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What is Data Mining?

Data mining is the application of machine learning techniques to

large databases in order to extract hidden knowledge.

(KDD — Knowledge Discovery in Databases)



What is Machine Learning?

Programs that get better with ezxperience given a task and some

performance measure.

Most common is inductive learning, that is learning from a set of

positive and negative examples.
e Learning to classify customers
e Learning to recognize spoken words

e Learning to play board games



What is Knowledge?

e Structural descriptions of data (transparent)
— If-then-else rules
— Decision trees

— First-order logic theories

e Models of data (non-transparent)
— Neural networks
— Clustering (self-organizing maps, k-Means)

— Naive-Bayes classifiers



Data Mining Today

e Today’s data mining tools are “single-table” oriented —

attribute-value oriented.

e Basic assumption is that objects of a particular problem
domain can be represented by a fized set of attributes.



Attribute-Value Data Mining: Classification
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Attribute-Value Data Mining: Classification

Given:

e A data universe X, here

X = ShapeLeftx SizeLeftxColorLeftxShapeRightx SizeRightxColorRight

e A sample set S, where S C X
e A classification function c: X — {true, false}, here

DiagramPosition: X — {left, right}
e Labeled training examples D, where
D = {(s,c(s))|s € S}

Use D to determine:

e A function or hypothesis ¢’ such that ¢'(z) ~ ¢(x) for all z € X.



Attribute-Value Data Mining: Decision Trees

e In decision tree learning the hypothesis ¢’ is represented as a

tree.

e We can view decision tree learning as a heuristic search over all

possible decision trees for the “best” tree.

A decision tree for our diagram problem would look like this:
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A More Complicated Problem Domain
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Difficult to represent with a fixed set of attributes:

e The scenes do not contain fixed numbers of objects.

e No inherent order of the objects in the scenes — difficult to express
relations between objects.

Even if one forces an attribute-value representation — lots of “null”

values in the table and exponential explosion of attributes.



First-Order Equational Logic

Equational logic is the logic of substituting equals for equals with
algebras as models and term rewriting as the operational semantics.

theory LIST is
sort List .
sort ListElement .
subsort ListElement < List .

op _,_ : ListElement List -> List .
op length : List -> Int .

var E : ListElement .
var L : List .

eq length(E) = 1 .

eq length(E,L) = 1 + length(L)
end
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First-Order Equational Logic
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theory DIAGRAMS is

eq diagram{ size(cl,medium)
size(c2,small)
size(t1l,small) pointing(tl,up)
size(t2,medium) pointing(t2,up)
in(tl,c1) } = left .

eq diagram{ size(cl,small)
size(tl,large) pointing(tl,up)
in(c1l,t1) } = right .
end
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First-Order Equational Logic

e First-order equational logic allows us to describe the diagrams

in a very natural way.

e We can easily capture all the important aspects of object
existence, characteristics, and relationships.

Why choose Equational Logic as the Representation Language?
e Precise semantics.
e Logical reasoning capabilities.

e Well developed module and type systems.
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Deductive vs. Inductive Logic

e In (deductive) logic we deduce specific facts from general
theories.

e In inductive logic we induce general theories from specific facts.

Deduction

Theories Facts

Induction
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Inductive Equational Logic

e In inductive equational logic we induce equational theories

(hypotheses) from equations which represent the facts.

e Inductive equational logic admits the use of domain theories or
background knowledge.

= Inductive equational logic allows us to generalize from given
facts and background knowledge.

= In this setting we can consider inductive reasoning in equational

logic to be data mining over first-order structures.
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Inductive Equational Logic

Given:

e An observation universe O, here

O = {d| d is a left or right diagram description}.

e A fact theory F', where ' C O.

e A (possibly empty) background theory B.

Use F' and B to determine hypothesis H:

e Use the relation H U BF f, for all f € F, to estimate an H
such that H U B F o for all o € O.

e HU B f means fact f is derwable from H and B.
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Inducing a Hypothesis
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theory DIAGRAM-HYPOTHESIS is

eq diagram{ D } = left
if outside-is-circle(get-in(D)) and
inside-is-triangle(get-in(D))

eq diagram{ D } = right
if outside-is-triangle(get-in(D)) and

inside-is-circle(get-in(D)) .
end

NOTE: the “helper functions” are elements of background theory B.
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Implementation of Inductive Equational Logic

e Determining the hypothesis H can be considered a search over
all possible hypotheses for the “best” hypothesis.

e Typically, the “best” hypothesis is the shortest theory from
which all the facts in F' can be derived — the theory that
“explains” all the facts.

e We have implemented an experimental inductive equational
logic programming system which utilizes evolutionary search
techniques to search the hypotheses space for the “best”
hypothesis.

e Evolutionary algorithms perform global searches rather than
local, greedy searches, this results in very stable search results
in the presence of noise in the fact theories.

e On the down side, evolutionary searches tend to be slow.
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Mining Program Observations

e An interesting application of this technology is the mining of
program observations or tests.

e Given a set of observations, we can construct a hypothesis that
describes the behavior of the program in very concise terms.

e In general, it would be extremely difficult to capture program
behavior in an attribute-value approach.

= Reverse Engineering

= Software Testing
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Example: Even Predicate

Find a hypothesis describing the behavior of the predicate even:

theory EVEN-OBSERVATIONS is

sort Int .

op 0 : => Int .

op s : Int -> Int .

op even : Int -> Bool .

eq even(0) = true .

eq even(s(s(0))) = true .

eq even(s(s(s(s(0))))) = true .

eq even(s(0)) = false .

eq even(s(s(s(0)))) = false .

eq even(s(s(s(s(s(0)))))) = false .

end
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Example: Even Predicate

Hypothesis:

theory EVEN is

sort Int .

op 0 : => Int .

op s : Int -> Int .

op even : Int -> Bool .
var X : Int .

eq even(s(s(X))) = even(X) .
eq even(0) = true .

end
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Example: Stack

Find a hypothesis describing the behavior of a stack module:

theory STACK-OBSERVATIONS is

sorts Stack Element .

ops a b ¢ d: -> Element .

op v : -> Stack .

op top : Stack -> Element .

op pop : Stack -> Stack .

op push : Stack Element -> Stack .

eq top(push(v,a)) = a .

eq top(push(push(v,a),b)) = b .

eq top(push(push(v,b),a)) = a

eq top(push(push(v,d),c)) = c

eq pop(push(v,a))= v .

eq pop(push(push(v,a),b)) = push(v,a)
eq pop(push(push(v,b),a)) = push(v,b)
eq pop(push(push(v,d),c)) = push(v,d)

end
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Example: Stack

Hypothesis:

theory STACK is

sorts Stack Element

op top :

op pop :
op push :

var S :
var E :

eq top(push(S,E))
eq pop(push(S,E))

end

Stack -> Element .
Stack -> Stack .

Stack .
Element .

n
0 I«

Stack Element -> Stack .
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Summary

e Today’s attribute-value data mining tools cannot capture the
rich structure inherent in some interesting problem domains.

e Moving from an attribute-value representation to a first-order
representation solves many of these representation problems.

e Equational logic is particularly well suited as a representation
language due to its concise semantics and its well developed
module and type systems.

e Our current, experimental implementation of inductive
equational logic uses evolutionary search techniques and tends
to be robust even in the presence of noise.

e Next steps include the move to a more efficient implementation
based on C++ and the investigation of some large real-world
problems.
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