a data frame
Species.numeric <- as.numeric(iris$Species)
iris.df <- data.frame(iris, Species.numeric)

train a neural network with two hidden nodes
net <- neuralnet(
 Species.numeric ~ Sepal.Width + Sepal.Length + Petal.Width + Petal.Length,
 iris.df,
 threshold=0.01,
 stepmax="10000",
 lifesign="none",
 hidden=2)
The data set:

```r
> iris.df[1:5,]
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species Species.numeric
 1       5.1       3.5         1.4       0.2  setosa          1
 2       4.9       3.0         1.4       0.2  setosa          1
 3       4.7       3.2         1.3       0.2  setosa          1
 4       4.6       3.1         1.5       0.2  setosa          1
 5       5.0       3.6         1.4       0.2  setosa          1
```

```r
> levels(iris.df$Species)
[1] "setosa" "versicolor" "virginica"
```
Evaluate our ANN

display the ANN
plot(net)

the training predictions from the ANN are numeric values,
turn them into labels by rounding
predicted.labels <- round(net$net.result[[1]])

plot the confusion matrix
print(table(iris.df$Species.numeric, predicted.labels))

The Confusion Matrix

<table>
<thead>
<tr>
<th>predicted.labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
</tr>
<tr>
<td>1 50 0 0</td>
</tr>
<tr>
<td>2 0 49 1</td>
</tr>
<tr>
<td>3 0 1 49</td>
</tr>
</tbody>
</table>
ANN in R

Error: 0.839655 Steps: 90430