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Abstract

This is an introduction to the philosophy and use of OBJ, emphasizing its operational semantics,
with aspects of its history and its logical semantics. Release 2 of OBJ3 is described in detail, with
many examples. OBJ is a wide spectrum first-order functional language that is rigorously based
on (order sorted) equational logic and parameterized programming, supporting a declarative style
that facilitates verification and allows OBJ to be used as a theorem prover.

Order sorted algebra provides a notion of subsort that rigorously supports multiple inheritance,
exception handling and overloading. Parameterized programming gives powerful support for
design, verification, reuse, and maintenance, using two kinds of module: objects to encapsulate
executable code, and in particular to define abstract data types by initial algebra semantics;
and (loose) theories to specify both syntactic and semantic properties of modules. Each kind
of module can be parameterized, where actual parameters may be modules. For parameter
instantiation, a view binds the formal entities in an interface theory to actual entities in a
module, and also asserts that the target module satisfies the semantic conditions of the interface
theory. Module expressions allow complex combinations of already defined modules, including
sums, instantiations, and transformations; moreover, evaluating a module expression actually
constructs the described software (sub)system from the given components. Default views can
greatly reduce the effort of instantiating modules, by allowing obvious correspondences to be
left out. We argue that first-order parameterized programming includes much of the power of
higher-order programming, in a form that is often more convenient.

Although OBJ executable code normally consists of equations that are interpreted as rewrite
rules, OBJ3 objects can also encapsulate Lisp code, e.g., to provide efficient built-in data types, or
to augment the system with new capabilities; we describe the syntax of this facility, and provide
some examples. In addition, OBJ provides rewriting modulo associative, commutative and/or
identity equations, as well as user-definable evaluation strategies that allow lazy, eager, and
mixed evaluation strategies on an operator-by-operator basis; memoization is also available on
an operator-by-operator basis. In addition, OBJ3 supports the application of equations one at a
time, either forwards or backwards; this is needed for equational theorem proving. Finally, OBJ
provides user-definable mixfix syntax, which supports the notational conventions of particular
application domains.

1 Introduction

This paper motivates and describes the use of OBJ, based on Release 2.04 of the OBJ3 system. OBJ3 is the
latest in a series of OBJ systems, each of which has been rigorously based upon equational logic; however,
the semantic basis of OBJ is not developed here in full detail. The OBJ3 system is implemented in Common
Lisp, and is based on ideas from order sorted algebra and parameterized programming. OBJ3 provides mixfix
syntax, flexible subsorts, parameterized modules, views, and rewriting modulo associativity, commutativity,
and/or identity. With its module database and its ability to incorporate Lisp code, this provides a very
flexible and extensible environment that is convenient for specification and rapid prototyping, as well as for
building new systems, such as experimental languages and theorem proving environments. For example,
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OBJ3 has been used for building FOOPS, an object oriented specification and programming system [74, 87],
the Eqlog system [71, 72, 25] for equational logic (or relational) programming, OOZE [3], an object oriented
specification language influenced by Z [142], the 20BJ metalogical framework theorem prover [81], and
TOOR [130], a system for tracing requirements.

OBJ has been used for many applications, including debugging algebraic specifications [77], rapid pro-
totyping [69], defining programming languages in a way that directly yields an interpreter (see Appendix
Section C.2, as well as [79] and some elegant work of Peter Mosses [120, 121]), specifying software systems
(e.g., the GKS graphics kernel system [28], an Ada configuration manager [40], the MacIntosh QuickDraw
program [126], and OBJ itself [20]), hardware specification, simulation, and verification (see [144] and Section
4.8), specification and verification of imperative programs [66], specification of user interface designs [60, 58],
and theorem proving [53, 66, 59]; several of these were done under a UK government grant. OBJ has also
been combined with Petri nets, thus allowing structured data in tokens [5], and was used to verify compilers
for parallel programming languages in the ESPRIT sponsored PROCOS project [137, 138]. In addition, OBJ
serves as a programming language for the massively parallel Rewrite Rule Machine, which executes rewrite
rules directly [63, 152, 106, 75, 107, 2, 54, 1]; in fact, given equal silicon floorspace and development effort,
OBJ on such a machine could out-perform a conventional language on a conventional machine, because of the
direct concurrent execution of rewrite rules. Some examples using OBJ3 for theorem proving and hardware
verification from [51] and [59] are given in Appendix Section C.4. In [66], OBJ3 is used for teaching the
semantics of imperative programming languages, and all the proofs in [66] are actually executable OBJ3
programs; see [109] for a more detailed discussion of the educational uses of OBJ.

1.1 A Brief History of OBJ

OBJ was designed in 1976 by Goguen [43], using “error algebras” to extend algebraic abstract data type
theory with error handling and partial functions; this first design also used ideas from Clear [8, 10] for
parameterized modules, thus giving birth to parameterized programming. The first implementations of OBJ
were done from 1977 to 1979 at UCLA by Joseph Tardo and Joseph Goguen. OBJO [45] was based on unsorted
equational logic, while OBJT used error algebras plus an “image” construct for parameterization [148, 82].
David Plaisted implemented OBJ1, building on OBJT during 1982-83 at SRI, based on theoretical and
design work carried out with Joseph Goguen and José Meseguer; improvements of OBJ1 over OBJT included
rewriting modulo associativity and/or commutativity, hash coded memo functions, the use of theories with
loose semantics as well as objects with initial semantics, and new interactive features [77] which made the
system more convenient for users.

OBJ2 [35, 36] was implemented using parts of OBJ1 during 1984-85 at SRI by Kokichi Futatsugi and
Jean-Pierre Jouannaud, following a design in which José Meseguer and Joseph Goguen also participated,
based on order sorted algebra [44, 76, 62, 73, 141] rather than error algebra; also, OBJ2 provided Clear-like
parameterized modules, theories, and views, although not in full generality. Another influence on OBJ3’s
design and implementation was the HISP system [38, 39, 30] of Kokichi Futatsugi.

OBJ3 was first developed at SRI by Timothy Winkler, José Meseguer, Joseph Goguen, Claude and Hélene
Kirchner, and Aristide Megrelis; Release 2 was developed at SRI by Timothy Winkler, Patrick Lincoln, José
Meseguer, and Joseph Goguen, and later extended by Winkler and Goguen at the Programming Research
Group of the Oxford University Computing Lab; version 2.04 includes further small bug fixes made at
Oxford. Although the syntax of OBJ3 is close to that of OBJ2, it has a different implementation based on a
simpler approach to order sorted rewriting [101], and it also provides much more sophisticated parameterized
programming. OBJ2 and OBJ3 can be seen as implementations of Clear [8, 10], where the chosen logic is
order sorted equational logic.

Other implementations of OBJ1 include UMIST-OBJ from the University of Manchester Institute of
Science and Technology [20], Abstract Pascal from the University of Manchester [105], and MC-OBJ from
the University of Milan [14]; the first two are written in Pascal and the third in C. In addition, there is a
Franz Lisp OBJ2 done at Washington State University [143]. UMIST-OBJ has been made available as a
proprietary software product from Gerrard Software, under the name ObjEx.

OBJ has been extended in many directions, including logic (or relational) programming (the Eqglog system
[71, 72, 25]), object oriented programming (the FOOPS system [74, 87]), object oriented specification (OOZE
[3]), requirements tracing (TOOR [130]), higher-order functional programming [97, 110], and LOTOS-style
specification for communication protocols [127, 128].

Recent developments within the OBJ community include CafeOBJ, Maude, and CASL. CafeOBJ [26, 27]
is being built at the Japan Institute of Science and Technology under the direction of Prof. Kokichi Futatsugi;
it extends OBJ3 with hidden algebra [55, 80, 68, 67] for behavioral specification, and with rewriting logic
[113, 114] for applications programming. Maude [112, 16] is being built at SRI International under the



direction of Dr. José Meseguer; it extends OBJ with rewriting logic, and has been successfully used for
metaprogramming, reflection, and algorithm implementation [17, 18]. CASL [19] is being developed by a
European consortium called CoFI, whose members include Maura Cerioli, Till Mossakowsky, Peter Mosses,
Don Sannella, Bernd Krieg-Bruckner, Michel Bidoit, and Andre Tarlecki; this system is loosely based on OBJ
ideas, including parameterized programming, but is more oriented towards specification than verification and
prototyping, and is intended to support experimentation with a variety of logics. As this document is being
finished, a system called Kumo is being installed at UCSD. Kumo is a proof assistant for first order hidden
logic, that also generates websites to document the proofs obtained [65, 64, 78, 60]; it greatly extends the
theorem proving power of OBJ, in the logics supported, in the level of automation obtained, and in the user
interface, including proof documentation.

1.2 A Brief Summary of Parameterized Programming

OBJ has three kinds of entity at its top level: objects, theories, and views. An object encapsulates executable
code, while a theory defines properties that may (or may not) be satisfied by another object or theory. Both
objects and theories are modules. A view is a binding of the entities declared in some theory to entities
in some other module, and also an assertion that the other module satisfies the properties declared in the
theory. Theories and views are found in no other implemented language with which we are familiar; however,
Standard ML has been influenced by this approach.

Modules can import other previously defined modules, and therefore an OBJ program is conceptually a
graph of modules. Modules have signatures that introduce new sorts' and new operators? among both new
and old sorts. In addition, variables with declared sorts are introduced. Terms are built up from variables
and operators, respecting their sort declarations. Modules can be parameterized, and parameterized modules
use theories to define both the syntax and the semantics of their interfaces. Views indicate how to instantiate
a parameterized module with an actual parameter.

This kind of module composition is, in practice, more powerful than the purely functional composition
of traditional functional programming, because a single module instantiation can compose together many
different functions all at once, in complex ways. For example, a parameterized complex arithmetic module
CPXA can easily be instantiated with any of several real arithmetic modules as actual parameter:

e single precision reals, CPXA [SP-REAL],
e double precision reals, CPXA[DP-REAL],

¢ multiple precision reals, CPXA [MP-REAL],

where SP-REAL, DP-REAL, and MP-REAL are modules for single-precision, double-precision, and multiple pre-
cision floating point arithmetic. Each instantiation may involve substituting dozens of functions into the
definitions of dozens of other functions. While something similar is possible in higher-order functional
programming by coding up modules as records, it seems much less natural, particularly if this encoding
also specifies the semantics of the interface of CPXA. Furthermore, parameterized programming allows the
logic to remain first-order, so that understanding and verification can be simpler. Section 4.7 shows that
many typical higher-order functional programming techniques can be implemented with OBJ parameterized
modules, often with essentially the same flexibility and with greater clarity, while Section 4.8 shows that a
typical application of higher-order functions, namely hardware verification, is readily captured in the simpler
formalism.

1.3 An Overview of this Document

OBJ3’s top level accepts declarations (for objects, theories and views), and commands to reduce terms,
to show various status and structural information, to set various conditions, and to do various actions.
A reduction evaluates a given term with respect to a given object, and OBJ supports reduction modulo
associativity, commutativity, and/or identity. Section 2 describes objects, Section 4.1 describes theories,
Section 4.2 describes views, and Section 2.3.1 describes reduction. The show, set and do commands are
discussed in various places, but are collected in Appendix A. OBJ’s approach to imported modules and to
built-in sorts and operators is described in Section 3, with many further details of the latter in Appendix

1Here and hereafter, we generally use the word “sort” instead of “type” because of the very many different meanings that
have been assigned to the word “type.”

2 Although we generally use the word “operator,” in this paper it usually means “function” because we are dealing with a
functional language.



D. Built-ins can be useful, for example, in adding new built-in data types to OBJ, or in extending or
modifying OBJ in various other ways. Section 5 discusses how to apply rewrite rules one at a time, forwards
or backwards, which is needed for theorem proving. Section 6 tries to discuss what OBJ is and is not.
Appendix A gives some hints on how to use OBJ, Appendix B gives OBJ3’s syntax, and Appendix C gives
many examples. We have tried to give a fairly comprehensive bibliography of papers that use OBJ.
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Dr. Claude Kirchner for his work on the pattern matching routines and rule generation for OBJ3; Dr. Hélene
Kirchner for her work on the rule generation for OBJ3; Dr. Adolfo Socorro for help checking the details of
OBJ3 syntax; Dr. Patrick Lincoln for help with the routines for rewriting modulo equations used in Release
2 of OBJ3; Mr. Aristide Megrelis for his work on the OBJ3 parser; and several generations of students at
Oxford and UCSD for their feedback on using OBJ3 in courses on theorem proving, and on the semantics
of programming languages [57]. Much of this paper is based upon [47, 52, 86] and [35].

2 Objects

The most important OBJ unit is the object?, which encapsulates executable code. Syntactically, an object
begins with the keyword obj and ends with endo*. The name of the object occurs immediately after the obj
keyword; following this comes is, and then the body of the object. For unparameterized objects, the name
is a simple identifier, such as STACK-OF-INT, PHRASE or 0BJ14. Parameterized objects have an interface
specification in place of a simple name, as discussed in Section 4. Schematically, the form is

obj (ModId) is

where (ModId) is a metasyntactic symbol for a module identifier, by convention all upper case, possibly
including special characters; however, this convention is not enforced, and any character string not containing
blanks (i.e., spaces) or special characters can be used. OBJ keywords are lower case.

2.1 Strong Sorting and Subsorts

We believe that languages should have strong but flexible “type systems.” Among the advantages of “strong
typing,” which of course we call strong sorting, are: to catch meaningless expressions before they are
executed; to separate logically and intuitively distinct concepts; to enhance readability by documenting these
distinctions; and, when the notion of subsort is added, to support multiple inheritance, overloading (a form
of subsort polymorphism), coercions, multiple representations, and error handling, without the confusion,
and lack of semantics, found in many programming languages (see [73] for a more detailed discussion of
these issues). In particular, overloading can allow users to write simpler expressions, because context can
often determine which possibility is intended. Of course, strong sorting may require additional declarations,
but with a modern editor, it is little trouble to insert declarations, and many could even be generated
automatically.

Ordinary unsorted logic offers the dubious advantage that anything can be applied to anything; for
example,

first-name (not (age(3 * false))) iff gbirth-place (temperature(329))

30Objects in this sense are not very closely related to objects in the sense of object-oriented programming; rather, they
provide executable algebraic specifications for abstract data types.

40BJ3 has the uniform convention that ending keywords can be of the form “end<x>” where “<x>” is the first letter, or first
two letters, of the corresponding initial keyword. The initial keyword spelled backwards, as in jbo, is an archaic form for some
keywords preserved from earlier versions of OBJ.



is a well formed expression. Although beloved by Lisp and Prolog hackers, unsorted logic is too permissive.
Unfortunately, the obvious alternative, many sorted logic, is too restrictive, because it does not support
overloaded function symbols, such as _+_ for integer, rational, and complex numbers. Moreover, strictly
speaking, an expression like (-4 / -2)! does not even parse (assuming that factorial only applies to
natural numbers), because (-4 / -2) looks to the parser like a rational rather than a natural. In Section
2.3.3 below, we show that order sorted algebra with retracts provides sufficient expressiveness, while still
banishing truly meaningless expressions.

Let us now be specific. Sorts are declared in OBJ3 with the syntax
sorts (SortldList) .
where (SortIdList) is a list of (SortId)s, as in
sorts Nat Int Rat .
When there is just one sort, it may be more fluent to write
sort {(Sortld) .

However, sort and sorts are actually synonymous.

Warning: Sort declarations must be terminated with a blank followed by a period.

Order sorted algebra, sometimes abbreviated OSA in the following, is designed to handle cases where
things of one sort are also of another sort (e.g., all natural numbers are also rational numbers), and where
operators or expressions may have several different sorts. The essence of order sorted algebra is to provide a
subsort partial ordering among sorts, and to interpret it semantically as subset inclusion among the carriers
of models; for example, Nat < Rat means that My.s C Mpat, where M is a model, and M, is its set of
elements of sort s. (Note that OBJ uses < instead of < simply for typographical convenience.) OSA also
supports multiple inheritance, in the sense that a given sort may have more than one distinct supersort.

Although many sorted algebra has been quite successful for the theory of abstract data types, it can
produce some very awkward code in practice, primarily due to difficulties in handling erroneous expressions,
such as dividing by zero in the rationals, or taking the top of an empty stack. In fact, there is no really
satisfying way to define either rationals or stacks with (unconditional) many sorted algebra: [83] and [29]
contain some examples which show just how awkward things can get, and [73] actually proves that certain
kinds of specifications cannot be expressed at all in many sorted equational logic.

OSA overcomes these obstacles with its subsorts and overloaded operators, and it allows functions to
be total that would otherwise have to be partial, by restricting them to a subsort. Two pleasant facts are
that OSA is only slightly more difficult than many sorted algebra, and that essentially all results generalize
without difficulty from the many sorted to the order sorted case. Although this paper omits the technical
details, OSA is a rigorous mathematical theory. OSA was originally suggested by Goguen in 1978 [44],
and is further developed in [76] and [73]; some alternative approaches have been given by Gogolla [41, 42],
Mosses [122], Poigne [133, 134], Reynolds [135], Smolka et al. [140, 141], Wadge [150], and others. A survey
as of 1993 appears in [61], along with some new generalizations. Meseguer has recently proposed a new
generalization, called membership equational logic [115].

OBJ3 directly supports subsort polymorphism, which is operator overloading that is consistent under
subsort restriction (this is further discussed in Section 2.2). By contrast, languages like ML [91], Hope [13]
and Miranda [149] support parametric polymorphism, following ideas of Strachey [147] as further developed
by Milner [119]. OBJ3’s parameterized modules also provide a parametric capability, but instantiations are
determined by views, rather than by unification; see Section 4.7 for further discussion.

The basic syntax for a subsort declaration in OBJ3 is

subsort (Sort) < (Sort) .

which means that the set of things having the first (Sort)® is a subset (not necessarily proper) of the things
having the second (Sort). Similarly,

subsorts (SortList) < (SortList) < ...

5Note that (Sort)s differ from (Sortld)s in allowing qualification by module name; see Appendix B for details of the notation
for syntax that is used in this paper.



means that each sort in the first (SortList) is a subsort of each sort in the second (SortList), and so on.
(Actually subsort and subsorts are synonyms.)

Warning: The elements of each list must be separated by blanks, and the declaration must be terminated
with a blank followed by a period. OBJ3 complains if any sort in a subsort declaration doesn’t appear in
a previous sort declaration, or if there are cycles in the graph of the subsort relation. Subsort cycles may
produce strange behavior.

2.2 Operator and Expression Syntax

We believe it is worth some extra implementation effort and processing time to support syntax that is as
flexible, as informative, and as close as possible to users’ intuitions and standard usage in particular problem
domains. Thus, users of OBJ can define any syntax they like for operators, including prefix, postfix, infix, and
most generally, mixfix; this is similar to ECL [15]. Obviously, there are many opportunities for ambiguity
in parsing such a syntax. OBJ’s convention is that a term is well formed if and only if it has exactly one
parse, or more precisely, a unique parse of least sort; it is intended that the parser give information about
difficulties that it encounters, including multiple parses of least sort.

Warning: Due to the treatment of user-supplied operator precedence (see Section 2.4.3), the parser in
Release 2 of OBJ3 may sometimes fail to find a parse, even though an unambiguous parse exists. This can
usually be repaired by adding parentheses.

Let us now discuss operator syntax. The argument and value sorts of an operator are declared at the
same time that its syntactic form is declared. There are two kinds of syntactic form declaration in OBJ.
We call the first kind the standard form, because it defines the parenthesized-prefix-with-commas syntax
that is standard in mathematics. For example,

op push : Stack Int -> Stack .

declares syntax for terms of the form push(X,Y) of sort Stack, where X has sort Stack and Y has sort Int.
If the top operator of a term has standard syntactic form, then its arguments (i.e., its first level subterms)
must be separated by commas and be enclosed within a top level matching pair of parentheses, for the entire
term to be well formed. OBJ3’s syntax for a standard operator declaration is

op (OpForm) : (SortList) -> (Sort)

where (OpForm) is a nonempty string of characters, possibly consisting of multiple (blank-separated) to-
kens. Operators in standard form should not include the underbar character, “_” (some further syntactic
requirements for (OpForm) are discussed below).

Warning: An operator declaration must be terminated with a blank followed by a period®, and all of the
sorts (and operators — see the discussion of id declarations below) used in it must have been previously
declared.

The second kind of OBJ syntax for operator declarations is called mixfix form, and it allows declaring
arbitrary mixfix syntax. This kind of declaration uses place-holders, indicated by an underbar character, to
indicate where arguments should appear; the rest of the operator form consists of the keywords associated
with the operator. For example, the following is a prefix declaration for top as used in terms like top
push(S,5):

op top_ : Stack -> Int .

Similarly, the “outfix” form of the singleton set formation operator, as in { 4 }, is declared by
op {_} : Int -> Set .

and the infix form for addition, as in 2 + 3, is given by
op _+_ : Int Int -> Int .

while a mixfix declaration for conditional is

6An exception is if the last character is a left bracket, “1”, which will occur if there are attributes (see Section 2.4).



op if_then_else_fi : Bool Int Int -> Int .

Between the : and the -> in an operator declaration comes the arity of the operator, and after the
-> comes its value sort (sometimes called “co-arity”); the (arity, value sort) pair is called the rank of the
operator. The general syntax for mixfix form operator declarations is

op (OpForm) : (SortList) -> {(Sort)

where (OpForm) is a non-empty string of characters, possibly consisting of multiple (blank-separated) tokens,
possibly including blanks and matching pairs of parentheses. Blanks in the form have no effect when they
are contiguous to an underbar. The following shows a form with a blank:

op _is in_ : Int IntSet -> Bool .

Warning: A mixfix operator form should be neither entirely blank, nor consist of just one underbar. Also,
it must contain ezactly as many underbars as there are sorts in its arity.

The entire {OpForm) of an operator can be enclosed in parentheses. This can be used to avoid syntactic
ambiguity. For example, in the following declaration for division of rational numbers by non-zero rationals,

op (_:_) : Rat NzNat -> Rat .

failure to enclose the operator name in parentheses could cause the first “:” to be erroneously treated as
the delimiter for the (SortList) of the declaration. Such enclosing parentheses are not considered part of
the (OpForm), but rather provide a way to avoid this kind of syntactic ambiguity. The rule is that if the
first token encountered after the “op” in an operator declaration is a left parenthesis that is matched by a
right parenthesis before the delimiting “:”, then these parentheses are interpreted as delimiters, rather than
as part of the (OpForm). This does not preclude using parentheses as tokens in the syntax of an operator.
However, the first token in the syntax of an operator should never be a left parenthesis. For example, one
can declare an “apply” operator in a data type of lambda expressions with the syntax

op _(_) : Lambda Lambda -> Lambda .
Constant declarations have no underbars and have empty arity. For example,
op true : -> Bool .

Operators with the same rank but different forms can be declared together using the keyword ops; for
example,

ops zero one : —> S .
ops (_+_) (L*x.) : SS->8.
The parentheses are required in the second case, to indicate the boundary between the two forms.

Warning: op and ops are not synonymous.
Here is a simple example illustrating some of the syntax given so far; it defines strings of bits.
obj BITS is

sorts Bit Bits .
ops 0 1 : -> Bit .

op nil : -> Bits .
op _._ : Bit Bits -> Bits .
endo

A typical term over the syntax declared in this objectis 0 . 1 . 0 . nil.

Warning: The period character, “.”, is special in OBJ3, because it is used to terminate operator and

equation declarations, among other constructions (although it is not required in simple situations where the
input is self-delimiting). Sometimes you may need to enclose terms in parentheses to prevent an internal
period from being interpreted as a final period. Tokens, such as “.”, that are used to delimit syntactic units
only function as delimiters when not enclosed in parentheses.

The parse command, with syntax



parse (Term) .

can be used at the top level of OBJ3, and also inside modules, to check the parsing of terms. It causes a
fully parenthesized form of (Term) to be printed with its sort, provided it can be parsed.

When parsing fails, the system gives some diagnostic information that may help to discover the problem.
For example,

red in INT : 1 + 10 div 2 .
produces the following

No successful parse for the input:
1 + 10 div 2
partial descriptions:

_ _ _ div

1+ 10 _[div]_ 2

Two different “partial descriptions” are given of problematic tokens. In the first, the problematic tokens
are replaced by “_”. In the second, all tokens are displayed, but the problematic ones are enclosed within a
matching “_[” and “]_” pair. This information can be very useful in detecting misspelled variable names
and operator tokens. For example, the token “div” above should have been “quo”. Tokens are considered
problematic if they do not appear in any partial parse, where partial parses are generated by considering the
prefixes of each suffix of the input string. In general, this only gives approximate information. For example,
“1 + 10” is parsed as a prefix in the above expression, which may not be what the user intended.

When strong sorting is not sufficient to prevent ambiguity in a term that uses overloaded operators and
subsorts, then qualification notation can be useful. For example, to distinguish the bit 0 in the object BIT
above from the natural number zero, one can write 0.Bit and 0.Nat. Sort qualifiers can also be applied
to mixfix operators; for example, (X is in Setl or Set2).Nat could be used to distinguish a natural
number valued operator is in (as used for bags) from a truth valued operator is in (as used for sets); the
parentheses are not optional in this case.

Sometimes sort qualification doesn’t work, but module qualification does, because different instances of
the operator syntax have been introduced in different modules. For example, one might write (when X is
in Set2 do Act25).LANG, where LANG is the name of a module. Sort names can also be qualified by module
names, as in Nat .NAT, El1t.X, Elt.Y, etc. Qualification by module can be distinguished from qualification
by sort as long as distinct names are involved, which happens naturally by using the convention suggested
in this paper, that module names are all upper case, while sort names only have an upper case letter at the
beginning (but note that this convention is not enforced by OBJ3).

Warning: Complete module names must be used, and the complete names of modules that have been
created by evaluating module expressions can be surprisingly long; see Section 4.5.

Because OBJ3 is based on order sorted algebra, it supports overloading, so that the same operator
symbol can have several different ranks. For example, addition might have the following declarations:

op _+_ : Nat Nat -> Nat .
op _+_ : Rat Rat -> Rat .

When the arity sorts of one operator declaration are less than those of another for the same function symbol,
then in the models, the function interpreting the operator with smaller arity is the restriction to the smaller
arity of the function interpreting the operator with larger arity. For example, the natural number addition of
natural numbers should yield the same result as the rational number addition of the same natural numbers,
provided we have declared Nat < Rat.

The signature of a module consists of the sorts, subsort relation, and operators available in it, where
each operator has a form, arity, and value sort. Under the natural assumption of regularity, each order
sorted term has a well defined least sort, where a signature is regular iff for any operator f: w — s and
any w' < w there is a least rank (w”,s") among all f: w"” — s" satisfying w' < w"”, where the ordering of
ranks (w, s) is pointwise [62, 76]. A signature is coherent if each connected component of the set of sorts
ordered by the subsort ordering has a top element, where the connected components are the equivalence
classes under the equivalence relation obtained from the relation

sRs'iff s<s ors’' <s



by closure under transitivity. To guarantee that OBJ3 works correctly, all signatures should be regular and
coherent, and each connected component should have a top element; however, OBJ3 does not check these
assumptions.

Using subsorts, and representing list concatenation by juxtaposition, we can now give a somewhat better
representation for bit strings than that above:

obj BITS1 is

sorts Bit Bits .

subsorts Bit < Bits .

ops 0 1 : -> Bit .

op __ : Bit Bits -> Bits .
endo

A typical term using this syntaxis 0 1 0 .

2.3 Equations and Semantics

We now turn to semantics. OBJ has both an abstract denotational semantics based on order sorted algebra,
and a more concrete operational semantics based on order sorted term rewriting. The semantics of an object
is determined by its equations. Equations are written declaratively, and are interpreted operationally as
rewrite rules, which replace substitution instances of left sides by the corresponding substitution instances
of right sides. Operational and denotational semantics are discussed in the next two subsections.

The following is a rather typical equation,

eqM+ s N=s(M+N)

where M and N are variable symbols, while + and s are operator symbols. They keyword “eq” introduces the
equation, and the equality symbol “=” separates its left and right sides.
The syntax for declaring variables is

vars (VarldList) : (Sort)
where the variable names are separated by blanks. For example,
vars L M N : Nat .

The keyword var can also be used, and is more idiomatic when there is just one variable, but it is actually
synonymous with vars.

Warning: The final blank and period are required for variable declarations.

The syntax for an ordinary equation in OBJ3 is
eq (Term) = (Term)

where the two (Term)s must be well formed OBJ3 terms in the operators and variables available in the
current context, and must have a common (super-) sort.

Warning: FEquations must be terminated by a blank followed by a period”. OBJ will think a “loose”
period within an equation marks the end of the equation, and then will probably generate a parse error and
other chaos. However, it is easy to avoid this by placing parentheses around an expression that contains the
offending period. For similar reasons, any use of = in the left side must be enclosed in parentheses.

Warning: All variables in an equation must have been previously declared. For equations appearing in
objects®, each variable that occurs in the right side must also occur in the left side, and the left side must
not be a single variable. All these conditions are checked, and warnings are issued if they fail.

Warning: Correctness of OBJ3’s operational semantics normally requires that the least sort of the left
side of each equation is greater than or equal to that of its right side. If this condition is not satisfied by
an equation, then OBJ3 will add retracts in parsing the right side, but not the left side. Sections 2.3.3 and
2.3.4 below discuss this in more detail and also introduce a refinement.

There is a shorthand notation for giving a name to a ground term. The syntax is

7The blank can be omitted if the last character is “special”, i.e., a parenthesis or bracket.
8This requirement is not made for theories (see Section 4.1).



let (Sym) = (Term) .
let (Sym) : (Sort) = (Term) .

The name used must be single simple symbol (such as “x”, “@2”, or “ThePoint”). The second form above
is equivalent to

op {(Sym) : -> (Sort) .
eq (Sym) = (Term) .

In the first form, the sort of the top operator is taken to be the sort of the term (as discovered by the parser).
For example,

lett =101.

defines t to be the list 1 0 1. A variation of let that is suitable for use when applying equations by hand
is discussed in Section 5.1.

Warning: The symbol given to a let declaration must be a single token.

Warning: When a symbol defined by a let is used in a term being reduced, it is replaced by its original
definition. Hence, if the symbol is used more than once, the definition will also be reduced more than once.

OBJ also has conditional equations, which have the syntax
cq (Term) = (Term) if (Term) .

where the first two (Term)s must have a common sort, and the third (Term), which is called the condition,
must have sort Bool, a predefined sort that is automatically provided in every module. A conditional rewrite
rule can be thought of as a “conditional pattern-driven demon” that awakens when the pattern in its left side
is matched and when its condition evaluates to true, using values for variables determined by the match.
The keyword ceq is synonymous with cq.

Warning: For conditional equations appearing in objects, all variables that occur in the condition must
also occur in the left side, otherwise a warning is issued. Also, any occurrence of if in the right side must
be enclosed in parentheses, or else OBJ will assume that what follows it is the condition.

The command
show rules [(ModEzp)] .

will show the rules for the named module (see Section 4.5 for details about module expressions) or for the
current module if none is named. Each rule is associated with a positive integer by the system®. The rules
of certain predefined modules, in particular BOOL, will not be displayed unless the command

set all rules on .

has been executed, in which case all rules from all imported modules are shown. Of course,
set all rules off .

restores the default. The command
show all rules .

shows rules as if both the verbose (see Section 3) mode and the all rules were set on.
A label can be given to a rule by using the syntax

[{LabelList)] (Rule)

where (LabelList) is a comma or blank separated list of identifiers, which must not contain a “.”

with a digit. For example,

or begin

[sum0,id+] eq M + 0 = M .

9This is useful for specifying rules in apply commands (see Section 5).
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(Actually, the label need not immediately precede the rule, and the form [label] can be thought of as
setting the label for the next rule to be created.) For example,

[def1] let x =100 .

works as expected, i.e., the label “def1” is associated with the rule

by the use of let.

Labels are shown when rules are shown. Certain automatically generated rules have automatically gen-
erated labels.

The command

‘x = 100” that is generated internally

show rule (RuleSpec)
shows the specified rule, where (RuleSpec) is defined as follows:

(RuleSpec) ::= [-][(ModId)].(Ruleld)
(Ruleld) ::= (Nat) | (Id)

(The syntactic notation used here is explained in Appendix B below.) For example,
show rule .defl .

in the context of the module containing the let considered above, shows the rule
[def1] eqx =100

and the variant
show all rule (RuleSpec)

shows a specific rule in verbose mode.
Warning: The initial period in .def1 is required, but square brackets (e.g., . [def1]) must not be used.

Warning: It is possible that rules, as displayed by the show command, will be renumbered in curious ways
when modules are combined.

2.3.1 Operational Semantics is Reduction

We illustrate computation by term rewriting with a simple LIST-0F-INT object. (The line protecting
INT in the example below indicates that the INT module, for integers, is imported; module importation is
discussed in Section 3.1 below.)

obj LIST-O0F-INT is
sort List .
protecting INT .
subsort Int < List .

op __ : Int List -> List .
op length_ : List -> Int .
var I : Int . var L : List .

eq length I =1 .
eq length(I L) = 1 + length L .
endo

The subsort declaration “Int < List” yields a syntax in which single integers, such as “5”, are valid lists.
Omitting the parentheses in the last equation above creates a relatively subtle parsing ambiguity, which as
an exercise, the reader is invited to discover.

Let us now evaluate some terms over this object. A term (Term) to be evaluated is presented with the
syntax

reduce [in (ModFEzp) :] (Term) .

11



which is evaluated in the context of the module currently in focus, unless the optional “in (ModExp)” is
given, in which case it is evaluated in the context of (ModEzp). Usually the module currently in focus is the
last module entered into the system, but this can be changed by using the select command, as described in
the beginning of Section 3. The keyword reduce can be abbreviated to red. The term given for reduction
may contain variables, in which case a warning is given, but the reduction is carried out with the variables
being treated as constants of the declared sorts.

Warning: The period after a term to be reduced is required, and “loose” periods inside the term will
confuse the parser and may cause chaos. For example, in

reduce 0 . 1 . 0 . nil .

OBJ first reduces just “0”, and then try to interpret “1 . 0 . nil .” as further top level commands; this
fails, and produces some further error messages. This can be avoided by enclosing the entire term to be
reduced in parentheses. A command like “red in(1) .” also fails, because OBJ assumes that the “in”

introduces a module name. Parentheses can also be used to resolve this ambiguity, as in “red (in(1)) .”

A reduce command is executed by matching the given term with the left sides of equations, and then
replacing the matched subterm with the corresponding substitution instance of the right side; i.e., evaluation
proceeds by applying rewrite rules. For example, the command

reduce length(17 -4 329).

causes the given term to be evaluated in the module LIST-0F-INT if it follows that module, and in this case,
the following is printed,

reduce in LIST-OF-INT : length (17 (-4 329))
rewrites: 5
result NzNat: 3

as a result of the following sequence of rewrite rule applications,

length(17 -4 329) =>
length(-4 329) =>
(1 + length 329) =>
1+1) =>

2 =>

+

WP
+ + +

which we call a trace of the computation. Here, the first step uses the second rule, with the left side
length(I L) matching I to 17 and L to -4 329. The second step also uses this rule, but now matching I to
-4 and L to 329; this match works by regarding the integer 329 as a List, because Int is a subsort of List.
The third step simply uses the first rule, and the last steps use the built-in arithmetic of INT. Execution
proceeds until reaching a term to which no further rules can be applied, called a normal (or reduced)
form'°. The command

set trace on .

causes a local trace to be printed as a reduction is executed. This displays information describing the
application of each rule. Global tracing is produced by the command

set trace whole on .
which displays the whole term being reduced at each rule application. Similarly, the commands

set trace off .
set trace whole off .

10Most functional programming languages require users to declare constructors such that a term is reduced iff it consists
entirely of constructors. OBJ3 does not make any use of constructors, and thus achieves greater generality; however, constructor
declarations could be used, e.g., for compiler optimization; and they are also used in Kumo to support induction [65].
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return OBJ3 to its default state of not printing traces.

The operational semantics for a conditional rewrite rule is as follows: first find a match for the left
side; then evaluate the condition, after substituting the bindings determined by the match; if it evaluates to
true, then do the replacement by the right side, again using the values for the variables determined by the
match. Note that evaluating the condition could require non-trivial further rewriting in some cases. This
requires OBJ to keep track of bindings, because a term may match a rule in more than one way, and we
do not want to keep trying the same match over and over; this bookkeeping can be highly non-trivial for
associative/commutative matching (see Section 2.4).

OBJ3 has a built-in (i.e., predefined) polymorphic binary infix Bool-valued equality operator which
specializes as neeeded to any sort S; its syntax is

op _==_ : S S -> Bool .

This operator tests whether or not two ground terms are equal, by reducing the two terms to normal form,
and then comparing the normal forms for syntactic identity!!. For example, _==_ on Bool itself is just
_iff_. The operator == really is equality on a sort provided that the rules for terms of that sort are
Church-Rosser, that the rules are terminating with respect to the given evaluation strategy, and that the
evaluation strategy is non-lazy (these notions are discussed in Sections 2.3.4 and 2.4.4 below), because these
conditions guarantee that normal forms will be reached. The negation _=/=_ of _==_ is also available, and
so is polymorphic if_then_else_fi; these polymorphic operators are all provided by the predefined module
BOOL, which is automatically imported into each module (unless this default is specifically disabled).

Release 2 of OBJ3 allows variables that are declared in the current context to occur in terms that are
presented to the reduce and parse commands; a warning is issued in the case of reduction. Of course, a
parse error will occur if there are variables that have not been declared. For example,

reduce length I . *%%> should be: 1
reduce length (I I). *%*x> should be: 2
reduce length (I I I). ***> should be: 3

(A parsing error will result from omitting the parentheses, for reasons to be discussed in Section 2.4; “kx*>”
indicates that what follows is a comment that should be printed.)

It is possible to perform a number of reductions over the same module in a “reduction loop”, with the
syntax

(RedLoop) ::=rl {. | (ModId)} { (Term) .}...

The terms are read, and the reduction results printed, one at a time. If “.” is given instead of a (ModId),
then the current module is used. A synonym for rl is red-loop.
For example,

rl NAT
5+ 5 .
3 6 + 18 .
(21 - 8) = 3 .

(the last term will fail to parse, because - is not defined in NAT).
Sometimes when we want to execute test cases for some code, it may be convenient to use the “test
reduction” command, which has the syntax

test reduction [in (ModFzp) :] (Term) expect: (Term)
and checks whether the result is as expected, and then issues an error message if it isn’t. For example,
test reduction in NAT : 5 + 5 expect: 10 .
But it is often easier to use a comment, such as
*%x> should be: 10
or to execute
red 5 + 5 == 10 .

where == is the predefined polymorphic equality function (as described in Section 2.3.1).

HTf == is used for two terms with incompatible sorts, then a parse error occurs.
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2.3.2 Denotational Semantics

Whereas an operational semantics for a language should show how its computations are done, a denotational
semantics should give precise mathematical meanings to programs in a way that is as conceptually clear and
simple as possible, and that supports proving properties of programs. If a language is rigorously based upon
logic, then the already established proof and model theories of the underlying logical system apply directly
to its programs, and complex formalisms like Scott-Strachey semantics or Hoare logics are not needed. The
denotational semantics of OBJ is algebraic, as in the algebraic theory of abstract data types [84, 83, 153, 90],
and in particular, the denotation of an OBJ object is an algebra, a collection of sets with functions among
them!?. The initial algebra approach [83, 116] takes the unique (up to isomorphism) initial algebra as
the “standard,” or “most representative” model of a set of equations (there may of course be many other
models), i.e., as the representation-independent standard of comparison for correctness. It is shown in [11]
(see also [116]) that an algebra is initial if and only if it satisfies the following properties:

1. no junk: every element can be named using the given constant and operator symbols; and

2. no confusion: all ground equations true of the algebra can be proved from the given equations.

For canonical systems (as defined in Section 2.4.4 below), the rewrite rule operational semantics agrees with
initial algebra semantics, in the sense that the reduced forms constitute an initial algebra (this result was
shown in [46]; see also [116, 151]). Because OBJ3 is based on order sorted algebra, it is important to note that
this result easily extends to this context. OSA, and thus OBJ3, provides a completely general programming
formalism, in the sense that any partial computable function can be defined!®. The formalism is especially
convenient and natural for non-numerical processing, but in fact, it also handles numerical applications quite
felicitously.

2.3.3 Exceptions and Retracts

Exceptions have both inadequate semantic foundations and insufficient flexibility in most programming
and specification languages, including functional programming languages. Algebraic specification languages
sometimes use partial functions, which are simply undefined under exceptional conditions. Although this can
be developed rigorously, as in [98], it is unsatisfactory in practice because it does not allow error messages or
error recovery. For some time, we have been exploring rigorous approaches that allow users to define their
own exception conditions, error messages, and exception handling. OBJT and OBJ1 used error algebras
[43], which sometimes fail to have initial models [131]; however, the current approach based on OSA seems
entirely satisfactory to us.

As a simple example, let’s consider the natural and rational numbers, with sorts Nat < Rat. If _+_ is
only defined for rationals, then (2 + 2) is fine because 2 is a natural number and Nat < Rat. On the other
hand, given the term (-4 / -2)!, where ! is only defined for natural numbers, the parser must consider the
subterm (-4 / -2) to be a rational, because at parse time it cannot know whether this term will evaluate
to a natural number; thus, the term (-4 / -2)! does not parse in the conventional sense. However, we can
“give it the benefit of the doubt” by having the parser insert a retract, which is a special operator symbol
(in this case denoted r:Rat>Nat and having arity Rat and coarity Nat) that is removed at run time if the
subterm evaluates to a natural, but otherwise remains behind as an informative error message. Thus, the
parser turns the term (-4 / -2)! into the term (r:Rat>Nat(-4 / -2))!, which at runtime becomes first
(r:Rat>Nat(2))! and then (2)!, using the (built-in) retract equation

r:Rat>Nat(X) = X

where X is a variable of sort Nat. The retract operator symbols are automatically generated by the OBJ3
system, along with the corresponding retract equations. Retracts are inserted, if needed, by the parser, and
will not be seen by the user in ordinary examples. However, the user who wants to see retracts can give the
command

set show retracts on .

which causes the OBJ3 system to print them, both when showing equations in modules, and also when
showing the results of rewriting. Of course,

12We will see later that the denotation of an OBJ theory is a class of algebras, that are not in general isomorphic to one
another.
133ee [6, 116] for similar results about total computable functions.
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set show retracts off .

restores the default mode in which retracts are not shown.

We will see later that retracts can be used to handle rewrite rules that are not sort decreasing (see Section
2.3.4); also, equations with retracts on their left sides are useful for defining “coercions” among various data
types, and data with multiple representations, as explained in [73] and illustrated in [50] and [61].

Turning to theory for a moment, retracts are new operators Tgs': S — s', one for each pair s,s’ of
sorts in the same connected component; these give an extension of the original signature provided by the
user. For each r, ,, a retract equation r, o (z) = z is also added, where z is a variable of sort s. Then
(a slight extension of) the “conservative extension” theorem proved in [76] shows that under some mild
assumptions, adding these operators and equations does not create any confusion among terms that do not
involve retracts. The OBJ3 implementation uses the notation r:s>s’ for the operator 75 : s = s'. Details
of the mathematical and operational semantics of retracts, using order sorted algebra and order sorted term
rewriting, are given in [62] and [76]; see [56] for recent applications of retracts to theorem proving for partial
functions.

Warning: Release 2 of OBJ3 does not allow qualified sort names in retracts within terms provided by the
user.

Now some code that illustrates retracts. Stacks are a well known benchmark in this area, because the
example is simple, but raises the interesting problem of what a term like top(empty) actually means, and
indeed, whether it has any meaning. The OBJ3 code given below not only handles the exceptions in a
natural way, but also seems about as simple as one could hope. The approach is to define a subsort NeStack
of non-empty stacks, and then say that top is only defined on this subsort.

obj STACK-OF-NAT is sorts Stack NeStack .
subsort NeStack < Stack .
protecting NAT .
op empty : -> Stack .
op push : Nat Stack -> NeStack .
op top_ : NeStack -> Nat .
op pop_ : NeStack -> Stack .
var X : Nat . var S : Stack .
eq top push(X,S) = X .
eq pop push(X,S) = S .
endo
Then evaluating
reduce top push(1l,empty)
yields the natural number 1, while
reduce pop push(1l,empty)
yields empty, and
reduce top empty .
yields
result Nat: top r:Stack>NeStack(empty)
with empty retracted to the sort NeStack. Similarly,
reduce top pop empty .

yields

result Nat: top r:Stack>NeStack(pop r:Stack>NeStack(empty))
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If the show retracts mode is on, when OBJ3 shows the term to be reduced in the above example, then
it will contain retracts; in fact, it will show the same term given above as output, because no reduction is
possible.

An alternative approach to exceptions involves introducing supersorts that contain specific error messages
for exceptional conditions, as in the following:

obj STACK-OF-NAT is
sorts Stack Stack? Nat? .
subsort Stack < Stack? .
protecting NAT .
subsort Nat < Nat? .
op empty : —-> Stack .
op push : Nat Stack -> Stack .
op push : Nat Stack? -> Stack? .
op top_ : Stack -> Nat? .
op pop_ : Stack -> Stack? .
op topless : -> Nat? .
op underflow : -> Stack? .
var X : Nat . var S : Stack .
eq top push(X,S) = X .
eq pop push(X,S) = S .
eq top empty = topless .
eq pop empty = underflow .

endo

Here are some sample reductions for this code:

reduce top push(l,empty) . ***> should be: 1
reduce pop push(l,empty) . #***> should be: empty

reduce top empty . *%x%> should be: topless
reduce pop empty . *%x%> should be: underflow
reduce top pop empty . x*x> should be: top r:Stack?>Stack(underflow)

Sometimes we may want a certain operator, or a certain term, to have a lower sort than it otherwise
would. Sort constraints [62, 73] are declarations of this kind. Release 2 of OBJ3 has syntax for a kind
of sort constraint that restricts the domain of a multi-argument operator to arguments that satisfy some
equational conditions. For example, the code in Section C.8 contains the operator declaration

op-as : Mor Mor -> Mor for M1 ; M2 if d1 M1 == d0 M2 [assoc]

-y —

which means that M1 ; M2 has sort Mor if d1 M1 == d0 M2, and otherwise has sort Mor?, which is an
automatically provided error supersort of Mor; the attribute [assoc] says that _; _ is associative (the [assoc]
attribute is discussed in the following subsection).

Warning: Release 2 of OBJ3 only supports the syntaz, but not the semantics, of sort constraints. In
particular, error supersorts (such as Mor?) are not automatically generated for each user declared sort.
However, we hope that some future version of OBJ will fully implement this feature, as it seems to have
many interesting applications. In fact, in Release 2 of OBJ3, the semantics of the above op-as declaration
is equivalent to that of the following ordinary operator declaration:

op _;_ : Mor Mor -> Mor [assoc]
A related feature allows defining a subsort by a Boolean expression. For example,

sort PosRat .

subsort PosRat < Rat .
var N : Rat .

as PosRat : N if N > 0 .

defines PosRat < Rat to have as its elements the rationals N such that N > 0. The syntax is

as (Sort) : (Term) if (Term) .

Warning: This feature is not yet implemented, and attempting to use it produces the message

Error: general sort constraint not currently handled (ignored)
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2.3.4 More on the Operational Semantics

This section gives an informal introduction to some delicate aspects of OBJ3’s operational semantics; fuller
treatments of order sorted rewriting, order sorted equational deduction, and retract equations can be found in
[101, 76, 141]. The aim here is to familiarize OBJ3 users with the basic properties that equations should have
for term reduction to behave properly. As already mentioned in Section 2.2, OBJ3 assumes that signatures
are regular and coherent, and we maintain this assumption throughout this subsection. We first discuss the
Church-Rosser property and termination, and then we explain some additional conditions required to handle
subsorts.

Often, the order of applying rules does not affect the result, in the sense that whenever a term ¢ is
rewritten in two different ways, obtaining terms ¢; and t9, then there is another term ¢3 such that both t;
and t, rewrite to t3. A rule set with this desirable property is called Church-Rosser; OBJ3 assumes that the
rules in objects are Church-Rosser. Another desirable property for a rule set is termination, in the technical
sense that there are no infinite sequences of rewrite rule applications. A rule set that is terminating (in this
sense) can be checked for the Church-Rosser property by the Knuth-Bendix algorithm [104]; a rule set that is
both terminating and Church-Rosser is called canonical. Although we cannot assume that all rule sets are
terminating, rules that define total computable operators over total computable sets can always be chosen to
be both Church-Rosser and terminating [6]; this includes the typical case of abstract data types. However,
further functions defined over these structures can fail to have terminating rule sets, for example, if they
implement procedures for problems that are only semi-decidable, such as full first-order theorem proving,
higher-order unification, or combinator reduction!*. The Knuth-Bendix algorithm extends to a completion
procedure that may produce a canonical rule set from one that is terminating. Note that an order sorted
version of Knuth-Bendix is needed for OBJ3 [141]. Huet and Oppen give a nice survey of rewrite rule theory
which develops some connections with general algebra [93]; Klop [102, 103] and Dershowitz and Jouannaud
[24] have also written useful surveys of this area, that are more up to date. OSA foundations for the issues
discussed above may be found in [117, 62, 101, 141]. Chapter 5 of [59] gives a recent algebra-oriented survey
of term rewriting, and [4] is a recent elementary textbook on this subject.

We have run many thousands of reductions on many hundreds of examples, often in dozens of variations,
and we have hardly ever encountered problems with canonicity. We believe that OBJ users almost always
write equations for abstract data types that are canonical, because they tend to think of equations as
programs, and therefore they write primitive recursive definitions for operators. A practical implication of
this is that tests for canonicity are not of critical importance. This is fortunate, because the problem is
undecidable.

In summary, the intuition of the Church-Rosser property is that when it holds, reduction can be seen as
evaluating a functional expression to a unique result that does not depend on the order of evaluation. The
termination property ensures that this result always exists.

We now discuss some issues concerning subsorts in rewriting. Intuitively, the more we advance in evalu-
ating a functional expression, the more information we should have about its result. This should also apply
to information about the sort of the result, and the smaller the sort that we can associate to a data element,
the more information we have about that data element. For example, by syntactic analysis we can only
associate to the expression (7 + (- 3))/ 2 the sort Rat, but after evaluation we know that its result has
sort NzNat.

This suggests that rewrite rules should be sort decreasing, i.e., that if a term ¢ can be rewritten to a
term t’, then the least sort of ¢’ should always be less than or equal to the least sort of ¢. This is very often
the case in the many examples that we have studied; however, there are some quite reasonable rewrite rules
that can violate this requirement temporarily. For example, in the number hierarchy described in Appendix
C.7, the rule

eq |l C|72=C=x* (C#)

which defines the square modulus of a complex number with rational coordinates as the product of the
number by its conjugate, has a left side with sort Rat and a right side with sort Cpx. In the end, this will (in
the appropriate sense clarified below) not matter because the requirement of rewriting down is only violated
temporarily, and the reduced expression is always a rational number.

But in general, the careless treatment of rules that are not sort decreasing could result in unsound
deductions. For example, consider the object

141n order not to add new values to the underlying abstract data type, the value sorts of such potentially non-terminating
operators should be error supersorts; then retracts will be added when they are used as ordinary values in terms.
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obj PROBLEMS is
sorts A B .
subsorts A < B .
opa: ->A.
opb: ->B.
ops fg:A->A.
var X : A .
eq £(X) = g(X)
eqa=>.

endo

and suppose that we want to reduce the term f(a). By applying the first equation, we can reduce it to
g(a), and by applying the second equation, we can reduce it to g(b). The problem here is that g(b) is
not a well-formed term! In fact, the second step of deduction is not allowed under the rules of order sorted
equational deduction [76], and is unsound in this precise sense. The problem is that while the deduction a
= b is sound in itself, it becomes unsound in the context of the enclosing function symbol g.

Retracts allow a correct and sound treatment of rules like that for the square modulus of a complex number
discussed above. In this treatment, rewriting works even if the rules are not sort decreasing, provided they
are “reasonable” in a sense that is made precise below. Moreover, if the rules are not reasonable, then
the retracts will help to detect flaws in the specification. The idea is as follows: suppose that a term ¢ of
least sort s can be rewritten at the top by applying a rule u = v to yield a term ¢, i.e., suppose there is a
substitution 8 (respecting the sorts of the variables) such that t = 6(u) and ¢ = 6(v). Next, suppose that
the least sort s’ of ' is not less than or equal to s. This could be a problem if our term ¢ were enclosed in a
subterm that made its replacement by ¢' ill-formed. A way to guarantee that this never happens, regardless
of the embedding context, is to check the least sorts of ¢ and ¢', and whenever the sort of ¢ is not greater
than or equal to the sort of ', to replace ¢ not by ¢’ but by the term r:s'>s(¢'). We then call the rewrite
from ¢ to r:s'>s(t') a safe rewrite using the rule u = v. Rewrites in which retract symbols are eliminated
by applying the built-in retract rules (see Section 2.3.3), and also rewrites with s > s', where no retract is
needed, are also considered safe.

The key point about safe rewrites is that they are sound, i.e., they are correct logical deductions. First,
as discussed in Section 2.3.3, adding retracts and retract rules to the original specification is conservative, in
the sense that no new equalities between terms without retracts can be derived after the addition of retracts
and retract rules. The soundness of safe rewriting then follows from the observation that the rewrite from
t to r:s'>s(t') using the rule u = v is a combination of two sound steps of deduction, namely, we can first
derive r:5'>s(t) = r:s'>s(t') using u = v, and then derive ¢t = r:s'>s(t') by applying to the term on the left
the retract rule r:s'>s(z) = x with z a variable of sort s.

Notice that if the original rules are sort decreasing, then safe rewrites and ordinary rewrites coincide,
in the sense that there is never any need to introduce retracts on the right side after applying a rule. Safe
rewriting allows us to broaden the class of rules that OBJ3 can handle properly, to include all intuitively
“reasonable” rules. Without safe rewriting, we would have to require that all rules are sort decreasing. But
with safe rewriting it is enough to require that if a ground term ¢ without retracts can be safely rewritten
to a term ¢’ to which no rules can be applied, then

(1) t' has no retracts; and

(2) any sequence of safe rewrites from ¢ to t" can be continued by a sequence of safe rewrites from t" to t'.

We call rules satisfying conditions (1) and (2) reasonable rules. Notice that, by the definition of safe
rewriting, an irreducible term ', as well as any intermediate term, will have a least sort less than or equal to
the least sort of the original term ¢. Notice also that any rules that are Church-Rosser and sort decreasing
are obviously reasonable. The rules for the complex number example are reasonable (and also terminating).
The rules in the PROBLEMS example are unreasonable, and the user will get evidence of this by performing
reductions. For example, the reduction of a will yield the result r:B>A(b), and the reduction of f(a) will
yield the result g(r:B>A(b)), both of which violate condition (1).

One last word of caution. Failure to be reasonable may not be apparent from a cursory inspection of the
rules. For example, consider the object

obj MORE-PROBLEMS is
sorts A B C .
subsorts A <K B < C .
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opf : C->C.

ops f h : A ->A .

opg :B->B.

opa: ->A.

var X : B .

eq £(X) = g(X)
endo

Here, £ (X) has a sort C that is greater than B, the sort of g(X). However, this specification is unreasonable.
For example, the term h(f(a)) reduces to the term h(r:B>A(g(a))), violating condition (1). The problem
is that the rule

eq £(Y) = g(Y)

obtained from the original rule by “specializing” the variable X of sort B to a variable Y of sort A violates the
sort decreasing property. Therefore, not just the original rules, but also all of their “specializations” to rules
with variables having smaller sorts may have to be considered; see [101].

2.4 Attributes

It is natural and convenient to consider certain properties of an operator as attributes that are declared at
the same time as its syntax. These properties include axioms like associativity, commutativity, and identity
that have both syntactic and semantic consequences, as well as others that affect order of evaluation, parsing,
etc. In OBJ3, such attributes are given in square brackets after the syntax declaration. You can see what
attributes an operator actually has with the show command, which has the following syntax,

show op (OpRef) .

where (OpRef) describes the operator (see Appendix B for its details). The operator will be described in the
context of the module currently in focus.

2.4.1 Associativity and Commutativity

Let us first consider associativity. For example,
op _or_ : Bool Bool -> Bool [assoc]

indicates that or is an associative binary infix operator on Boolean values. This implies that the parser
does not require full parenthesisation. For example, we can write (true or false or true) instead of
(true or (false or true)); moreover, the term printer will omit unnecessary parentheses. Of course, the
assoc attribute also gives the semantic effect of an associativity axiom, which is implemented by associative
rewriting and associative extensions, as described below.

Warning: The assoc attribute is only meaningful for a binary operator with arity A B and value sort C
when C < A and C < B; however, retracts might be inserted if either A < Cor B < C.

Binary infix operators can be declared commutative with the attribute comm, which is semantically a
commutativity axiom, implemented by commutative rewriting (as described below). Note that a binary
operator can be given both commutative and associative attributes.

Warning: The commutative attribute is only meaningful when the two sorts in the arity have a common
supersort; also, some retracts may be added if these two sorts are unequal.

Warning: Because associative/commutative matching is an NP-complete problem, a uniformly fast imple-
mentation is impossible.

The present implementation, based on work of Lincoln [108] extended to OSA along the lines of [62, 101], is
reasonably efficient, but cannot be expected to run quickly for really large problems; see also [96].
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2.4.2 Identity and Idempotence

An identity attribute can be declared for a binary operator. For example, in
op _or_ : Bool Bool -> Bool [assoc id: false]

the attribute id: false gives the effects of the identity equations (B or false = B) and (false or B =
B). Identity attributes can be ground terms and not just constants.

Warning: All the operators occurring in the value term of an identity attribute must have been previously
declared.

If it only makes sense to have a left or a right identity, then that is all that is generated. For example, in

op nil : -> List .
op __ : Int List -> NeList [id: nil]

only a right identity equation is added. A left identity equation is added if the sort of the identity is a
subsort of the left arity sort, and a right identity equation is added if the sort of the identity is a subsort of
the right arity sort.

Warning: OBJ3 implements rewriting modulo identity by a combination of direct matching modulo iden-
tity, and a partial completion process that may generate further equations. Matching modulo identity very
often leads to problems with termination and efficiency, as discussed in Section 3.1.1 below.

The attribute idr: introduces only the identity equations themselves, without invoking any completion
process. This can be convenient for avoiding the termination problems associated with the id: attribute.

Warning: Associative, commutative and identity attributes are inherited downward, from an overloaded
operator to all operators having the same form and lower rank.

Operators can also be declared idempotent, by using the attribute idem; this is implemented simply by
adding the idempotent equation.

Warning: The effect of rewriting modulo idempotence is neither attempted nor achieved.

It is possible to give any operator symbol any of the attributes assoc, comm, id:, idr: and/or idem;
warnings are issued when the attributes do not make sense.
Let us now consider a more sophisticated integer list object with associative and identity attributes,

obj LIST-O0F-INT1 is
sorts List NeList .
protecting INT .
subsorts Int < NeList < List .

op nil : -> List .
op __ : List List -> List [assoc id: nil]
op __ : NeList List -> NeList [assoc id: nil]

op head_ : Nelist -> Int .

op tail_ : Nelist -> List .

var I : Int . var L : List .

eq head(I L) I.

eq tail(I L)
endo

and some test cases using this object. For example,

reduce 0 nil 1 nil 3 .
is carried out in LIST-0F-INT1 by applications of the identity equation modulo associativity, as follows,
nil 1 nil 3 =>

nil 3 =>

0
0
013

1
1
and it prints
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result NeList: 0 1 3

Similarly, we may consider

reduce head(0 1 3) . *%%> should be: 0O
reduce tail(0 1 3) . *%*> should be: 1 3
reduce tail(nil 0 1 nil 3) . ***> should be: 1 3

2.4.3 Precedence and Gathering

Ambiguity in the parsing of terms can be reduced by using precedence and gathering. The precedence of
an operator is a number (in the range 0 to 127), where a lower value indicates “tighter binding” in the sense
that is discussed below. For example, the predefined object INT contains the declarations

op _*+_ : Int Int -> Int [assoc comm id: O prec 33]
op _*_ : Int Int -> Int [assoc comm id: 1 prec 31]

The precedence of a term is the precedence of its top operator, unless it is enclosed in parentheses or qualified,
in which case it has precedence 0. Ordinarily, the arguments of an operator must have precedence less than
or equal to its precedence. Therefore, (1 + 2 * 3) is not parsed as ((1 + 2) * 3), but instead is parsed
as (1 + (2 * 3)) under the above declarations, because the precedence of the arguments to * must be less
than or equal to 31. Intuitively, we can think of the “tighter binding” indicated by lower precedence as the
strength with which an operator “pulls” on its arguments; in this example, the constant 2 has been pulled
on more strongly by * than by +.

The default precedence for an operator with standard (i.e., prefix-with-parentheses) form is 0. If an
operator pattern begins and ends with something other than an underbar, then its precedence also defaults
to 0. Unary prefix operators have default precedence 15. In all other cases, the default precedence is 41.

This default behavior can be modified. The gathering pattern of an operator is a sequence of elements
e, E, or & (one element for each argument position) that restricts the precedences of terms that are allowed
as arguments: e indicates that the corresponding argument must have strictly lower precedence, E allows
equal or lower precedence, and & allows any precedence. For example, parentheses could be described as
having precedence 0 and gathering pattern (&); also, the gathering pattern (E e) forces left association for
a binary operator.

An interesting example that needs this gathering pattern is combinatory algebra, the code for which (see
Appendix C.6) includes the following declaration:

op __ : TT ->T [gather (E e)]

For example, under this declaration, a b c will be parsed as (a b) c, rather than asa (b c).

The default gathering pattern for an operator with standard form is all &s. If an underbar for an argument
position is not adjacent to another underbar, then the default gathering value for that position is &. In all
other cases, the default gathering value is E.

Warning: The current OBJ3 parser sometimes “jumps to conclusions” based on precedence and gathering
information, and then simply fails if its initial assumption is wrong. This means that sometimes a term
that really does have a unique parse of least sort may fail to parse. Although the defaults are surprisingly
effective, sometimes it is necessary to explicitly give carefully chosen precedence and gathering attributes,
and/or to insert some parentheses into terms, in order to get the parsing behavior that you want.

2.4.4 Order of Evaluation

In general, a large tree will have many different sites where rewrite rules might apply, and the choice
of which rules to try at which sites can strongly affect efficiency, and can also affect termination. Most
modern functional programming languages have a uniform lazy (i.e., top-down, or outermost, or call-by-
name) semantics. But because raw lazy evaluation is slow, lazy evaluation enthusiasts have built clever
compilers that figure out when an “eager” (i.e., bottom-up or call-by-value) evaluation can be used with
exactly the same result; this is called “strictness analysis” [123, 95]. OBJ3 is more flexible, because each
operator can have its own evaluation strategy. Moreover, the OBJ3 programmer gets this flexibility with
minimum effort, because OBJ3 determines a default strategy if none is explicitly given. This default strategy
is computed very quickly, because only a very simple form of strictness analysis is done, and it is surprisingly
effective, though of course it does not fit all possible needs.
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Syntactically, an E-strategy (E for “evaluation”) is a sequence of integers in parentheses, given as an
operator attribute following the keyword strat. For example, OBJ’s built-in conditional operator has the
following E-strategy,

op if_then_else_fi : Bool Int Int -> Int [strat (1 0)]

which says to evaluate the first argument until it is reduced, and then apply rules at the top (indicated by
“0”). Similarly,

op _+_ : Int Int -> Int [strat (1 2 0)]

indicates that _+_ on Int has strategy (1 2 0), which says to evaluate both arguments before attempting
to add them.

The default E-strategy for a given operator is determined from its equations by requiring that all argument
places that contain a non-variable term in some rule are evaluated before equations are applied at the top.
If an operator with a user-supplied strategy has a tail recursive rule (in the weak sense that the top operator
occurs in its right side), then OBJ3 may apply an optimization that repeatedly applies that rule, and thus
violates the strategy. In those rare cases where it is desirable to prevent this optimization from being applied,
you can just give an explicit E-strategy that does not have an initial 0.

There are actually two ways to get lazy evaluation. The simplest approach is to omit a given argu-
ment number from the strategy; then that argument is not evaluated unless some rewrite exposes it from
underneath the given operator. For example, this approach to “lazy cons” gives

op cons : Sexp Sexp -> Sexp [strat (0)]

The second approach involves giving a negative number -j in a strategy, which indicates that the jt* argument
is to be evaluated “on demand,” where a “demand” is an attempt to match a pattern to the term that occurs
in the j** argument position. This approach to lazy cons is expressed as

op cons : Sexp Sexp -> Sexp [strat (-1 -2)]

Then a reduce command at the top level of OBJ3 is interpreted as a top-level demand that may force the
evaluation of certain arguments. This second approach cannot be applied to operators with an associative
or commutative attribute. Appendix C.5 gives a further example of lazy evaluation, using the Sieve of
Erasthothenes to find all prime numbers.

A strategy is called non-lazy if it requires that all arguments of the operator are reduced in some order,
and either the operator has no rules, or the strategy ends with a final “0”. In general, in order for all
subterms of a reduction result to be fully reduced, it is necessary that all evaluation strategies be non-lazy.
The default strategies computed by the system are non-lazy.

2.4.5 Memoization

Giving an operator the memo attribute causes the results of evaluating a term headed by this operator to be
saved; thus the work of reduction is not repeated if that term appears again [118]. In OBJ3, the user can give
any operators that he wishes the memo attribute, and this is implemented efficiently by using hash tables.
More precisely, given a memoized operator symbol £ and given a term £ (t1,...,tn) to be reduced (possibly
as part of some larger term), a table entry for £(t1,...,tn) giving its fully reduced value is added to the
memo table. Moreover, entries giving this fully reduced value are also added for each term f(r1,...,rn)
that, according to the evaluation strategy for f, could arise while reducing f(t1,...,tn) just before a rule
for f is applied at the top; this is necessary because at that moment the function symbol f could disappear.
In some cases, memoizing these intermediate reductions is more valuable than memoizing just the original
expression.

For example, suppose that f has the strategy (2 3 0 1 0), let r be the reduced form of the term
f(t1,t2,t3,t4), and let ri be the reduced form of ti for 4 = 1,2,3. Then the memo table will contain the
following pairs:

(£(t1,t2,t3,t4),r)
(f(t1,r2,r3,t4),r)
(f(r1,r2,r3,t4),r)
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Memoization gives the effect of structure sharing for common subterms, and this can greatly reduce
term storage requirements in some problems. Whether or not the memo tables are re-initialized before each
reduction can be controlled with the top level commands

set clear memo on .
set clear memo off .

The default is that the tables are not reinitialized. However, they can be reinitialized at any time with the
command

do clear memo .

Each of these commands must be terminated with a blank followed by a period. Of course, none of this
has any effect on the result of a reduction, but only on its speed. A possible exception to this is the case
where the definitions of operators appearing in the memo table have been altered. (When rules are added to
an open module, previous computations may become obsolete. Therefore, you may need to explicitly give
the command “do clear memo .”; see Section 3.2.) Memoization is an area where term rewriting based
systems seem to have an advantage over unification based systems like Prolog.

2.4.6 Propositional Calculus Example

This subsection gives a decision procedure for a theory of real interest, the propositional calculus. The
procedure is due to Hsiang [92], and makes crucial use of associative/commutative rewriting. The OBJ3
code for the object PROPC below evolved from OBJ1 code originally written by David Plaisted [77]. It reduces
tautologuous propositional formulae, in the usual connectives (and, or, implies, not, xor (exclusive or) and
iff) to the constant true, and reduces all other formulae to a canonical form (modulo the commutative and
associative axioms) in the connectives xor, and, true and false. The TRUTH object used here contains just
true and false (plus the basic true, false-valued operators _==_, _=/=_ and if_then_else_fi), while
QID provides identifiers that begin with an apostrophe, e.g., ’a. The module import modes extending and
protecting are discussed in Section 3.1 below. The rules in this object have been shown by Hsiang [92] to
be Church-Rosser and terminating modulo the commutative and associative axioms.

obj PROPC is
sort Prop .
extending TRUTH .
protecting QID .
subsorts Id Bool < Prop .
**x constructors **x*
op _and_ : Prop Prop -> Prop [assoc comm idem idr: true prec 2]
op _xor_ : Prop Prop -> Prop [assoc comm idr: false prec 3]
vars p q r : Prop .
eq p and false = false .
eq p xor p = false .
eq p and (q xor r) = (p and q) xor (p and r)
*%*% derived operators **x*
op _or_ : Prop Prop -> Prop [assoc prec 7]
op not_ : Prop -> Prop [prec 1]
op _implies_ : Prop Prop -> Prop [prec 9]
op _iff_ : Prop Prop -> Prop [assoc prec 11]
eq por q= (p and q) xor p xor q .
eq not p = p xor true .
eq p implies q = (p and q) xor p xor true .
eq p iff q = p xor q xor true .
endo

Now some sample reductions in the context of this object:

reduce ’a implies ’b iff not ’b implies not ’a . ***> should be: true
reduce not(’a or ’b) iff not ’a and not ’b . *%x%x> should be: true
reduce ’c or ’c and ’d iff ’c . *%%*> should be: true
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reduce ’a iff not ’b . ***x> should be: ’a xor ’b
reduce ’a and ’b xor ’c xor ’b and ’a . **x%> should be: ’c
reduce ’a iff ’a iff ’a iff ’a . **x%> should be: true
reduce ’a implies ’b and ’c iff (’a implies ’b) and (’a implies ’c)

*%%*> should be: true

Thus, the first three and last two expressions are tautologies, while the fourth is true if and only if exactly
one of ’a and ’b is true, and the fifth is true iff ’c is true. Note that ’a, ’b, ’c are propositional variables
in the sense that anything of sort Prop can be substituted for them while still preserving truth; in particular,
true and false can always be substituted. Of course, deciding tautologies in the propositional calculus is
an NP-complete problem, so we cannot expect this code to run very fast for large problems.

This example illustrates a striking advantage of using a logical language: every computation is a proof,
and interesting theorems can be proved by applying the right programs to the right data. Even if the given
equations do not define a decision procedure for a given theory, so long as they are all correct with respect to
this theory, then the results of reduction will be correct. For this purpose, we don’t even need the Church-
Rosser property. For example, even if we didn’t know that PROPC was canonical, we could still be certain
that any term that reduces to true is a tautology. Thus, OBJ code can be used for theorem proving, as
illustrated by the examples in [51] and [59], a sample from which is given in Section 4.8 below. Some more
elaborate theorem proving examples are given in Appendix C.4, and much more detail is available in [66, 59].

3 Module Hierarchies

Conceptual clarity and ease of understanding are greatly facilitated by breaking a program into modules,
each of which is mind-sized and has a natural purpose. This in turn greatly facilitates both debugging
and reusability. When there are many modules, it is helpful to make the hierarchical structure of module
dependency explicit, so that whenever one module uses sorts or operators declared in another, the other is
explicitly imported to the first, and is also defined earlier in the program text. A program developed in this
way has the abstract structure of an acyclic graph of abstract modules'®. We will use the word context to
describe such a graph of modules, later extending it to include views, as discussed in Section 4.3.

More exactly now, a directed edge in an acyclic graph of modules indicates that the higher (target)
module imports the lower (source) module, and the context of a given module is the subgraph of other
modules upon which it depends, i.e., the subgraph of which it is the top. Parameterized modules can also
occur in such a hierarchy, and are treated in essentially the same way as unparameterized modules; they
may also have instantiations, and these are considered to be distinct from the parameterized module itself.

In addition to representing program structure in a clear and convenient way, the module hierarchy
can have some more specific applications, such as maintaining multiple mutually inconsistent structures as
subhierarchies, which could be useful for keeping available more than one way to do the same or related
things, for example, in a family of partially overlapping system designs; that is, the module hierarchy can
be used for configuration management. It can also be used to keep information from different sources in
different places, and to maintain multiple inconsistent worlds, which would be useful in Artificial Intelligence
applications exploring the consequences of various mutually inconsistent assumptions, where there may also
be some shared assumptions. Hierarchical structure could also be used to reflect access properties of a
physically distributed database, as suggested in [48].

The command
show modules .

shows a list of all modules in the current OBJ working context. If a module with an atomic name has been
redefined, then it may appear more than once in the output from this command.
One can save the current context with the command

do save (ChString)

where (ChString) is any character string, possibly containing blanks; you can then return to a previously
named context with the command

15Such a hierarchy differs from what is sometimes called a “Dijkstra-Parnas” hierarchy, because lower level modules do not
implement higher level (less abstract) modules, but rather, lower level modules are included in higher level modules; both kinds
of hierarchy are supported in the LILEANNA system [85].
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do restore (ChString) .

Warning: The commands save and restore do not work correctly in an OBJ3 system that has been
constructed using Kyoto Common Lisp; however, they do work correctly in a system built using (for example)
Lucid Common Lisp.

Warning: The command openr (as described in Section 3.2) can retroactively change a saved context.
The initial OBJ context, which has exactly what the standard prelude provides, can be restored at any
time with the command

do restore init .

Simply reading in the standard prelude again will restore the modules in the standard prelude to their
original state, but will not delete any modules that have been subsequently added.

OBJ3 has a notion of “the module currently in focus”, and the module name THE-LAST-MODULE evaluates
to that module; ordinarily, this is the last module mentioned to the system, but it can be changed to any
desired module by using the command

select [(ModEzp)]

(The old form show select (ModExp) still works.)
The following synonymous commands

show [(ModEzp)] .
show mod [(ModExzp)] .

display the structure of the given module, or of the current module if no {ModEzxp) is given.

Warning: When a module is displayed, some details may omitted, and other details may be shown that
the user did not input, for example, some declarations that properly belong to submodules.

The command
show all [(ModExp)] .
shows a module in more detail than the default form. The commands

set verbose on .
set verbose off .

control whether modules are displayed in detailed form by default. (It also controls whether a trace of the
id processing is displayed; this is discussed later.)

OBJ3 automatically generates abbreviated names for modules and module expressions; they can be very
useful, because sometimes the “official” name of a module can be very long indeed. These abbreviations
have the form “MOD(Nat)” where (Nat) is a natural number, and can serve as names for modules in many
top-level commands. One can see the abbreviation for a module’s name with the command

show abbrev [(ModFEzp)] .
For example,
show abbrev PROPC .

gives the abbreviation for PROPC, which at the current point in processing the OBJ3 code in this paper is
MOD40. Names of the form MOD({Nat) can also be used in show commands and many other contexts. These
names are considered abbreviations, rather than a formal part of the syntax of OBJ3.

25



3.1 Importing Modules

OBJ3 has four modes for importing modules, with the syntax
(ImportKw) (ModExp )

where (ImportKw) is one of protecting, extending, including, or using, and (ModExp) is a module
expression, such as INT; the abbreviations pr, ex, inc, and us can be used for the corresponding mode
keywords.

By convention, if a module M imports a module M’ that imports a module M’ ?, then M’ is also imported
into M; that is, “imports” is a transitive relation. A given module M’ can only be imported into M with a
single mode; modules that are multiply imported due to transitivity are ordinarily considered to be “shared.”

The meaning of the import modes is related to the initial algebra semantics of objects, in that an
importation of module M’ into M is:

1. protecting iff M adds no new data items of sorts from M’, and also identifies no old data items of sorts
from M’ (no junk and no confusion);

2. extending iff the equations in M identify no old data items of sorts from M’ (no confusion);

3. including or using if there are no guarantees at all (see below for the difference between these).

A protecting importation has the advantage that it guarantees that no newly generated rules need to
be added to the imported module, and also, the E-strategies of imported operators do not need to be
recomputed; thus, the code from protecting imported modules can just be shared.

Warning: OBJ3 does not check whether the user’s import declarations are correct, because this could
require arbitrarily difficult theorem proving that would render the language impractical. However, the
consequences of an incorrect import mode declaration can be serious: incomplete reductions in some cases,
and inefficient reductions in others.

Warning: If an object A has a sort S, and an object B imports A and introduces a new subsort S’ of S, then
things may not work as you expect, even if mathematically A is protected in B. In particular, if B introduces
a new overloading of an operator of sort S from A that restricts to S’, then the protecting declaration may
cause failure to generate rules that are needed for matching for some cases, such as rules associated with
an identity attribute. Also, retracts may appear on right sides because of equations that appear to be sort
increasing (this issue was discussed in Section 2.3.4).

For example, the module

obj A is
sort S .
opf :S->8S.
ops ab: ->8S.
vars X : S .
eq £(X) = b .
endo

is certainly protected from the mathematical point of view in the module

obj B is
protecting A .
sort S’
subsorts S’ < § .
opf :S >89
opa: —>8’

endo

However, in the context of B, the equation f (X) = b, which was trivially sort decreasing in A, is no longer sort
decreasing, and evaluating the term f (a) in the context of the module B now gives the result r:S>S’ (£ (b)).
Thus, introducing new sorts under previous sorts should be avoided in protecting importations.

For an extending importation, the E-strategies associated to imported operators are recomputed, ac-
cording to the following rules:
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1. if an imported operator has an explicit, user-supplied strategy, then use it;
2. if not, and if there are no new equations, then use the inherited computed strategy; and
3. if there are new equations, then recompute the strategy and use the new one.

Including is implemented as incorporation without copying, and in this respect is similar to protecting;
if a module is included twice in a given module, only one version is created (if it doesn’t already exist) and
all references are to the same shared instance.

Warning: The using mode is implemented by copying the imported module’s top-level structure, sharing
all of the submodules that it imports. It is required that all copied sorts within a given module have distinct
names, and that all copied operators are uniquely identified by their name and rank. This means operators
that require qualification will be a problem. Such operators may be mistakenly collapsed into a single
operator.

Warning: “using BOOL” is not meaningful, because a using importation that is not an extending impor-
tation will identify true with false, which is not only not useful, but also will interfere with the predefined
operators _==_ and if_then_else_fi.

Sometimes it is desirable to copy not only the top-level structure of a module, but also that of some of
its submodules, for example, to ensure that the associative or identity completion process is carried out, or
that evaluation strategies are recomputed. This can be done using the following syntax,

using (ModEzp) with (ModExzp) {and (ModEzp)}...

which causes the listed submodules to be copied instead of shared. This feature is illustrated in the unification
example in Appendix C.3. Note that all automatically created submodules'® are automatically copied by
using, so the multi-level using declaration is not needed for such cases.

The module that introduces a given sort often establishes a convention for naming variables of that sort,
and introduces a number of variables for it. The following command makes it easy to reuse variable names,
and thus to maintain such conventions. Thus,

vars-of (ModEzp )
introduces all the variables from (ModFEzp); these have the same names and sorts as in (ModEzp).

Warning: Only the variables declared in (ModExp) are introduced, and not variables from modules imported
by (ModEzp), even if their variables had been introduced into (ModEzp) using vars-of.

OBJ3 permits redefining any module, simply by introducing a new module with the old name. A warning
is issued, indicating that redefinition has occurred, and then all future mentions of this name refer to the new
definition. This can be very useful in theorem proving; for example, you may want to replace a predefined
module for numbers that is efficient, by another that is less efficient but more logically complete; Appendix
C.4 contains several examples of this.

Warning: Redefining a module does not cause the redefinition of modules that have been previously built
from it. For example, if we define A to be an enrichment of INT, then redefine INT, and then look at A, it
will still involve the old definition of INT. The same happens with parameterized modules.

BOOL is implicitly protecting imported into every module, to ensure that conditional equations can be
used, unless an explicit extending BOOL declaration is given instead; TRUTH can be imported instead of BOOL
by giving an explicit declaration, as in the PROPC example in Section 2.4.6. Usually it is convenient that
BOOL has been imported, because conditional equations often make use of the operators that are provided
in BOOL, such as ==, and, or not. But sometimes, especially in applications to theorem proving, this can be
inconvenient, because it does not provide enough rules to correctly decide all equalities about truth values,
even though it does correctly specify the initial algebra of Boolean truth values. The command

set include BOOL off .
causes not importing BOOL to become the default. The original default can be restored with the command
set include BOOL on .

When include BOOL is on, then BOOL is included in a module before anything except a using, protecting,
extending or sort declaration, unless TRUTH-VALUE, TRUTH, or BOOL itself has been included already. (This
will affect the determination of the principal sort of a module, as described in Section 4.3.)

16This notion is discussed in Section 4.5 below.
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3.1.1 Identity Completion and Associative Extensions

Pattern matching for operators with identities is implemented in OBJ3 using a process called id processing
that consists of a “partial identity completion” process that may generate some new rules, and an “id
processing” process that may add some so-called “id conditions” to rules. Identity completion generates
instances of a rule by considering “critical pairs” between the rule and the identity equations, in order
to give the effect of rewriting modulo identity. For example, consider the first equation from the module
LIST-0F-INT1 in Section 2.4, head(I L) = I. This equation has head I = I as the special case where L =
nil, and identity completion considers adding it to the rulebase; however, it is not actually added in this case,
because the rule is matched in such a way that terms are rewritten as if this rule had been added. Id processing
restricts the standard identity completion process to avoid simple cases of non-termination by adding id
conditions to rules, so that obviously problematic instances are disallowed, and also by discarding rule
instances whose left sides are variables (because their implementation as rules is problematic); in addition,
generated rules that are subsumed by other rules are deleted for the sake of efficiency.

Warning: Experience shows that matching modulo identity often results in problems with non-termination.
It is safer to use the attribute idr: and then add any desired identity completion equations by hand.

Warning: Strategies of operators are not taken into account when testing for non-termination. It is
possible that a rule will be considered non-terminating, when this condition is actually avoided because of
the evaluation strategies.

For example, in the object PROPC of Section 2.4.6, if you replace the attributes idr: by id:, then identity
completion will substitute q = false into the distributive law,

eq p and (q xor r) = (p and q) xor (p and r)
and (in effect) add the new equation
eq p and r = (p and false) xor (p and r)

which would make it likely that terms containing and would fail to terminate. However, OBJ3’s id processing
will discard the problematic equations and add an id condition to the rule, so that it looks as follows:

eq p and (q xor r) = (p and q) xor p and r
if not (r === false or p === true or q === false)

Id conditions are normally not displayed. But when rules are displayed either in verbose mode, or with
a show all command, then the id conditions are shown. For example, you can see what id completion did
to PROPC with id:, including those generated by identity completion, by using the command

show PROPC .
or more specifically, the command
show eqs PROPC .

Also, when a module is processed in verbose mode, some details of the completion process are shown,
including the new rule instances that are generated, and indications of modifications or additions to rules.
This extra information can help to understand non-termination problems. The rules that are automatically
added by id processing have automatically generated labels of the form “compl{(Nat)”.

The object BSET of Appendix Section C.1 illustrates a different approach, which is to explicitly make the
distributive law a conditional equation. This approach can also be useful in many other cases. The object
IDENTICAL in the standard prelude is used in this example; it consists of BOOL plus the operators _===_ and
_=/==_, which test for syntactic identity and non-identity, respectively.

For another example, if the following module is processed in verbose mode,

obj TST is
sort A .
ops cdeO01:->A4.
vars X Y : A .

op _+_ : A A -> A [assoc comm id: 0]
e X +Y=c.
endo
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then OBJ3 will produce this output:

obj TST
Performing id processing for rules
For rule: eqX + Y =c
Generated valid rule instances:
eqX +Y=c
Generated invalid rule instances:

eqY =c
eq X =c
Modified rule: eq X + Y = ¢ if not (Y === 0 or X === 0)

Done with id processing for rules

No new rules are generated here, but an id condition is added to the given rule. A rule instance is considered
invalid if its left side is a variable, or if it would “obviously” cause non-termination, e.g., if its left and right
sides are the same term; such rules are discarded. The following commands

show rule .1 .
show all rule .1

produce the following output:

show rule .1 .
rule 1 of the last module
eq X +Y=c

show all rule .1 .
rule 1 of the last module
eq X +Y = c if not (Y === 0 or X === ()

The following is a somewhat more complicated example:

obj TST is
protecting TRUTH-VALUE .
sort A .
op 0 : —>A .
op _+_ : A A -> A [assoc id: 0]
op1l:->A.

op _*_ : A A -> A [assoc id: 1]
opf : A->A.
opsabcdef : ->A.

var X Y : A .
eq (X *Y) + £fX *x ¥Y) = £(X)
endo

Its verbose output is:

obj TST
Performing id processing for rules
For rule: eq X * Y) + £f(X * Y) = £(X)
Generated valid rule instances:
eq X *xY) + £(X *xY) = £(X)
eq X + £(X) = £(X)
eq Y + £(Y) = £(1)
eq £(0) = £(1)
Generated invalid rule instances:
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eq £(0) = £(0)

Added rule: [compll6] eq £(0) = £(1)

Added rule: [compll7] eq X + £(X) = £(X) if not X ===

Modified rule: eq (X * Y) + £f(X * Y) = £(X) if not (X === 0 and Y ===
1)

Done with id processing for rules

The rule compl16 must be added because the top operator of its left side is £ rather than _+_, and OBJ3
stores rules according to the top symbol of their left side. Notice that the left side of rule compl17 is a
generalization of the original left side, and in fact, is a strict generalization because with OBJ3’s built-in
matching, the original rule’s left side cannot match X + £(X), the left side of the new rule. Therefore,
it might make sense to delete the original rule; however, OBJ3 does not do this, to avoid the potential
confusion of having rules given by the user disappear. The id completion process may not be correct unless
the original rule set is confluent, in the sense that the set of rules available after id completion is confluent
modulo OBJ3’s built-in matching (which is basically associative, or associative-commutative, matching, plus
some quite limited identity matching). In this example, the confluence assumption implies that it is valid
not to add the rule eq Y + £(Y) = £(1). Note that in this rather contrived example, the original system
was not confluent. The following is a simpler example of a single rule that is not confluent:

eq f(X) + £(Y) =X .

where + is commutative.

Warning: Although Release 2.04 of OBJ3 handles associative rewriting in part through special internal data
structures, its way of dealing with subsorts may generate new “extension” equations from given equations
that involve associative operators; see [99] for further details. In many cases, these new equations are not
only unnecessary, but can also greatly slow down reduction. For example, if you read in the objects NAT and
INT from Appendix Section C.7 and then ask OBJ to show you the equations, among them you will find

[x]eq 0 + I + ac_.E = ac_E + I .

Although this equation can be very expensive to match, it adds nothing to the power of the equation that
it extends, namely

eq 0+ I=1T1.

Unfortunately, the current implementation of associative rewriting does sometimes require equations like
[X] to be generated, and it can be hard to tell when they are useless. The issues involved in implementing
rewriting modulo associativity and identity are surprisingly subtle, and it is likely that improvements on the
techniques that we have used in OBJ3 could be found; see [99, 96] for further discussion.

3.2 Opening and Closing Modules

A module can be temporarily enriched after it has been defined, by using the command
open (ModExp) .

or, for the last module, just the command
open .

This is useful for many applications, and in particular for theorem proving.

Warning: The blank and period are required here.

Exactly the same syntax can be used for adding declarations to an open module as for originally introduc-
ing them into modules; thus, operators can be added with the op command, sorts with the sort command,
and so on. All other top level commands (e.g., in, set, show, select, and do) also work as usual.

Normally a module that has been opened should eventually be closed, using the command

close
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Warning: There is no period after this command; it is considered self-delimiting.

The command open creates a hidden object (called “}%”) that includes the given object, and the command
close causes the hidden object “%” to be deleted. All enrichments to an opened module “disappear” when
it is closed. This allows an object to temporarily have more structure than when it was originally defined,
which can be very useful in theorem proving examples, as illustrated many times in Section C.4.

OBJ3 separately keeps track of the “last” module and the “open” module (if any). Therefore, it is
possible (for example) to show the module INT while the module LIST is open; this will make INT the “last”
module, but all newly declared elements will still go into the open LIST module. The “last” module can be
identified by the command “show name .” and the open module can be identified by “show name open .”.

The variables declared in a module are no longer available when it is opened, but they can be made
available with the command

vars-of .
The variables that are available can be seen by using the command
show vars [(ModExp)].

An alternate version of open called openr (to suggest “open retentive”) retains additions after closure; it
is closed with just close. This can be useful for including lemmas when OBJ3 is used for theorem proving.

Warning: If an enriched module has been incorporated into some other module, either directly (e.g., by
protecting) or indirectly (by appearing in a module expression), then the incorporating module may no
longer be valid with respect to the enriched version of the incorporated module.

The command
select open .

makes the open module the last module (i.e., the default for show commands, etc.). In fact, “open” can be
used as a short name for the open module in any of the show commands.

Warning: If you show the open module, OBJ will display the name of the underlying module, but marked
with “*** open” as a reminder.

3.3 Built-ins and the Standard Prelude

Usually, languages have some built-in data types, such as numbers and identifiers. OBJ is sufficiently
powerful that it does not need built-ins, because it can define any desired data type; but building in the
most frequently used data types can make a great difference in efficiency and convenience. OBJ3 has
predefined objects TRUTH-VALUE, TRUTH, BOOL, IDENTICAL, NAT, NZNAT, INT, RAT, FLOAT, QID, QIDL, and ID,
plus the parameterized tuple objects described in Section 4.2, the theory TRIV described in Section 4.1, and
some other objects that serve a technical purpose.

TRUTH-VALUE provides just the truth values true and false, while TRUTH enriches TRUTH-VALUE with
_==_, _=/=_ and if_then_else_fi, and BOOL adds the expected syntax and semantics for Booleans, e.g.,
infix associative and, or, and iff, infix implies, prefix not. Indeed, the object PROPC of Section 2.4.6
above can be considered a specification for these features of the Booleans, except of course, that quoted
identifiers are not provided, but _==_, _=/=_ and if_then_else_f1i are provided; also, note that these last
three operators are polymorphic, in the sense that they apply to any appropriate sorts. This can help, for
example, with parsing problems when a condition is of the form E == C, where C is an ambiguous constant
(i-e., there is more than one constant with that name) and E is has a well-defined unique sort.

The object IDENTICAL can be used in place of BOOL; it provides the operators _===_ and _=/==_ which
check for literal identity of terms without evaluating them.

NAT, NZNAT, INT and RAT provide natural numbers, non-zero naturals, integers and rationals, respectively,
while FLOAT provides floating point numbers, each with the usual operators, having the expected attributes.
You can discover exactly what any predefined object provides by using the show command, or else by
looking at the file that defines OBJ3’s predefined objects, which is obj/lisp/prelude/obj3sp.obj in the
standard distribution of OBJ3; this file is executed as a standard prelude whenever a new instance of OBJ3
is constructed.

QID, QIDL and ID provide identifiers. QID and QIDL identifiers begin with the apostrophe symbol, e.g.,
’a, ’b, 21040, and ’aratherlongidentifier. QID has no operators, while QIDL and ID have equality,
disequality, and lexicographic order, which is denoted _<_, and also include everything that BOOL does.
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Warning: Data elements from ID lack the initial apostrophe, and therefore must be used very carefully to
avoid massive parsing ambiguities.

Some of OBJ3’s predefined modules were implemented by encapsulating Lisp code in objects, as can be
seen by looking at the OBJ3 standard prelude. The possibility of implementing other efficient built-in data
structures and algorithms remains available to sophisticated users, and has many potential applications, such
as building graphics interfaces. Details of the syntax for built-in sorts and equations appear in Appendix
Section D.

3.4 Files and Libraries

To reuse code, it and anything that it relies upon (its context) must be available. Files provide a convenient
way to store and retrieve modules along with their contexts. The context of a given file of modules and views
can be preserved by prefacing the file with a command that fetches whatever it depends upon. Thus, an
OBJ file may contain modules, views, and other top level OBJ commands, including reduction commands
and the in (or input) command, which reads in and executes a file. For example,

in mysys

reads the file mysys. obj, adding its modules and views to the current context, executing whatever commands
it may contain, including nested in commands, and checking that a consistent context is formed as they are
added to the database. This “batch mode” use of OBJ3 is in fact more convenient in practice than using it
interactively.

If eof appears as a top level command in a file, then everything after it is ignored. This can be convenient
during debugging.

Allowing files to include top level commands is very convenient and flexible. For example, after con-
structing a particular multi-module context, one can execute some illustrative examples. UNIX directories
provide a convenient way to organize files into libraries, because a given directory can have subdirectories
named by keywords, with further named subdirectories, etc. For example, the propositional calculus deci-
sion procedure may be found in file obj/exs/propc.obj, its test cases in obj/exs/propc-exs.obj, and the
results of running them might be in obj/exs/propc-exs.1lg. Note that a given file can be included in many
other files, located in many different subdirectories.

The command

cd (Directory)

can be executed at the top level of OBJ3, and will change the current directory for OBJ3 to be the given
directory. The command cd ~ can be used to change to one’s home directory. A file name beginning with
“~/” will be expanded to the user’s home directory in most contexts.

The command pwd reports the current working directory. The command 1s lists the files in the current
working directory.

Warning: These commands do not have final periods.

3.5 Comments

OBJ has two kinds of comment, those that print when executed, and those that don’t. The former are
lines that begin with “***>” and the latter are lines that begin with “***”. In many cases, these comment
indicators can also appear part way through a line, in which case the remainder of the line is treated as a
comment. “---"is a synonym for “x*x” for comments. The printing comments can be useful when OBJ is
used in “batch mode.” These comments must either be at the outer-most level or the top level of a module
and cannot appear inside of other basic syntactic units; specifically, they cannot appear in terms (and hence
equations) or views.

If the first non-blank character after “*x*” is a “(”, then the comment extends from that character up
to the next balancing “)”. This makes it easy to comment out several lines at once. For example,

sokk (

eq X *x0=0.

eq X +X=X.
)
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Warning: Be careful of comments that have parentheses in them; for example, in
*»** (This is the idempotent law:) eq X + X = X .

the comment only extends to the balancing “)”, and does not include the equation. This treatment is
inconsistent with release 1, and may cause errors in some older specifications.

4 Parameterized Programming

Both the costs and the demands for software are enormous, and are growing rapidly. One way to diminish
these effects is to maximize the reuse of software, through the systematic use of what we call parameterized
programming (see [85, 47, 52, 49, 36, 37, 55, 77]). Successful software reuse depends upon the following
tasks being sufficiently easy:

1. finding old parts that are close enough to what you need;
2. understanding those parts;
3. getting them to do what you need now; and

4. putting them all together correctly.

Under these conditions, the total effort, and especially debugging and maintenance effort, can be greatly
reduced. Objects, theories, views and module expressions provide formal support for these tasks. The basic
idea of parameterized programming is a strong form of abstraction: to break code into highly parameterized
mind-sized pieces. Then one can construct new programs from old modules by instantiating parameters and
transforming modules. Actual parameters are modules in this approach, and interface specifications include
semantic as well as syntactic information.

Ada [22] generic packages provide only part of what would be most useful. In particular, Ada generic
packages provide no way to document the semantics of interfaces, although this feature can greatly improve
the reliability of software reuse and can also help to retrieve the right module from a library, as discussed
in [49]. Also, Ada provides only very weak facilities for combining modules. For example, only one level
of module instantiation is possible at a time; that is, one cannot build F(G(A)), but rather one must first
define B to be G(A), and then build F(B).

Parameterized modules are the basic building blocks of parameterized programming, and its theories,
views and module expressions go well beyond the capabilities of Ada generics. A theory defines the in-
terface of a parameterized module, that is, the structure and properties required of an actual parameter
for meaningful instantiation. A view expresses that a certain module satisfies a certain theory in a certain
way (note that some modules can satisfy some theories in more than one way); that is, a view describes a
binding of an actual parameter to an interface theory. Instantiation of a parameterized module with an
actual parameter, using a particular view, yields a new module. Module expressions describe complex
interconnections of modules, potentially involving instantiation, addition, and renaming of modules.

A useful insight (see [7]) is that programming in the large can be seen as a kind of functional programming,
in which evaluating (what we call) a module expression is indeed a kind of expression evaluation; in particular,
there are no variables, no assignments, and no effects, side or otherwise, just functions applied to arguments;
this can provide a formal basis for software reuse [12]. However, there are also some significant differences
between ordinary functional programming and module expression evaluation in parameterized programming,
including semantic interfaces, the use of views, and evaluation in context, producing not just a single module,
but also embedding it in its context, i.e., placing it within a graph of modules.

As an example of parameterized programming, consider a parameterized module LEXL[X] that provides
lists of Xs with a lexicographic ordering, where the parameter X can be instantiated with any partially ordered
set. Thus, given QIDL that provides identifiers (and in particular, words) with their usual (lexicographic)
ordering, then LEXL[QIDL] provides a lexicographic ordering on lists of words (i.e., on “phrases,” such as
book titles). And LEXL[LEXL[QIDL]] provides a lexicographic ordering on list of phrases (such as lists of
book titles) by instantiating the ordering that LEXL[X] requires with the one that LEXL[QIDL] provides,
namely lexicographic ordering!”. Similarly, given a module SORTING[Y] for sorting lists of Ys (again for Y
any partially ordered set, and assuming that SORTING[Y] imports LEXL[Y]), we can let Y be LEXL[QIDL] to
get a program SORTING[LEXL[QIDL]] that sorts lists of book titles.

17Tn practice, the two kinds of list should use different notation, to avoid parse ambiguities, as in Section 4.5 below.
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Let us examine this example a little more closely. In general, a module can define one or more data
structures, with various operators among them, possibly importing some data structures and operators
from other modules'®. For example, LEXL[X] should define or import lists of Xs and provide a binary
relation, say L1 << L2, meaning that list L1 is the same as or comes earlier in the ordering than L2. The
interface theory for LEXL is POSET, the theory of partially ordered sets, and hereafter we will use the notation
LEXL[X :: POSET] to indicate this. To instantiate a formal parameter with an actual parameter, it is
necessary to provide a view, which binds the formal entities in the interface theory to actual ones. If there
is a default view of a module M as a partial order, we can just write LEXL[M]; for example, if M = QIDL, there
is an obvious view that selects the predefined lexicographic ordering relation on identifiers. LEXL[QIDL] in
turn provides another lexicographic ordering, and a default view from POSET using this ordering makes it
legal to write SORTING[LEXL[QIDL]]. (Code for this example is given in Sections 4.4 and 4.5.) The next two
subsections discuss theories and views, respectively.

4.1 Theories

Theories are used to express properties of modules and module interfaces. In general, OBJ3 theories have
the same structure as objects; in particular, theories have sorts, subsorts, operators, variables and equations,
can import other theories and objects, and can even be parameterized. Semantically, a theory denotes a
“variety” of models, containing all the (order sorted) algebras that satisfy it, whereas an object defines
just one model (up to isomorphism), its initial algebra. As a result of this, theories are allowed to contain
equations that are prohibited in objects, because they cannot be interpreted as rewrite rules. In particular,
equations in theories may have variables in their right side and conditions that do not occur in their left
side; also the left side may be a single variable. Nonetheless, Release 2 of OBJ3 allows reductions to be
executed in the context of theories, and simply ignores any equations that cannot be interpreted as rewrite
rules. However, the apply feature (described in Section 5) does fully support equational deduction with such
non-rewrite-rule equations. Another difference is that built-in rules (see Appendix D.1.3) are not allowed in
theories.

Now some examples, declaring some interfaces with properties that might have to be satisfied for certain
modules to perform correctly. The first is the trivial theory TRIV, which requires nothing except a sort,
designated E1t.

th TRIV is
sort Elt .
endth

This theory is predefined in OBJ3, as part of the standard prelude.
The next theory is an extension of TRIV, requiring that models also have a given element of the given
sort, here designated “x”.

th TRIVx* is
using TRIV .
op * : => Elt .
endth

Of course, this enrichment is equivalent to

th TRIV* is

sort E1t .

op * : -> Elt .
endth

which may seem clearer. These first two theories impose only syntactic requirements.
Next, the theory of pre-ordered sets; its models have a binary infix Bool-valued operator <= that is
reflexive and transitive.

th PREORD is
sort Elt .

181n general, modules may have internal states; although this feature is not discussed in this paper, the reader can consult
[85, 70, 55] and [74] for further information about approaches to this important topic, which is implemented in the FOOPS
[74, 87], OOZE [3], and LILEANNA [85] systems.
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op _<=_ : Elt Elt -> Bool .

vars E1 E2 E3 : Elt .

eq E1 <= E1 = true .

cq E1 <= E3 = true if E1 <= E2 and E2 <= E3 .
endth

Note the use of and in the condition of the last equation, used to express transitivity; it has been imported
from BOOL. Recalling that previously declared variables can occur in terms submitted for reduction, the term

reduce E1 <= E1 .

reduces to true (after producing a warning about the presence of variables).
Similarly, the theory of partially ordered sets, with models having a binary infix Bool-valued operator <
that is anti-reflexive and transitive, can be expressed as follows:

th POSET is

sort E1t .

op _<_ : Elt Elt -> Bool .

vars E1 E2 E3 : Elt .

eq E1 < E1 = false .

cq E1 < E3 = true if E1 < E2 and E2 < E3 .
endth

The theory of an equivalence relation has a binary infix Bool-valued operator, here denoted _eq_, that
is reflexive, symmetric and transitive.

th EQV is

sort E1t .

op _eq_ : Elt Elt -> Bool [comm].

vars E1 E2 E3 : Elt .

eq (E1 eq E1) = true .

cq (E1 eq E3) true if (E1 eq E2) and (E2 eq E3)
endth

Note the use of the [comm] attribute here; of course, we could instead have given the equation for symmetry,
eq E1 eq E2 = E2 eq E1 .

Finally, the theory of monoids, which in Section 4.7 will serve as an interface theory for a general iterator
that in particular gives sums and products over lists.

th MONOID is

sort M .

ope:->M.

op _*_ : MM -> M [assoc id: e]
endth

The possibility of expressing semantic properties, such as the associativity of an operator, as part of the
interface of a module is a significant advantage for parameterized programming over traditional functional
programming. For example, traditional functional programming can easily provide a (second-order) function
to iterate any given binary function (such as integer addition) over lists, but it cannot express the condition
that the binary function must be associative, although this property is necessary for certain optimizations
to be correct (see Section 4.7 for the details of this example). There is no reason why the language used to
express assertions in theories couldn’t be full first-order logic (including quantifiers); in fact, this might be a
very desirable extension of OBJ3. However, the expressive power of the protecting importation of objects
into theories (which requires that the given object must be interpreted with initial algebra semantics) and in
particular the use of such importations for the BOOL object, allows quite sophisticated theories to be defined
in OBJ3 even with its current restriction to equational logic. For example, the theory FIELD of fields, which
is well known not to be equationally definable, can easily be defined as follows'?

9However, as pointed out in Section 2.3.3, general sort constraints like the one given in this theory are not yet implemented.
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th FIELD is
sorts Field NzField .
subsorts NzField < Field .
protecting BOOL .
op 0 : -> Field .
op 1 : -> NzField .
op _+_ : Field Field -> Field [assoc comm id: 0].
op _*_ : Field Field -> Field [assoc comm id: 1].
op _*_ : NzField NzField -> NzField [assoc comm id: 1].
op -_ : Field -> Field .
op _"-1 : NzField -> NzField .
op nz : Field -> Bool .
vars X Y Z : Field .
vars X’ Y’ : NzField .
as NzField : X if nz(X)
eqX + (-X) =0 .
eq X7 x (X ~-1) =1 .
eqX*x (Y+2)=X*xY)+ X+ 2)
cq X = 0 if not nz(X)
endth

4.2 Parameterized Modules

Let us now consider some parameterized modules. First, a parameterized LIST object, with TRIV as its
interface theory:

obj LIST[X :: TRIV] is
sorts List NeList .
subsorts Elt < NeList < List .

op nil : -> List .
op __ : List List -> List [assoc id: nil prec 9]
op __ : NeList List -> NeList [assoc prec 9]

op head_ : NelList -> Elt .

op tail_ : NelList -> List .

op empty?_ : List -> Bool .

var X : Elt .

var L : List .

eq head(X L) = X .

eq tail(X L) = L .

eq empty? L = L == nil .
endo

Warning: The interface theories of parameterized modules must have been defined earlier in the program
text. For example, TRIV must have been defined before the above LIST module; this is not a problem in this
case, because TRIV is predefined.

Modules can have more than one parameter. A two parameter module has an interface with the syn-
tax [X :: TH1, Y :: TH2], and if the two theories are the same, we can just write [X Y :: TH]. Now a
parameterized theory, vector spaces over a field:

th VECTOR-SP[F :: FIELD] is
sort Vector .
op 0 : —> Vector .
op _+_ : Vector Vector -> Vector [assoc comm id: 0]
op _*_ : Field Vector -> Vector
vars F F1 F2 : Field .
vars V V1 V2 : Vector .
eq (F1 + F2) * V = (F1 x V) + (F2 * V)
eq (F1 x F2) * V = F1 * (F2 * V)
eq F x (V1 + V2) (F x V1) + (F * V2)
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endth

For 2 < n < 4, the predefined parameterized nTUPLE modules provide n-tuples, with all n interface
theories being TRIV. Here is the code for n = 2:

obj 2TUPLE[C1 :: TRIV, C2 :: TRIV] is
sort 2Tuple .
op <<_;_>> : E1lt.Cl1l E1t.C2 -> 2Tuple .
op 1*_ : 2Tuple -> E1t.C1 .
op 2x_ : 2Tuple -> E1t.C2 .
var E1 : E1t.C1 .
var E2 : E1t.C2 .
eq 1x << E1 ; E2 >>
eq 2x << E1 ; E2 >>
endo

E1 .
E2 .

Note the use of the qualifications in the sorts E1t.C1 and E1t.C2.

4.3 Views

A module can satisfy a theory in more than one way, and even if there is a unique way, it can be arbitrarily
difficult to find. We therefore need a notation for describing the particular ways that modules satisfy
theories. For example, NAT can satisfy POSET with the usual “less-than” ordering, but “divides-and-unequal”
and “greater-than” are also possible; each of these corresponds to a different view. Thus, an expression like
LEXL[NAT] (where LEXL has interface theory POSET, as in Section 4.1) would be ambiguous if there were not
certain definite conventions for default views.

More precisely now, a view ¢ from a theory T to a module M, indicated ¢: T = M, consists of a mapping
from the sorts of T to the sorts of M preserving the subsort relation, and a mapping from the operators of T
to the operators of M preserving arity, value sort, and the meanings of the attributes assoc, comm, idem, id:
and?’ idr: (to the extent that these attributes are present), such that every equation in T is true of every
model of M (thus, a view from one theory to another is called a “theory interpretation” in logic [9]). The
mapping of sorts is expressed with the syntax

sort S1 to S1°
sort S2 to S2’

and the mapping of operators is expressed with the syntax

op ol to ol’
op o2 to 02’

Warning: The final blank and period are required. Comments may not appear anywhere inside of views.

Thus, the mapping of sorts and the mapping of operators can each be seen as sets of pairs. The operators

ol, 01, 02, ..., may be designated by operator forms, or operator forms plus value sort and arity, possibly
qualified by sort and/or module, as needed for disambiguation. As explained below, the target operators
ol’, 027, ..., can also be derived operators, i.e., terms with variables.

These two sets of pairs together are called a view body. The syntax for defining a view at the top level
of OBJ3 requires giving names for the source and target modules, and (usually) a name for the view. For
example,

view NATG from POSET to NAT is
sort E1t to Nat .
op _<_ to _>_

endv

defines a view called NATG from POSET to NAT, interpreting _<_ in POSET as _>_ in NAT.
Now some views that involve derived operators. First, consider

20For this purpose, id: and idr: are treated as equivalent.
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view NATLEQ from PREORD to NAT is
vars L1 L2 : Elt .
op L1 <= 12 to L1 < L2 or L1 == 12 .
endv

This maps <= in PREORD to “less-than-or-equal” in NAT, which for illustrative purposes is defined here from
< and ==, even though <= is already defined in NAT. Similarly, the following view maps < in POSET to the
relation “divides-and-unequal” in NAT (note that divides-and-unequal is a partial ordering that is not a total
ordering):

view NATD from POSET to NAT is

vars L1 L2 : Elt .

op L1 < L2 to L1 divides L2 and L1 =/= L2 .
endv

Warning: The variables must be declared, using sorts from the source theory, while the target terms in
operator pairs must be of the corresponding sorts from the target module. For parsing the target terms, the
variables are re-declared with the appropriate sorts.

When the user feels that there is an obvious view to use, it can be annoying to have to write out that
view in full detail. Default views often allow omitting views within module expressions, by capturing the
intuitive notion of “the obvious view.” A default view is a null view?!, which is the extreme case of an
abbreviated view in which the view is abbreviated to nothing. Given a view ¢: M = M, there are two
rules for abbreviating sorts:

1. Any pair of the form S to S can be omitted, except in the case that the target sort S is a sort in a
parameter theory.

2. A pair S to S’ can be omitted if S and S’ are each the principal sort of their module. The principal
sort of a module is intuitively the first sort introduced into its body. More precisely, it is defined as
follows:

(

(b
(c
d

or else the principal sort of the first parameter theory, if there is one;

or else Bool, provided that implicit importation of Bool has not been disenabled.

(
If none of these conditional hold, then the module has no sorts!

Warning: The handling of default views described above is slightly different from that in Release 1, and
some default views may be computed differently.

As a special case, every module has a default view from TRIV with its principal sort as the target for E1t.
For another example, the default view from POSET to NAT is

view NATV from POSET to NAT is
sort E1t to Nat .
op _<_ to _<_

endv

In the following abbreviated view

view NATG from POSET to NAT is
op _<_ to _>_
endv

the pair E1t to Nat has been omitted.
The sort to be used as the principal sort of a module can be explicitly set with a declaration in the
module of the form

21S0me further conventions for default views are described in [52], but these are not implemented in Release 2 of OBJ3; also,
the discussion in [52] does not reflect some improvements to OBJ3 made after that paper was written.
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principal-sort (Sort)

where principal sort may be abbreviated to psort. Note that this does not create a sort, but just declares
that a certain existing sort should be taken as the principal sort of the module. This feature is not usually
needed, because the default choice of principal sort, as the first sort “mentioned”, is quite good, but it is
needed (for example) if the sort desired to be principal comes from an interface theory.

The commands

show psort [(ModFEzp))
and
show psort .

show the principal sort of a given module, or of the current module if none is given.
There are also conventions for omitting operator pairs from a view:

1. Any pair of the form o to o can be omitted.

2. If o to o’ is a pair in a view, and if o and o’ have attributes id: e (or idr: e) and id: e’ (or
idr: e’) respectively, then e to e’ can be omitted.

For example, the default view from POSET to NAT has E1t to Nat and _<_ to _<_, and the default view
from MONOID to NAT is

view NAT* from MONOID to NAT is
sort M to Nat .
op _*_ to _x
opetol.
endv

where e maps to 1 because the identity attribute of * is preserved. The following is a non-default view of
NAT as a MONOID,

view NAT+ from MONOID to NAT is
op _*_ to _+_
op e to 0 .

endv

where e to 0 could also be omitted by preservation of the identity attribute.
It can be shown [52] that if ¢ is an abbreviation of each of two views ¢ and ¢, then ¢ = ¢'. From this,
it follows that there is at most one null view from any module to any other.

Warning: Although our default view conventions work well for simple examples, it cannot be expected
that they will always produce exactly the view that a user wants in more complex examples. Also, there is
more going on behind the scenes than meets the eye.

Next, a view where the target module involves a parameter:

view LISTM from MONOID to LIST is

op _*_ to __
op e to nil .
endv

This view can actually be abbreviated to the following null view:

view LISTM from MONOID to LIST is endv

Warning: Although the source components of the operator mapping of a view ¢: M — M’ involve only
operators from M itself, the target components can be terms that involve anything that M’ imports; indeed,
they do not have to involve operators from M’ itself at all. Also notice that ¢ could be meaningless if some
modules imported by M are not also imported by M’, because then the translations of some of the equations
in M might not make sense in M’.
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We wish to emphasize the documentation aspect of views, because it is unique to OBJ and also seems
very practical. In principle, theorem proving technology could be used to verify that a given mapping really
is a view, that is, that the semantic properties specified in the source theory are in fact satisfied by the
target module; presumably, this could be done using OBJ itself as a theorem prover, using techniques from
[51, 53], or the Kumo system [65, 64, 78, 60]. However, this often may not be worth the effort in practice,
and non-verified views should be seen as documenting the programmer’s intentions and beliefs about the
semantic properties of modules. Going a little further, a level of assurance could be associated with a view,
reflecting the degree to which it has been validated, ranging from “pious hope” to “mechanically verified
theorem.” An intermediate level of assurance that may often be practical is that a paper and pencil proof
has been given with the usual informal rigor of mathematics. Some form of automatic testing could also be
provided.

4.4 Instantiation

This subsection discusses instantiating the formal parameters of a parameterized module with actual modules.
This construction requires a view from each formal interface theory to the corresponding actual module. The
result of such an instantiation replaces each interface theory by its corresponding actual module, using the
views to bind actual names to formal names, and avoiding multiple copies of shared submodules.

Let us consider the make command, which evaluates a module expression, and then adds the result to the
OBJ3 database. This can be used to instantiate a parameterized module with an actual module via a view,
and if a module name is used instead of a view, then the default view of that module from the interface
theory of the parameterized module is used, if there is one. For example, given the parameterized object
LEXL[X :: POSET], we can write

make LEXL-NATG is LEXL[NATG] endm
using the explicit view NATG, while
make NAT-LIST is LIST[NAT] endm

uses the default view from TRIV to NAT to instantiate the parameterized module LIST with the actual
parameter NAT. Similarly, we might have

make RAT-LIST is LIST[RAT] endm

where RAT is the field of rational numbers, using a default view from TRIV to RAT, or
make RAT-VSP is VECTOR-SP[RAT] endm

using the default view from FIELD to RAT. More interestingly,
make STACK-OF-LIST-0F-RAT is STACK[LIST[RAT]] endm

uses two default views. Expressions like LEXL[NATG], LIST[NAT], and STACK[LIST[RAT]] are module
expressions, as discussed further in Section 4.5 below.
In general,

make M is P[A] endm
is equivalent to
obj M is protecting P[A] . endo

where A may be either a module or a view. Thus, make is redundant, and in fact it was not implemented in
OBJ2.

If a non-null view is only used once, say to instantiate a parameterized module, it can be defined “on the
fly” where it is used, with the syntax

view to (ModExzp) is {(SortMap) |(OpMap)}... endv
For example, if the view NATG were not already defined, then we could get the same effect from

make LEXL-NATG is LEXL[view to NAT is op _<_ to _>_ . endv] endm
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as we did from making LEXL[NATG].

A sort name (possibly preceded by the keyword sort) given as an actual parameter to a parameterized
module, is treated as an abbreviation for a default view mapping the principal sort of the source theory to
the given sort. For example, the object

obj LEXL-NAT is
protecting NAT .
protecting LEXL[Nat]
endo

uses the sort Nat as an abbreviation for the view

view from POSET to NAT is
sort E1t to Nat .
op _<_ to _<

endv

When the interface theory is TRIV, it is enough just to give a sort name to define a view. For example,
2TUPLE[Int,Bool] is a module expression whose principal sort consists of pairs of an integer and a truth
value. A more complex example is 3TUPLE[Int,Bool,LIST[Int]].

An operator name, possibly preceded by the keyword op, given as an actual parameter to a parameterized
module, is treated as an abbreviation for a default view mapping the operator of similar rank in the source
theory to the given operator. For example, the module expression MAP[(sq_) .FNS] is used in Section 4.7.

Sometimes it is convenient to import a module expression with its formal parameters instantiated by
(some of) those of a parameterized module into which it is imported, as in

obj LEXL[X :: POSET] is

protecting LIST[X]

op _<<_ : List List -> Bool .

vars L L” : List .

vars E E’ : Elt .

eq L << nil = false .

eq nil << E L = true .

eq EL<KEL’” =L <L’

cq EL<E L’ =E<E’ if E =/= E?
endo

where LIST[X] uses the default view of X as TRIV. Thus,
make LEXL-NAT is LEXL[NAT] endm

uses the default view of NAT as POSET to give a lexicographic ordering on lists of natural numbers, and also
instantiates LIST with NAT. Similarly,

make LEXL-NATD is LEXL[NATD] endm
orders lists of NATs by the divisibility ordering on NATs, while
make PHRASE is LEXL[QIDL] endm

uses the lexicographic ordering on QIDL to give a lexicographic ordering on lists of identifiers, and thus (for
example) on titles of books. (This example, which builds upon one from [77], is continued in the following
subsection.)

Now consider the case where a view that is abbreviated to just a sort name occurs in a module, and the
sort name used has been declared above it, in the same module. OBJ3 treats this harmless form of self-
reference by automatically creating a submodule that contains all of the definitions in the current module,
up to the module expression containing the self-reference. This newly created module is then used as the
target module for the view. For example,

obj SELF-REF is

sort A .

opa: —->A.

protecting LIST[A]
endo
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causes the automatic generation of a submodule containing the sort A and the constant a.

Warning: These automatically created modules are considered hidden. Although they are assigned names,
these names cannot appear in user-supplied input. However, users can display them with command of the
form “show sub 2 .” (this feature is described in Appendix Section A).

Environments for ordinary programming languages are functions from names to values (perhaps with an
extra level of indirection); but OBJ environments, which we call contexts, must also store views, which are
relationships between modules, and must record module importation relationships. Section 3 discussed the
submodule inclusion relation that arises from module importation, giving rise to an acyclic graph structure.
Contexts with views as edges from source to target module give a general graph structure. If submodule
inclusions are also included, then the submodule hierarchy appears as a particular subgraph of this overall
graph.

4.5 Module Expressions

Module expressions permit defining, constructing, and instantiating complex combinations of modules, as
well as modifying modules in various ways, thus making it possible to use a given module in a wider variety
of contexts. The major combination modes are instantiation (as discussed above), sum, and renaming. No
other implemented language that we know has such features in the language itself.

The simplest module expressions are simple named modules, which are either the predefined data types
TRUTH-VALUE, TRUTH, BOOL, IDENTICAL, NAT, NZNAT, INT, ID, QIDL, ID and FLOAT, or any unparameterized
user-defined modules available in the current context.

Renaming uses a sort mapping and an operator mapping, to create a new module from an old one; the
syntax is

({(SortMap) | (OpMap)}...)

where each map can be empty, or consist of pairs of the form sort S to S’ or op o to o’, respectively,
with the pairs separated by commas. A renaming is applied to a module expression postfix after *, and
creates a new module with the syntax of the preceding module expression modified by applying the given
pairs to it. For example, we can use renaming to modify the PREORD theory to get the theory of an equivalence
relation, as follows:

th EQV is
using PREORD * (op _<=_ to _eq.)
vars E1 E2 : Elt .
eq (El eq E2) = (E2 eq E1)

endth

Within a module,
dfn (Sortld) is (ModExp)
acts as an abbreviation for
protecting (ModExzp) * (sort (PSort) to (Sortld)).

where (PSort) is the principal sort of (ModEzp). We can use define as a synonym for dfn. This feature is
put to good use in the programming language example in Appendix Section C.2.

Warning: Renaming parts of a parameterized module that is instantiated with a self-referential actual
parameter (i.e., with a sort or operator that was defined earlier in an enclosing module), will also affect
any other instantiations of the same parameterized module that occur earlier in the program text of that
enclosing module. Therefore, one should rename parts of the parameterized module before its instantiation,
rather than after. For example, one should write

obj NO-PROB is
protecting LIST[INT]

sort A .

opa: —>A.

protecting (LIST * (op __ to _*_))[A]
endo
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instead of

obj TROUBLE is
protecting LIST[INT]

sort A .

opa: —->A.

protecting LIST[A] * (op __ to _*_)
endo

That is, one should use the form

((Mod) * ({Rename))) [{ModEzp)]
rather than the form

(Mod) [{ ModExp )1*({ Rename))

In NO-PROB, the module LIST is renamed before it is instantiated with a sort declared earlier in the enclosing
module; therefore the renaming does not affect the earlier LIST[INT]. But in TROUBLE, the renaming is also
applied to LIST[INT], because this is implicitly part of the parameter and within the scope of the renaming.
(Section 4.4 discusses the automatically generated module that is involved here.)

Another important module building operator is sum. This has the syntax
(ModExp) + ... + (ModEzp)

which creates a new module that combines all the information in its summands. For example, the expression
A + B creates a module that is the same as AB having the following definition

obj AB is
pr A .
pr B .

endo

The module that results from a sum of other modules is considered an extension of its summands. An
important issue here is the treatment of submodules that are imported by more than one summand; for
example, in A + B, both A and B may protect or extend BOOL, NAT, INT or other modules; such multiply
imported modules should be shared, rather than repeated.

Earlier versions of OBJ had an image transformation with capabilities of renaming and instantiation;
but because it did not use theories to describe interfaces, it now seems somewhat undisciplined, and has
been abandoned, even though it can be given a respectable semantics using colimits [77]. Clear [8, 10] had a
construction to enrich a given module, but this would be redundant in OBJ, because we need only import
the given module into a new module, and then add the desired sorts, operators and equations.

Let us now continue the lexicographic ordering example from the previous section. To be able to sort
lists of book titles, we might want to form something like

make PHRASE-LIST is LEXL[LEXL[QIDL]] endm

which extends the lexicographic ordering on phrases, from LEXL[QIDL], to a lexicographic ordering on lists
of phrases. However, this may not work quite as expected, because the two instances of list have exactly
the same syntax, and thus, for example, we could not tell whether ‘a ‘b was a single phrase, or a list of
two phrases. We can overcome this difficulty by renaming the append constructor of one of the lists, for
example, as follows:

make PHRASE-LIST is LEXL[LEXL[QIDL]*(op __ to _._)] endm

Then the two cases (’a) (’b) and (’a . ’b) are clearly different; for a more complex phrase list, consider
(’a . ’b)(’c . ’d . ’e).

We can carry this example a bit further by giving a naive sorting algorithm for lists over a partial order <
that relies on the power of associative rewriting. Correct behavior for such a sorting algorithm requires that,
given a list L such that a and b occur in L with a < b, then a occurs earlier than b in the list sorting(L),
i.e., the list a b should be a sublist of sorting(L); but if neither a < b nor b < a, then a may occur either
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before or after b. A tricky point about the code below is its use of a conditional equation to define the
predicate unsorted by searching for a counter-example; note that unsorted does not reduce to false when
it is false, but merely fails to reduce to true; this works because it is used in the condition of the equation.
(Strictly speaking, this example extends BOOL, but we do not bother to say so explicitly, because we do not
need to generate any new E-strategies or rules; instead, we just rely on the default extending importation
of BOOL.)

obj SORTING[X :: POSET] is
protecting LIST[X]
op sorting_ : List -> List .

op unsorted_ : List -> Bool .
vars L L” L’’ : List . vars E E’ : Elt .
cq sorting L = L if unsorted L =/= true .
cq sorting L E L’ E’ L’’ = sorting L E> L” E L’’ if E’ < E .
cq unsorted L E L’ E’ L’’ = true if E’ < E .
endo

Now some test cases, and some more complex module expressions:

reduce in SORTING[INT] : unsorted 1 2 3 4 . *%*x> should not be: true
reduce unsorted 4 1 2 3 . **x%> should be: true
reduce sorting 1 4 2 3 . *x%> should be: 1 2 3 4

make SORTING-PH-LIST is SORTING[LEXL[QIDL]*(op __ to _._)] endm
reduce sorting ((’b . ’a)(’a . ’a)(’a . ’b))
x*%x> should be: (’a . ’a)(’a . ’b)(’b . ’a)

reduce in SORTING[NATD] : sorting(18 6 5 3 1) . ***> should contain: 1 3 6 18

The last comment means that the list 1 3 6 18, which is sorted by divisibility should appear as a sublist of
the result of reducing sorting(18 6 5 3 1); the location of 5 is not determined. It is perhaps also worth
noting that the conditional equation

cq sorting L E L’ E’ L’’ = sorting L E> L’ E L’’ if E’> < E .

can often be matched against a given list in many different ways; some of these may succeed and others may
fail. Also, note that the above code makes use of the fact that the command

reduce in SORTING[INT] : unsorted 1 2 3 4 .

changes the module in focus from the parameterized SORTING module to its instance SORTING[INT].
A bubble sorting algorithm can be obtained from the above code by replacing the key equation

cq sorting L E L’ E’ L’’ = sorting L E> L’ EL’’ if E’> < E .
by its special case
cq sorting L E E’ L’’ = sorting L E? E L’’ if E’ < E .

which is obtained by letting L’ = nil. However, this new program only works correctly when the actual
parameter satisfies the stronger condition of being totally ordered; a theory for totally ordered sets may be
obtained from the theory POSET of partially ordered sets by adding the equation

cq E1 < E2 or E2 < E1 = true if El1 =/= E2 .

In this setting, we can directly define a predicate sorted that evaluates to true when its argument is sorted.

This example illustrates the importance of semantic conditions for module interfaces: the bubble sorting
algorithm is only valid for total orders, and if a user insists on instantiating it with an ordering that is only
partial, then it may give incorrect results; this is illustrated below. (Recall that OBJ does not enforce the
correctness of such user beliefs, but only allows them to be recorded in a systematic manner.) Now the code:
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th TOSET is
using POSET .

vars E1 E2 E3 : Elt .

cq E1 < E2 or E2 < E1 = true if E1 =/= E2 .

endth

obj BUBBLES[X :: TOSET] is
protecting LIST[X]
op sorting_ :
op sorted_ :

List -> List .
List -> Bool .

vars L L” L’’ : List .

vars E E’ : Elt .

cq sorting L = L if sorted L .

cq sorting L E E’ L’’ = sorting L E> E L’’ if E’ < E .

eq sorted nil = true .

eq sorted E = true .

cq sorted E E’ L = sorted E’ L if E < E’ or E == E’
endo

The following illustrates correct and incorrect behavior for BUBBLES, and also introduces a new module
expression that allows naming module expressions, with the following syntax,

(Id) is (ModExp)

which can be used inside of modules, as well as inside a reduce command, as below. This expression creates
an “alias” for the module corresponding to the module expression.

in A is BUBBLES[NAT]
sorting(8 5 4 2)
in B is BUBBLES[NATD]
sorting(8 5 4 2)
in C is SORTING[NATD]
sorting(8 5 4 2)
in A : sorting(9 6 3 1)
sorting(9 6 3 1)
sorting(9 6 3 1)

reduce
reduce
reduce
reduce
reduce
reduce
reduce
in B :
in C :

reduce
reduce

: sorting(18 5 6 3)
: sorting(18 5 6 3)

: sorting(18 5 6 3)

. okkkD>

*okk>

R TT >

*okkD>

. kkkD>

Kok D>
*okok>
*okok>
*okok>

should be: 3 5 6 18
should be: 2 4 5 8
mightnt contain: 3 6 18
mightnt contain: 2 4 8
should contain: 3 6 18
should contain: 2 4 8

should be: 1 3 6 9
mightnt be: 1 3 6 9
should be: 1 3 6 9

Here the first, second and seventh reductions are done in the context of BUBBLES[NAT], while the third,
fourth and eighth are done in the context of BUBBLES [NATD]. In fact, executing the reductions in B shows

that violating the interface theory really can lead to incorrect results.

4.6 Top-Down Development

It might seem at first that parameterized programming is limited to a bottom-up development style, but in
fact, there are many ways to realize a top-down style using OBJ:

1. Write a theory T that describes some desired behavior, and then write a module M with a view
T = M. Here M may be either an object or another theory.

2. Write a module that realizes the desired behavior if the right modules are imported; write “stubs” (i.e.,
skeletal code) for the modules to be imported, and then elaborate them later (see [36, 37, 34]). One
may be able to use the interface theories themselves as “stubs,” because reductions can be executed

over OBJ3 theories.

3. Write a parameterized module that realizes the desired behavior if its parameters are instantiated
according to their interface theories. Then later, write modules that satisfy these interface theories,

and do the instantiation.

Of course, a given step of top-down development could involve any two, or even all three of these strategies,
and any number of steps can be taken. In addition, it could be useful to combine views, using the same
operators that we have discussed for combining modules; however, this is not supported in Release 2 of

OBJ3.
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4.7 Higher-Order Programming without Higher-Order Functions

Higher-order logic seems useful in many areas, including the foundations of mathematics (e.g., type theory
[111]), extracting programs from correctness proofs of algorithms, describing proof strategies (as in LCF
tactics [89]), modeling traditional programming languages (as in Scott-Strachey semantics [139]), and study-
ing the foundations of the programming process. One important advantage of higher-order programming
over traditional imperative programming is its capability for structuring programs (see [94] for some cogent
arguments and examples).

However, a language with sufficiently powerful parameterized modules does not need higher-order func-
tions. We do not oppose higher-order functions as such; however, we do claim that higher-order functions can
lead to code that is very difficult to understand, and that higher-order functions should be avoided where
they are not necessary. We further claim that parameterized programming provides an alternative basis
for higher-order programming that has certain advantages. In particular, the following shows that typical
higher-order functional programming examples are easily coded as OBJ3 programs that are quite structured
and flexible, and are rigorously based upon a logic that is only first-order and does not require reasoning
about functions. The use of first-order logic makes programs easier to understand and to verify. Moreover,
OBJ can use theories to document any semantic properties that may be required of functions.

One classic functional programming example is motivated by the following two instances: sigma adds a
list of numbers; and pi multiplies such a list. To encompass these and similar examples, we want a function
that applies a binary function recursively over suitable lists. Let’s see how this looks in vanilla higher-order
functional programming notation. First, a polymorphic list type is defined by something like

type 1list(T) = nil + cons(T,list(T))
and then the function that we want is defined by

function iter : (T => (T -> T)) -> (T -> (1ist(T) -> T))
axiom iter(f) (a) (nil) => a
axiom iter(f) (a) (cons(c,lst)) => f(c) (iter(f) (a) (1st))

50?2 that we can define our functions by

sigma(lst) => iter(plus) (0) (1st)
pi(lst) => iter(times) (1) (1st)

For some applications of iter to work correctly, £ must have certain semantic properties. For example, if
we want to evaluate pi(1lst) using as few multiplications as possible and/or as much parallelism as possible
(by first converting a list into a binary tree, and then evaluating all the multiplications at each tree level
in parallel), then f must be associative. Associativity of £ implies the following “homomorphic” property,
which is needed for the correctness proof of the more efficient evaluation algorithm,

(H) iter(f) (a) (append(lst) (1st’)) = f(iter(f) (a) (1st)) (iter(f) (a)(1st’)

where 1st and 1st’ have the same type, 1ist(T). Furthermore, if we want the empty list nil to behave
correctly in property (H), then a must be an identity for £.

Now let’s do this example in OBJ3. First, using mixfix syntax _*_ for £ improves readability somewhat;
but much more significantly, we can use the interface theory MONOID to assert associativity and identity
axioms for actual arguments of a generic iteration module,

obj ITER[M :: MONOID] is
protecting LIST[M]
op iter : List -> M .
var X : M . var L : List .
eq iter(nil) = e .
eq iter(X L) = X * iter(L)
endo

22Most people find the rank of iter rather difficult to understand. It can be simplified by uncurrying with products, and
convention also permits omitting some parentheses; but these devices do not help much. Actually, we feel that products are
more fundamental than higher-order functions, and that eliminating products by currying can be misleading and confusing.
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where e is the monoid identity. Note that LIST[M] uses the default view from TRIV to MONOID. (This code
uses an associative List concatenation, but it is also easy to write code using a cons constructor if desired.)
Notice that all of the equations involved here are first-order.

We can now instantiate ITER to get our two example functions?®. First,

make SIGMA is ITER[NAT+] endm
sums lists of numbers; for example,
reduce iter(1 2 3 4)
yields 10. Similarly,
make PI is ITER[NAT*] endm
multiplies lists of numbers, and so
reduce iter(1 2 3 4)

now yields 24. Of course, we could use renaming to get functions that are literally named sigma and pi.
For example, the following module provides both sigma and pi.

make SIGMA+PI is ITER[NAT+]*(op iter to sigma) + ITER[NAT*]*(op iter to pi) endm

(Incidentally, this is a nice example of a complex module expression.)
Any valid instance of ITER has the property (H), which in the present notation is written simply

iter(L L’) = iter(L) * iter(L’)
and it is natural to state this fact with a theory and a view, as follows:

th HOM[M :: MONOID] is
protecting LIST[M]
oph : List -> M .
var L L” : List .
eq h(L L’) = h(L) * h(L?)
endth

view ITER-IS-HOM[M :: MONOID] from HOM[M] to ITER[M] is endv

This view is parameterized, because property (H) holds for all instances; to obtain the appropriate assertion
for a given instance ITER[A], just instantiate the view with the same actual parameter module A.

Warning: Release 2 of OBJ3 does not implement parameterized views.

Because semantic conditions on argument functions cannot be stated in a conventional functional pro-
gramming language, all of this would have to be done outside of such a language. But OBJ3 can not only
assert the monoid property, it can even be used to prove that this property implies property (H), using
methods first described in [51, 53] and further developed in [66, 59].

Many researchers have argued that it is much easier to use type inference for higher-order functions to
get such declarations and instantiations automatically. However, the notational overhead of encapsulating a
function in a module is really only a few keywords, and the appropriate definitions could even be generated
automatically by a structural editor from a single keystroke; moreover, this overhead is often shared among
several function declarations. Also, the overhead due to variable declarations could be reduced to almost
nothing by two techniques: (1) let sort inference give a variable the highest possible sort; and (2) declare
sorts “on the fly” with a qualification notation. Our position has been that the crucial issue is to make
the structure of large programs as clear as possible; thus, tricks that slightly simplify notation for small
examples are of little importance, and are of negative value if they make it harder to read large programs.
Consequently, we have not implemented such tricks in OBJ3, because explicit declarations can save human
program readers much effort in doing type inference.

On the other hand, our notation for instantiation can often be significantly simplified, particularly in
cases where non-default views are needed, or where renaming is needed to avoid ambiguity because there is
more than one instance of some module in a given context. For example,

23The views used below were defined in Section 4.3 above; however, a default view could be used for making PI.
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make ITER-NAT is ITER[view to NAT is op _*_ to _+_ . endv] endm

is certainly more complex than iter (plus) (0). However, in OBJ3 just ITER[ (_+_) .NAT] denotes the same
module?* because default view conventions map E1t to Nat in NAT, and e to 0.

For a second example, let us define the traditional function map, which applies a unary function to a list
of arguments. Its interface theory requires a sort and a unary function on it (more generally, we could have
distinct source and target sorts, if desired).

th FN is

sort S .

opf : 8S->8 .
endth

obj MAP[F :: FN] is protecting LIST[F]
op map : List -> List

var X : S . var L : List .
eq map(nil) = nil .
eq map(X L) = £(X) map(L)

endo

Now we can instantiate MAP in various ways. The following object defines some functions to be used in
examples below:

obj FNS is
protecting INT .
ops (sq_)(dbl_)(_*3) : Int -> Int
var N : Int .
eqsq N=N * N .
eq dbl N=N+ N .
eq N x3 =N * 3
endo

Now some reductions in objects using some non-default in-line views:

reduce in MAP[(sq_).FNS] : map(0 nil 1 -2 3) . ***> should be: 0 1 4 9
reduce in MAP[(dbl_).FNS] : map(0 1 -2 3) . *x**> should be: 0 2 -4 6
reduce in MAP[(_*3).FNS] : map(0 1 -2 nil 3) . **x> should be: 0 3 -6 9

In [51] there is a complete proof that the n‘" element of map(list) is f(e), where e is the n* element of
list, using OBJ3 itself as a theorem prover.

The following module does another classical functional programming example, applying a given function
twice; some instantiations are also given.

obj 2[F :: FN] is
opxx : S->8S .
var X : S .
eq xx(X) = £(£(X))

endo

reduce in 2[(sq_).FNS] : xx(3) . **%%> should be: 81
reduce xx(4) . ***> should be: 256
reduce in 2[(dbl_).FNS] : xx(3) . *%%> should be: 12
reduce in 2[2[(sq_) .FNS]*(op xx to £)] : xx(2) . *x*x*> should be: 65536
reduce xx(3) . ***> should be: 43046721

24We could go a little further and let iter[(_+.).NAT] actually denote the iter function on naturals, with the effect of
creating the module instantiation that defines it, unless it is already present. Indeed, this is essentially the same notation used
in functional programming, and it avoids the need to give distinct names for distinct instances of iter. This “abbreviated
operator notation” could also be used when there is more than one argument, as well as for sorts. In Release 2 of OBJ3 one
can get much the same effect by using qualified references to operators, as illustrated in this section.
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Let us consider these examples more carefully. Because xx applies f twice, the result function xx of the first
instantiation applies sq_ twice, i.e., it raises to the 4th power; then the next to last instantiation applies
that twice, i.e., it raises to the 16th power.

To summarize, the difference between parameterized programming and higher-order functional program-
ming is essentially the difference between programming in the large and programming in the small. Param-
eterized programming does not just combine functions, it combines modules. This parallels one of the great
insights of modern abstract algebra, that in many important examples, functions should not be considered
in isolation, but rather in association with other functions and constants, with their explicit sources and tar-
gets, plus the equations that they satisfy. Thus, the invention of abstract algebras (for vector spaces, groups,
etc.) parallels the invention of program modules (for numbers, vectors, windows, etc.); parameterized pro-
gramming makes this parallel more explicit, and also carries it further, by introducing theories and views to
document semantic conditions on function arguments and on module interfaces, as well as to assert provable
properties of modules (such as the property (H) above). As we have already noted, it can be more convenient
to combine modules than to compose functions, because a single module instantiation can compose many
conceptually related functions at once, as in the complex arithmetic (CPXA) example mentioned near the
beginning of Section 1. On the other hand, the notational overhead of theories and views is excessive for
applying just one function. However, this is exactly the case where our abbreviated operator notation can
be used to advantage.

We should also note that it can be much more difficult to reason with higher-order functions than with
first-order functions; in fact, the undecidability of higher-order unification means that it will be very difficult
to mechanize certain aspects of such reasoning?®. Reasoning about first-order or higher-order functions can
each take place in either first-order or higher-order logic. The simplest case is first-order functions with first-
order logic, and this is the case that parameterized programming focuses upon. Also, it is much easier to
compile and interpret first-order programs. It is worth noting that Poigné [132] has found some significant
difficulties in combining subsorts and higher-order functions, and we hope to have been convincing that
subsorts are very useful; however, see also [110] where significant progress has been made. Finally, note
the experience of many programmers, and not just naive ones, that higher-order notation can be difficult to
understand and to use.

What can we conclude from all this? We might conclude that it is better to “factorize” code with
parameterized modules than with higher-order functions, and in fact, that it is better to avoid higher-order
functions whenever possible. From this, one could conclude that the essence of functional programming
cannot be the use of higher-order functions, and therefore it must be the lack of side effects. However,
the true essence of functional programming may well reside in its having a solid basis in equational logic,
because this not only avoids side effects, but also allows the kind of equational reasoning about programs
and transformations that is needed to support powerful programming environments.

4.8 Hardware Specification, Simulation and Verification

This subsection develops a computer hardware verification example. The crucial advantage of using a logical
programming language is that the reductions really are proofs, because the programs really are logical theories
and computation really is deduction. This code uses the propositional calculus decision procedure object
(from Section 2.4.6), thus providing an excellent example of software reuse, because PROPC was written in
OBJ1 by David Plaisted in 1982, years before we thought of using it for hardware verification [77]. Next,
Time is defined for use in input and output streams, which are functions from Time to Prop. An interface
theory WIRE is defined, and then a NOT gate using it. The object F introduces two “symbolic variables,” t
and £0, which are a “generic” time and input stream, respectively. Finally, two NOT gates are composed and
instantiated with F. Evaluating expressions in this context corresponds to proving certain theorems, in this
case that the double NOT gate acts on input streams as a two unit delayor.

obj TIME is

sort Time .

op 0 : -> Time .

op s_ : Time -> Time .
endo

25Similar difficulties arise for first-order unification modulo equations, such as those for the combinators, so this difficulty
is not particular to higher-order logic. It is worth noting that higher-order specifications can be implemented by higher-order
rewriting [97].
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th WIRE is
protecting TIME + PROPC .
op f1 : Time -> Prop .
endth

obj NOT[W :: WIRE] is
op f2 : Time -> Prop .
var T : Time .
eq £2(0) = false .
eq f2(s T) = not £1(T)
endo

obj F is
extending TIME + PROPC .
opt : => Time .
op fO : Time -> Prop .
endo

make 2NOT is NOT[NOT[F]#*(op f2 to f1)] endm
reduce f2(s s t) iff fO(t) . ***> should be: true

See [51] for a precise statement of the theorem proved here, as well as a detailed justification that the given
reduction really proves that theorem. Parameterized modules make this code much more readable than
it would be otherwise. The same techniques seem effective for much more complex examples of hardware
specification, simulation and verification, and many more examples are given in [51] and [53], along with
supporting theory. The application of 20BJ [81] to hardware verification is described in [145] and [146].

5 Applying Rules

Release 2 of OBJ3 allows users to apply rules one at a time to a given term, either “forwards” or “backwards”
(i.e., either replacing an instance of the left side by the corresponding instance of the right side, or else vice
versa). This capability is needed for many common examples of equational reasoning; for example, Appendix
Section C.4.5 gives a proof from group theory that requires applying equations backwards.

The syntax is necessarily somewhat complex, as an action (which may be a rule), an optional substitution,
a range, and a selected subterm may be involved. Each of these elements is discussed below. The following
is an overview of the syntax:

apply (Action) [(Substitution)] (Range) (Selection)

5.1 start and term

The start command introduces a term to which rules can then be applied; its syntax is
start (Term)

The system keeps track of the current term, called term, which is either the result of the last term reduction,
the term given in the last start command, or else is undefined. It is used as the focus for the controlled
application of rules. The value of the current term can be seen by using the command

show term .

This command can also be used to see the structure of term in greater detail if the print with parens
mode is on.
A variant of the let feature allows the user to give a more permanent name to term, using the syntax

let (Sym) [: (Sort)] = .

The current module must be open for this to be effective.
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5.2 Actions

An action is a request to print a selected subterm, to reduce it, or to apply a selected rule (possibly backwards)
to it. The following shows some of the syntax:

reduction | red | print | [-] [(ModlId)].[(Nat) | (Id)]

The action reduction (or equivalently, red) calls for full reduction of the selected term. The action print
displays the selected subterm. The last action requests applying (possibly backwards) the (Nat)t® rule, or
else the rule having {Id) as one of its labels, (optionally) from the module (ModId). Because (ModId) must
be a simple module name, abbreviated module names can be very useful here. If no (ModId) is given, then
the currently selected module is used.

Warning: If more than one rule has the same label, and you try to apply that label, then a warning is
issued, no rule is applied, and control is returned to the top level.

There are two special actions for dealing with the built-in retract rules,
ret | -retr with sort (Sort)
The first action tries to apply a built-in retract rule of the form
r:A>B(X) = X

where X has sort B, and the second action allows introducing a retract by applying this rule backwards.

5.3 Substitutions

The following rule has a variable in its left side that does not appear in its right side,
eq X *x 0 =0.

so that its backwards version is
eq 0 =X *0 .

which has a variable in its right side that does not appear in its left side. In such cases, it is necessary to
specify a binding for the variables not in the left side (X in this case) in order to be able to apply the rule
backwards. If these variables are not instantiated, then they are just copied into the current term. It is
also natural to allow substituting variables in all cases, including forward rule applications; this is especially
convenient when proving equations in the context of a theory.

A substitution gives terms as bindings for some variables in the form of a list of equations separated by
commas (after the rule specification and delimited by with). More precisely, the syntax is

with (Var) = (Term) {, (Var) = (Term)}...

where each variable mentioned must appear somewhere in the rule.

Warning: No warning is given if no binding is given for some variable that appears in the right side but
not the left side of the rule. However, this condition can be detected, because a variable will have been
introduced into the resulting term.

A substitution given to print or reduce is ignored.

5.4 Selecting a Subterm

There are three basic kinds of selection: for an occurrence, a subsequence (used for associative operators),
and a subset (used for associative commutative operators).
The syntax for occurrence selection is

((Nat)...)
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Starting from a given term, occurrence selection progressively selects the argument positions specified by
the given numbers, where both subterms and argument positions are numbered from 1. For example, if the
term is (a + (c * 2)), then the occurrence (2 1) selects the subterm c. The empty list of numbers () is
a selector, and it selects the whole term.

Subsequence selection has the two forms

[(Nat) .. (Nat)] | [(Nat)]

where blanks are required around the “..”. This kind of selection is only appropriate for terms whose top

operator is associative (or associative and commutative). For such operators, a tree of terms formed with
that operator is naturally viewed as the sequence of the terms at the leaves of this tree. Selecting [k] is the
same as selecting [k .. k], and it selects the kth subterm from the sequence (it does not form a sequence
of length one). The form [(Nat) .. (Nat)] forces restructuring the term so that the specified range of
terms form a proper subterm of the whole term, and then it selects that term as the next current subterm.
This implies that a selection may change the structure of the term, and hence that a print could affect
the structure of the term. For example, if the current module is INT, and the current term (when fully
parenthesized) is “(1 * (2 * (3 * (4 * 5))))”, then the command

apply print at [2 .. 4]

will cause term “(1 * ((2 * (3 * 4)) * 5))” to be printed.
Subset selection has the syntax

{(Nat) [, (Nat)]...}

where “{” and “}” are not syntactic meta-notation, but rather stand for the corresponding characters. No
blanks are required in this notation. This kind of selection is only appropriate for terms with top operators
that are associative and commutative. Repetitions of numbers in the list are ignored. This selector forces
the given subset of the list (or more properly “bag”) of terms under the top operator to be a proper subterm,
and then selects that term as the next current subterm. The order of the subterms within “{}”s affects the
order of appearance of these terms in the selected subterm. For example, if the current module is INT, and
the current term (when fully parenthesized) is “(1 * (2 * (3 * (4 * 5))))”, then the command

apply print at 1,3,5 .

causes term structure “((1 * (3 * 5)) * (2 * 4))” to be printed.

You can specify the top or whole of the current term by using either of the selectors term or top. It only
makes sense to use these once, and often they can be omitted. One of these is required if there is no other
selector, but the selector () could be used instead.

Selectors can be composed by separating them by of, as in

{3,1,2} of [4] of (2 3 1) of [2 .. 5] of (1 1) of term

Such a composition is interpreted like functional composition: the selection on the right is done first, then
the second one on the result of that selection, and so on, until finally the selector on the left is done. Note
that this order is the opposite of that used for the elements of an occurrence, such as (2 1).

5.5 The Apply Command

The form of an apply command is apply followed (in order) by the action, possibly a substitution, within
or at, and a composition of selectors:

apply { reduction | red | print | retr | -retr with sort (Sort) |
(RuleSpec) [ with (Varld) = (Term){, (Varld) = (Term)}...] }
{ within | at }
(Selector) {of (Selector)}...

(Here, “{” and “}” are used for syntactic grouping.)

A user can either request a rule to be applied exactly “at” a selected subterm (as described the next
subsection), or else to be applied “within” a selected subterm. In the latter case, the indicated rule is at
most once. Reduction and printing always act on a whole subterm.

Sometimes, giving a substitution may make it possible to apply a rule without specifying any specific
subterm, by using within as the range.

The resulting value of the current term is always printed after an apply command has been performed.
Here are some examples of rule applications.
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apply G.1 at term .

apply -G.1 at term .

apply -G.2 with X = a at term .
apply print at term .

apply reduction at (2 1)

apply G.1 at () .

apply X.3 at {2} .

apply X.3 at {3,1,2} .

apply G.2 at [2 .. 4]

apply G.1 at [2] .

apply X.1 at {2,4} of [4] of (2 2)

apply X.1 at {2,4} of [4 .. 4] of (2 2) of top .

The command

apply 7 .

shows a summary of the apply command syntax.

5.6 Conditional Rules

Applying conditional rules in general requires shifting the focus of reduction to the (instantiated) condition
of a rule, so that rules can be applied to it. This is done by using a stack of pending actions, pushing a
rule application onto the stack if its left side matches, but it has a condition the evaluation of which is still
pending. When a condition has been reduced to “true,” then the pending rule application is executed, and
focus shifts to its result term. If the condition reduces to “false,” then the rule is not applied, and focus
returns to the previous term.

Tt is possible to request that conditions of conditional equations be directly reduced, using the command

set reduce conditions on .
The default behavior can then be restored by the command
set reduce conditions off .

(Either all nontrivial conditions must be evaluated by hand, or else none.) One reason to prefer evaluating
conditions directly is that, if the top operator of the left side is associative and/or commutative, then when
the rule is applied, all possible matches are tested against the condition until a successful case is found; but
with controlled application, only one match is attempted. However, all potential matches can be specified
by using the selection notation.

Here is a small example:

obj X is sort A .
pr QID .
subsort Id < A .
opf : A->A.
var X : A .
cq £(X) = £(£(X)) if £(X) == ’a .
eq £(’b) = ’a .
endo

for which the following is an output trace, illustrating how conditional rule application works:

start £(’b)

apply X.1 at term .
shifting focus to condition
condition(1) Bool: f(’b) == ’a

apply X.2 within term .
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condition(1l) Bool: ’a == ’a

apply red at term .

condition(1) Bool: true

condition is satisfied, applying rule
shifting focus back to previous context
result A: £(£(’b))

Note that when actions are pending, “condition” is printed instead of “result,” and the number of con-
ditions being reduced (i.e., the number of pending actions) is printed in parentheses.

If you are evaluating a condition and want to force either success or failure, then you can use the following
commands:

start true .
start false .

For example, the above example could have continued from “apply X.1 at term” with

start false .

condition(1l) Bool: false

condition is not satisfied, rule not applied
shifting focus back to previous context
result A: £(°b)

This can be used to abandon reductions that you no longer wish to perform. Note that using “start

” can easily produce incorrect results, i.e., results that are not sound under order sorted equational

deduction. Also, you cannot perform a controlled reduction in the middle of doing another one, and then

continue the first reduction, because a new start causes the current state of the previous term to be lost.
The command

true .

show pending .

shows details about the terms, rules, conditions, and replacements that are currently pending. The following
is sample output from this command:

pending actions
1| in £(°b) at top

| rule cq £(X) = £(£(X)) if £(X) == ’a
| condition £(’b) == ’a replacement £(£(’b))
2| in £(’b) == ’a at £(’b)
| rule cq £(X) = £(£(X)) if £(X) == ’a
| condition £(’b) == ’a replacement f(£(’b))
3|l in £(’b) == ’a at £(’b)
| rule cq £(X) = £(£(X)) if £(X) == ’a
| condition f(’b) == ’a replacement f(£(’b))

If you use the range specification within and the rule is conditional, then the rule will be applied at most
once, and a warning will be issued like the following;:

applying rule only at first position found: f(’b)

6 Discussion and Conclusions

Although we are very fond of OBJ, and believe that it introduced some valuable new ideas, we certainly do
not wish to claim that it is the perfect language for all applications. In particular, Release 2 of OBJ3 has a
number of limitations of which we are aware:

1. OBJ3 is not a compiler, but is rather closer to an interpreter.
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2. Associative/commutative rewriting can be very inefficient for large terms; but this is an inevitable
result of AC matching being an NP-complete problem.

3. The parser applies precedence and gathering information a priori, and thus may fail on some terms
that in fact are well formed.

4. Release 2 of OBJ3 gives warnings about meaningless or erroneous input, but these warning are less
comprehensive than some might desire, and are not always easy to interpret.

5. OBJ3 does not have so-called “logical variables,” the values for which are supplied by the system
through “solving” systems of constraints, although its extension to Eqlog does [71, 72, 25].

6. OBJ3 does not keep track of whether a given equation has the status of an assumption, a conjecture,
or a proven conclusion, as a good theorem proving environment should do. Similar comments apply
to the ability to undo changes to modules and many other features; on the other hand, OBJ3 was
not initially conceived as a theorem prover. The Kumo system [65, 64, 78, 60] was developed for this
purpose, and does provide such capabilities; in addition, it generates web-based documentation for its
proofs.

On the positive side, Release 2 of OBJ3 lets you experiment with a combination of parameterized pro-
gramming, subsorts, rewriting modulo attributes, E-strategies, and memoization, which together allow styles
that are quite different from conventional languages. We hope that you will enjoy this!

OBJ3 also provides a very workable platform for implementing other system; in particular, it has been
used to implement the combined functional and object oriented system FOOPS [74], the object oriented
specification language OOZE [3], a generic (i.e., metalogical) theorem prover called 20BJ [81], and the
combined logic and functional language Eqlog [71]. FOOPS and OOZE support objects with states (where
we mean “objects” in the sense of object oriented programming, rather than in the sense of OBJ), and
Eqlog has logical variables. OBJ3 terms can have state in some sense, but they can only be used through
built-in equations. An alternative approach to object-oriented programming, supporting concurrent objects
and general concurrent systems programming, is being developed at SRI in the language Maude [112, 16],
which uses rewriting logic [113, 114] as a basis for very direct systems modeling. Someday, we may implement
FOOPIlog [74] or MaudeLog, which combine the functional, logic, and object oriented paradigms. We find
that it is relatively easy to build such systems on top of OBJ3, and we expect that others will be able to
build many other interesting systems in much the same way.

In summary, we feel that the OBJ3 system should be useful for the following applications:

1. Teaching, especially in the areas of algebraic specification, programming language semantics, and
theorem proving [109];

2. Rapid prototyping, especially for relatively small but sophisticated systems;

3. Implementing experimental languages, especially declarative languages that have features like
associative/commutative pattern matching, subtypes, views, theories, and parameterized modules;

4. Building theorem provers, for example, an efficient metalogical framework based on equational
logic; and

5. Designing, specifying and documenting large systems; for example, we used OBJ2 in designing
OBJ3, and much of this specification is included in the OBJ3 source code as documentation [100]; see
also the recent work on specifying user interface designs via algebraic semiotics [60, 58].

Probably there are other applications that readers have found; please let us know!

A Use of OBJ3

OBJ3’s top level statements for declaring objects, modules and views can all be seen as commands whose
effect is to add something to the OBJ3 database, which is constructed incrementally. A general “engine”
for term rewriting actually does the reductions, consulting the database to get the rules for a given context.
Reductions do not change the database in any way (although they may change memo tables).

To get started, the only commands you really need are obj, in and q (or quit), which get you into OBJ3
from the operating system level, read a file within OBJ3, and quit OBJ3, respectively. The recommended
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way to work is to first edit a file, then start up OBJ3, and read in the file. If you are using an editor like

Emacs with buffers that are also UNIX shells, then you can get a log of the execution, containing a record

of any problems that arise to help you go back and re-edit the file. If you prefer an editor that does not

support shells, then it may be more convenient to use a shell script, and/or to redirect input and output.
As a summary, OBJ3 definitions are assumed to have these properties: the signature should be regular

and coherent [76] (coherence means that connected components of sorts must have tops); and the rule set for

objects should be Church-Rosser, and if possible, terminating with respect to the given evaluation strategies.
The command 7 (note that there is no “.”) produces the following top-level help information

Top-level definitional forms include: obj, theory, view, make
The top level commands include:

q; quit --- to exit from 0BJ3

show .... . =--- for further help: show 7 .
set .... . --- for further help: set 7 .

do .... . === for further help: do 7 .

apply ..... -—— for further help: apply 7 .

other commands:
in <filename>
red <term> .
select <module-expression> .
cd <directory>; ls; pwd
start <term> .; show term .
open [<module-expression>] .; openr [<module-expression>] .; close
ev <lisp>; evq <lisp>

Here “;”s are only used to separate alternatives.

OBJ3 has classes of commands to show aspects of the current context, to set various system parameters,
and to do certain actions; in addition, one can evaluate Lisp expressions. Given the argument “?”, the
commands show, set, and do displays a summary of legal arguments to that command.

The show commands are the most numerous. The first group of them have the syntax

show (ModPart) [(ModEzp)].

where (ModPart) is one of sorts, psort, ops, vars, eqs, mod, params, subs, name, sign, rules, abbrev
and where (ModEzp) is an optional module expression argument; if there is no module expression, then
the module in focus is used. show can be abbreviated to sh, and show (ModFzp) is short for show mod
(ModEzp). The command select (ModEzp) resets the current module to be (ModExp), without printing
anything. An instance of a (ModEzp) may also be preceded by sub (Nat) or param (Nat) to specify the
corresponding sub-module or interface theory, respectively, of the following module; you can even give several
of these selectors in a sequence. show psort shows the principal sort, show sign shows the signature of the
selected module, i.e., its sorts and operators; show params shows its parameters, if any, show subs shows
the names of its sub-modules, and show name shows its full name. To get more detailed information on a
particular sort or operator, you can use the forms

show sort (Sort)
show op (OpRef) .

which can also be qualified by a module name (see Appendix Section B for details). The command show
all (ModExp) displays the module in a more detailed form. The command show all rules [(ModEzp)]
displays more comprehensively the rules that are used for rewriting in a module. The command show
abbrev [(ModEzp)] shows the abbreviation of the specified module as used when qualifications are being
abbreviated).

Warning: If the (ModEzp) contains a “.”, you will almost always have to enclose the whole module
expression in parentheses.

The command
show modules .

lists all modules in the current context. The command
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show time .

prints the elapsed time since the last use of this command, or since the start of execution if there has been
no prior use. The command

show term .
shows the current term (the last term reduced, or the last term started), while
show [all] rule (RuleSpec)
shows a specified rule, possibly in detailed form. The command
show pending .
shows the pending rule applications, while
show modes .
shows the settings of the settable system parameters, and
show all modes .
gives more detail. These parameters can all be set with commands of the form
set (Param) (Polarity)

where (Polarity) is either on or off, and (Param) is one of trace, blips, gc show, print with parens, show
retracts, abbrev quals, include BOOL, clear memo, stats, trace whole, all eqns, show var sorts,
reduce conditions, or verbose. If trace is on, then rule applications are displayed during reduction. If
blipsison, then a “I” is printed whenever a rule is applied, and a “-” is printed whenever an attempt to apply
a rule fails. If gc show is on, then a message is printed at each start and completion of garbage collection.
If print with parens is on, then many parentheses are used in printing terms, making the structure much
more explicit. If show retracts is on, then retracts are shown in the right sides of equations. If abbrev
quals is on, then qualifications on printed terms or sorts are abbreviated to MOD(Nat). These qualifications
are only printed if there are two sorts with the same name or two operators with the same name or pattern
and the same arity. If include BOOL is on, as it is by default, then BOOL is automatically included in
modules. If clear memo is on, then the memo table is cleared before each reduction. If stats is on (which
it is by default), then the number of rules applied in each reduction is printed. If trace whole is on, then
the whole term is printed for each reduction. If all eqns is on, then all rule extensions are printed when
showing equations. If show var sorts is on, then the sorts of variables are printed along with their names,
in the form X:Int. If the verbose mode is on, then modules are displayed in a more detailed form, and id
processing will be traced as it is performed.

For commands with the syntax
do (Act)

(Act) may be one of gc or clear memo, or save {ChString), or restore (ChString). “gc” forces a garbage
collection, “clear memo” clears the memo table, and save and restore save the current context, and restore
a named context, respectively.

Common Lisp expressions can be evaluated with the syntax

ev (LispExpr)
and the command

evq (LispExpr)
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can be used to evaluate a Lisp form with the minimum of output during processing. Longer forms for each
of these are eval and eval-quiet, respectively. These are useful for loading functions used in built-in right
sides.

Warning: There are no final periods for these commands, because the Lisp input is considered self-
delimiting.

The UNIX interrupt character (typically “C) can be used to interrupt OBJ3, which will leave you in the
lisp break handler. In Austin Kyoto Common Lisp (AKCL), you can return to the top level of OBJ3 with
the break command :q, or you can continue the computation with the command :r. You can see the current
structure of the term being reduced (even if tracing is off) by interrupting OBJ3 (e.g., with ~C), and then
typing (show), followed by a return; then you can resume with :r. You can use the command :h to get a
AKCL break-loop command summary.

In the AKCL version of OBJ3, there are some special command line arguments. These are pairs of these
forms

-in (FileName)
-inq (FileName)
-evq (FileName)

The first two forms cause a file to be read in as OBJ3 starts up, either with a trace or quietly. The last form
will quietly load a Lisp file on startup.

KTEX source files containing OBJ examples can be executed using a shell script called obj3-tex, by
enclosing the OBJ code between matching \bobj and \eobj commands; everything else is treated as a
comment. You will need to have defined the ATEX commands

\newcommand{\bobj}{\begin{alltt}}
\newcommand{\eobj}{\end{alltt}}

in your IWTEX source file, and have called the alltt style file. A tricky point is that { and } must be written
\{ and \}, respectively, or else they will not be printed by WTEX. In fact, initial \s are stripped off, in
these cases, to prepare the text for OBJ execution (this explains why \{ and \} do not appear in\tt font in
Appendix C.8); this approach extends to allowing arbitrary TEX symbols in OBJ code; for example, $\ast$
will produce *. This is very useful for writing papers about OBJ3, which we of course encourage everyone to
do; it was used in preparing this paper. The code appears in the distribution tape as obj/aux/bin/obj3-tex
and the C program is in obj/aux/c/examples.c; when obj3-tex is run on a file foo. tex, it produces a file
foo.obj containing all the OBJ code that it runs.

Another tricky point is that sometimes code that you want to print relies on some other code that
you don’t want to print. The shell script saves the day by also executing invisible code, placed between a
matching %\bobj and %\eobj pair, with obj-tex stripping off an initial % from each line in between.

The distribution tape for Release 2 of OBJ3 comes with all the examples in this paper, in the directory
/obj/exs/. OBJ3 was implemented on Sun workstations, using Austin Kyoto Common Lisp (AKCL). AKCL
has been ported to many different machines, the main requirements being a C compiler and an adequate
amount of memory. Release 2.04 of OBJ3 in AKCL has some specific implementation dependent details, but it
has been ported to other versions of Common Lisp, including gnu Common Lisp. You can ftp the entire distri-
bution from ftp://www.cs.ucsd.edu/pub/fac/goguen. The latest information about the OBJ Family can
be obtained from the OBJ homepage at UCSD, at http://www.cs.ucsd.edu/users/goguen/sys/obj.html.

B OBJ3 Syntax

This appendix describes the syntax of OBJ3 using the following extended BNF notation: the symbols { and
} are used as meta-parentheses; the symbol | is used to separate alternatives; [ ] pairs enclose optional syntax;
... indicates 0 or more repetitions of preceding unit; and “xz” denotes z literally. As an application of this
notation, A{,A}. .. indicates a non-empty list of A’s separated by commas. Finally, --- indicates comments
in the syntactic description, as opposed to comments in OBJ3 code.

--- top-level ---

(OBJ-Top) ::= {(Object) | (Theory) | (View) | (Make) | (Reduction) |
in (FileName) | quit | eof |

58



start (Term) . |
open [(ModExp)] . | openr [(ModEzp)] . | close |
(Apply) | (OtherTop)}...

(Make) ::= make (Interface) is (ModEzp) endm
(Reduction) ::= reduce [in (ModEzp) :] (Term) .
(Apply) ::=

apply {reduction | red | print | retr |

-retr with sort (Sort) |

(RuleSpec) [with (Varld) = (Term) {, (Varld) = (Term)}... ]}
{within | at}
(Selector) {of (Selector)}...

(RuleSpec) ::= [-][{ModId)].(Ruleld)
(Ruleld) ::= (Nat) | (Id)
(Selector) ::= term | top |
((Nat)...) |
[ (Nat) [ .. (Nat) ] 1 |

n(v (Nat) {, (Nat)}... "}»

-—— note that "()" is a valid selector

(OtherTop) ::= (RedLoop) | (Commands) | call-that (Id) . |
test reduction [in (ModEzp) :] (Term) expect: (Term) . | (Misc)
--- "call that (Id) ." is an abbreviation for "let (Id) = ."

(RedLoop) ::=rl {. | (ModId)} { (Term) .}... .

(Commands) ::= cd (Sym) | pwd | 1s |
do (DoOption) . |
select [(ModEzp)] . |
set (SetOption) . |
show [(ShowOption)] .
——— in select, can use "open" to refer to the open module

(DoOption) ::= clear memo | gc | save (Sym)... | restore (Sym)... | 7

(SetOption) ::= {abbrev quals | all eqns | all rules | blips |
clear memo | gc show | include BOOL | obj2 | verbose |
print with parens | reduce conditions | show retracts |

show var sorts | stats | trace | trace whole} (Polarity)
| 7

(Polarity) ::= on | off

(ShowOption) ::=
{abbrev | all | egs | mod | name | ops | params | principal-sort |
[a11] rules | select | sign | sorts | subs | vars}
[(ParamSpec) | {SubmodSpec)] [{ModExp)] |
[a11] modes | modules | pending | op (OpRef) | [all] rule (RuleSpec) |
sort (SortRef) | term | time | verbose | (ModEzp) |
(ParamSpec) | (SubmodSpec) | 7

——— can use "open" to refer to the open module

(ParamSpec) ::= param (Nat)
(SubmodSpec) ::= sub (Nat)
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(Misc) ::= eval (Lisp) | eval-quiet (Lisp) | parse (Term) . | (Comment)

(Comment) ::= *** (Rest-of-line) | ***> (Rest-of-line) |
xxx  (( Text-with-balanced-parentheses))

(Rest-of-line) --- the remaining text of the current line

--— modules ---

(Object) ::= obj (Interface) is {(ModElt) | {Builtins)}... endo

(Theory) ::= th (Interface) is (ModElt)... endth
(Interface) ::= (ModId) [[{ModId)... :: (ModEzp) {, (ModId)... :: (ModEzp)}...
(ModElt) ::=

{protecting | extending | including | using} (ModFzp) . |
using (ModEzp) with (ModExp) {and (ModEzp)}... |

define (Sortld) is (ModExp) . |

principal-sort (Sort) . |

sort (Sortld)... . |

subsort (Sort)... { < (Sort)... }... .|

as (Sort) : (Term) if (Term) . |

op {OpForm) : (Sort)... => (Sort) [(Attr)] . |

ops {{Sym) | ((OpForm))}... : (Sort)... => (Sort) [(Attr)] . |
op-as (OpForm) : (Sort)... => (Sort) for (Term) if (Term) [(Attr)] . |
[(RuleLabel)] let (Sym) [: (Sort)] = (Term) . |

var (Varld)... : (Sort) . |

vars-of [(ModExp)] . |

[(RuleLabel)] eq (Term) = (Term) . |

E(]‘I;ule)lzabel)] cq (Term) = (Term) if (Term) . |

(Attr) ::= [ {assoc | comm | {id: | idr:} (Term) | idem | memo |
strat ((Int)... ) | prec (Nat) | gather ({e | E | &}... ) |
poly (Lisp) | intrinsic}... ]

(RuleLabel) ::= (Id)... {, {Id)... }...

(ModId) --- simple identifier, by convention all caps
(Sortld) --- simple identifier, by convention capitalized
(Varld) --- simple identifier, typically capitalized
(OpName) ::= (Sym) {" " | " " | (Sym)}...

(Sym) --- any operator syntax symbol (blank delimited)
(OpForm) ::= (OpName) | ({OpName))

(Sort) ::= (Sortld) | (Sortld).(SortQual)

(SortQual) ::= (ModId) | ((ModFEzp))

(Lisp) --- a Lisp expression
(Nat) --- a natural number
(Int) --- an integer

(Builtins) ::=
bsort (Sortld) (Lisp) . |
[(RuleLabel)] bq (Term) = {Lisp) . |
[(RuleLabel)] beq (Term) = (Lisp) . |
[(RuleLabel)] cbeq (Term) = (Lisp) if (BoolTerm) . |
[(RuleLabel)] cbq (Term) = (Lisp) if (BoolTerm) .
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--- views ---

(View) ::= view [(ModId)] from (ModExp) to (ModEzp) is (ViewElt)... endv |
view (Modld) of (ModExp) as (ModEzp) is (ViewElt)... endv

--- terms ---

(Term) ::= (Mizfiz) | (Varld) | ({Term)) |
(OpName) ((Term) {, {(Term)}... ) | ((Term)) .{OpQual)

--- precedence and gathering rules used to eliminate ambiguity

(OpQual) ::= (Sort) | (ModId) | ({ModEzp))
(Mizfizr) --- mixfix operator applied to arguments

--- module expressions ---

(ModEzp) ::= {(Modld) | {ModId) is (ModExpRenm) | (ModExpRenm) + (ModExp) |
(ModEzpRenm )
(ModEzpRenm) ::= (ModExpInst) * ((RenameElt) {, (RenameElt)}... ) | (ModEzpInst)

(ModEzpInst) ::= (ParamModEzp)[(Arg) {,(Arg)}... 1 | ((ModEzp))
(ParamModEzp) ::= (Modld) | ({ModId) * ({RenameElt) {, (RenameElt)}... ))
(RenameElt) ::= sort (SortRef) to (Sortld) | op {OpRef) to (OpForm)

(Arg) ::= (ViewArg) | (ModExzp) | [sort] (SortRef) | [op] (OpRef)
--- may need to precede (SortRef) by "sort" and (OpRef) by "op" to
--- distinguish from general case (i.e., from a module name)

(ViewArg) ::= view [from (ModEzp)] to (ModEzp) is (ViewElt)... endv

(ViewElt) ::= sort (SortRef) to (SortRef) . | var {(Varld)... : (Sort) . |
op {OpExpr) to (Term) . | op (OpRef) to (OpRef) .
--- priority given to (OpEzpr) case
--- vars are declared with sorts from source of view (a theory)

(SortRef) ::= (Sort) | ({Sort))

(OpRef) ::= (OpSpec) | ({OpSpec)) | ({OpSpec)) .{OpQual) | (({OpSpec)) .{OpQual))
--- in views if have (op).(M) must be enclosed in (), i.e., ((op).())

(OpSpec) ::= (OpName) | {OpName) : (Sortld)... -> (Sortld)

(OpExpr) --- a (Term) consisting of a single operator applied to variables

--- equivalent forms ---

assoc = associative comm = commutative

cq = ceq dfn = define

ev = eval evq = eval-quiet

jbo = endo ht = endth

endv = weiv = endview ex = extending

gather = gathering id: = identity:

idem = idempotent idr: = identity-rules:
in = input inc = including

obj = object poly = polymorphic
prec = precedence psort = principal-sort
pr = protecting q = quit

red = reduce rl = red-loop
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sh = show sorts = sort

strat = strategy subsorts = subsort
th = theory us = using

vars = var *kkk = ———

*kkD> = ——=>

--- Lexical analysis ---

--— Tokens are sequences of characters delimited by blanks

-—= "(", ")", and "," are always treated as single character symbols
--- Tabs and returns are equivalent to blanks (except inside comments)
_ Normally, n[u’ u]n, n_u’ n’n, n{n, and n}n

--- are also treated as single character symbols.

C DMore Examples

This appendix contains a number of examples that illustrate the power and flexibility of OBJ’s unusual
features, including hierarchical parameterized modules, subsorts, and rewriting modulo attributes.

C.1 Some Set Theory

The following two objects define some constructions on sets that may be useful in other examples, such as
the category theory example in Appendix C.8. The use of memo has quite a significant effect on the test
cases.

Warning: These particular definitions are very inefficient. The example set2.obj distributed with OBJ3
provides a more efficient alternative.

obj BSET[X :: TRIV] is
sort Set .
pr IDENTICAL .
ops ({}) omega : -> Set .
op {_} : Elt -> Set

op _+_ : Set Set -> Set [assoc comm id: ({})] . ***x exclusive or
op _&_ : Set Set -> Set [assoc comm idem id: omega] . *** intersection
vars S S’ S’’ : Set . vars E E’ : Elt .

eq S+ S ={}.

cq{E}&{E } ={} if E =/=E’
caS&{}=1{.
cq S & (S?+8°) =(5&8S°) +(5&8S)
if (S7 =/== {}) and (87’ =/== {})
*%% made conditional as an example of how to avoid non-termination
*x** from identity completion (in fact, not required)
endo

obj SET[X :: TRIV] is
protecting BSET[X]
protecting INT .
op _U_ : Set Set -> Set [assoc comm id: ({P)]
op _-_ : Set Set -> Set .
op #_ : Set -> Int [prec 0]
op _in_ : Elt Set -> Bool .
op _in_ : Set Set -> Bool .
op empty?_ : Set -> Bool .
var X : Elt . vars S S’ S’’ : Set .
eq SU S’ (5&s8)+s+5s
eq S -5 =S+ (S&S’)
eq empty? S = S == {} .
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eqXinS={X} &S =/={}.

eq S in S’ =S U S’ ==8’° .

eq # {} =0 .

cqg #({ X } + 3)

cqg #({ X } + 9)
endo

# S if X in S .
1 +# S if not X in S .

**x* test cases
obj SET-0F-INT is
protecting SET[INT]

ops sl s2 s3 : -> Set [memo]

eqsl={1}.

eqs2=s1U{2}.

eqs3=s2U{3}.
endo
reduce s3 . ***> should be: {1,2,3}
reduce # s3 . *%%> should be: 3
reduce (s2 U s1) . *x*> should be: {1,2}
reduce #(s3 U s1) . x**> should be: 3
reduce empty?(s3 + s3) . #*x*> should be: true
reduce empty?(sl + s3) . ***> should be: false
reduce 3 in s2 . *%%> should be: false
reduce sl in s3 . *%%> should be: true
reduce sl - s3 . ***> should be: {}
reduce s3 - s2 . ***> should be: {3}
reduce s3 & si1 . *x**> should be: {1}
reduce s3 & s2 . *x**> should be: {1,2}
reduce omega U s2 . **x*> should be: omega

C.2 A Simple Programming Language

It is generally rather straightforward to write specifications of programming languages in OBJ, as we hope
the following example shows. (This example has been adapted from [69]; the first such use of OBJ occurs
in [79].) This example is preceded by two standard generic modules, which are also used in some other
examples below.

obj LIST[X :: TRIV] is
sorts List NeList .

op nil : -> List .
subsorts Elt < NelList < List .
op __ : List List -> List [assoc id: nil]
op __ : Nelist List -> Nelist .
op __ : NeList NeList -> NeList .
protecting NAT .
op |_| : List -> Nat .
eq | nil | = 0 .
var E : Elt . var L : List .
eq | EL | =1+]1L]
op tail_ : NeList -> List [prec 120]
var E : Elt . var L : List .
eq tail EL =1L .
endo

obj ARRAY[INDEX VALUE :: TRIV] is
sort Array .
op nilArr : -> Array .
op put : E1t.INDEX E1t.VALUE Array -> Array .
op _[_] : Array El1t.INDEX -> Elt.VALUE .
op _in_ : E1t.INDEX Array -> Bool .
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op undef : E1t.INDEX -> E1t.VALUE . *** err-op

var A : Array .

var I I’ : E1t.INDEX . var E : E1t.VALUE .

eq put(I,E,A)LT I ] =E .

ceq put(I,E,A) LT’ 1 =A [ T2 ] if I =/=1°

eq I in nilArr = false .

eq I in put(I’,E,A) = I ==1’ or I in A .

ceq A [ I] = undef(I) if not I in A . **x err-eqn
endo

*%% the expressions of Fun
obj EXP is
dfn Env is ARRAY[QID,INT]
sorts IntExp BoolExp .
subsorts Int Id < IntExp .
subsorts Bool < BoolExp .
ops (_and_) (_or_) : BoolExp BoolExp -> BoolExp .
op not_ : BoolExp -> BoolExp .
op _<_ : IntExp IntExp -> BoolExp .
op _=_ : IntExp IntExp -> BoolExp .

op if_then_else_fi : BoolExp IntExp IntExp -> IntExp .

ops (_+_) (_-_) (_*_) : IntExp IntExp -> IntExp .
op [[_1]_ : IntExp Env -> Int .
op [[_1]_ : BoolExp Env -> Bool .

var N : Int . var T : Bool .

vars E E’ : IntExp . vars B B’ : BoolExp .
var I : Id . var V : Env .

eq ([NIIV=N.

eq [[I 1]V [T]

=V
eq [[E+E 11 V=(ILEII W + ([LE>1IW
eq [[E-E>11]Vv=([LEIIV)-(CILE 11 W
eq [[ExE> 11 Vv=([[LEII V) x ([LE 11 W
eq [[TI1IV=T.
eq [[E<E 1]V
eq [[(E=E"]]V

((CEJ] V) < ([LE”JT WV .
((LEJI V) == (ILE” 11TV .
eq [[ B and B’ ]] (L[ B 1] V) and ([L B” ]I V)
eq [[ Bor B’ 1] (LB 11 V) or ([[LB”11W
eq [[ not B 11 V = not([[ B 11 V)

eq [[ if B then E else E’ fi 1] V =

< < 1
1]

if [[ B1] V then [[ E J] V else [[E” ]J] V fi .

endo

**x* the statements of Fun

obj STMT is
sort Stmt .
protecting EXP .
op _;_ : Stmt Stmt -> Stmt [assoc]
op _:=_ : Id IntExp -> Stmt .

op while_do_od : BoolExp Stmt -> Stmt .
op [[_1]_ : Stmt Env -> Env .

vars S S’ : Stmt . var V : Env .
var E : IntExp . var B : BoolExp .
var I : Id .

eq [[ I :=EJ1]V=put(I,[LEI]V, V).

eq [[Ss;s”11v=I[[s1][[s]]V.

eq [[ while B do S od 11 V=3if [[ B 1] V then
[[ while B do S od J] [[ S 1] VelseV fi .

endo
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**x* evaluation of Fun programs
obj FUN is
sorts Fun Init .
protecting STMT .
dfn IdList is LIST[QID]
dfn IntList is LIST[INT]
dfn InitList is (LIST *(op nil to nil-init, op (__) to (_;_)))[Init]
op _initially_ : Id IntExp -> Init [prec 1].

op fun _ _ is vars _ body: _ : Id IdList InitList Stmt -> Fun .
op [[_:=_11_ : IdList IntList Env -> Env .
op [[_1]1_ : InitList Env -> Env .

op [[_1]1[_]_ : Fun Env IntList -> Env .
op [[_1]_ : Fun IntList -> Int .

op wrong#args : —> Env . *** err—op
vars I F : Id . var Is : IdList .
var N : Int . var Ns : IntList .
var E : IntExp . var INs : InitList .
var S : Stmt . var V : Env .

eq [[ nil-init ]] V=1V .
eq [[(T initially E); INs 1] V= [[ INs 1] [[ I :=E J]1 V .
eq [[ T Is :=NNs J1 V= C([[I:=NIJ] (L[ Is :=Ns ]J] V)).STMT .
eq [[(nil).IdList := (nil).IntList ]] V=V .
eq [[ fun F(Is) is vars nil-init body: S JJ[ V I1(Ns) = [[ S 1] V .
eq [[ fun F(Is) is vars INs body: S J1[ V 1(Ns) =
[[s11[[1Ns 1] [[Is :=Ns J]1V.
eq [[ fun F(Is) is vars INs body: S J1(Ns) =
[[ fun F(Is) is vars INs body: S ]]1[ nilArr J(Ns) [ F ]
cq [[ Is := Ns 1] V = wrongt#args if | Is | =/= | Ns | . *** err-qn
endo

**xx pow(n m) finds the nth power of m for positive n or 0
reduce [[ fun ’pow(’n ’m) is vars ’pow initially 1 body:

while 0 < ’n do (’pow := ’pow * ’m);(’n := ’n - 1) od 11(4 2)
*x*> should be: 16

*%x% factorial of n

reduce [[ fun ’fac(’n) is vars (’fac initially 1);(’i initially 0) body:
while ’i < ’n do (’i :=’i + 1); (’fac := ’i * ’fac) od 1]1(5)

*%%> should be: 120

*x* max finds the maximum of a list of three numbers
reduce [[ fun ’max(’a ’b ’c) is vars ’n initially 2 body:

(’max := ’a); while 0 < ’n do

(’n :='’n-1); Cx :=’b); Cb := ’¢c);

(Pmax := if ’x < ’max then ’max else ’x fi) od ]](3 123 32)
**x%> should be: 123

C.3 Unification

The use of associative and/or commutative matching allows writing a simple and elegant unification algo-
rithm in OBJ3. A more efficient version of this algorithm can be used to implement logic (i.e., relational)
programming on the Rewrite Rule Machine; see [75, 107] for more detail.

In this code, a term is either a variable (such as ’X) or else is of the form F[T], where F is an operator
symbol (such as ’F) and T is a list of terms; a constant is of the form F[nil]. An equation is a pair of terms
separated by =, and a system of equations is a list of equations, separated by & signs. The symbols { and
} are used to delimit subsystems of equations. The form let X be T1 in T2 indicates the substitution of
T1 for X in T2; this operator extends to term lists, equations and systems. A system to be unified, presented
in the form {{ S }}, is reduced to another system { S’ } in “solved form”, by progressively moving solved
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equations out of the inner brackets, so that in {S1 & {S2}}, the equations in S1 are solved, while those in
S2 are not.

obj SUBST is
sorts Eqn Term .
protecting QID .
subsort Id < Term .
pr TERMS is (LIST *(sort List to TermList, sort NelList to NeTermList)) [Term].
dfn Op is QID .
op _[_1 : Op TermList -> Term [prec 1]
op _=_ : Term Term -> Eqn [comm prec 120]
pr SYSTEM is (LIST *(sort List to System, sort NeList to NeSystem,
op nil to null, op (__) to (_&_)))[Eqn].
op {_} : System -> System .  *** scope delimiter
op _=_ : TermList TermList -> System [comm prec 120]
vars T UV : Term . var Us : NeTermList .
var S : NeSystem . var Ts : TermList .
eq (TTs =UUs) = (T =0) & (Ts = Us).
op let_be_in_ : Id Term Term -> Term .
op let_be_in_ : Id Term TermList -> TermList .
op let_be_in_ : Id Term Eqn -> Egqn .
op let_be_in_ : Id Term System -> System .
vars X Y : Id . var F : Op .

eq let X be T in nil = nil .

eq let X be Tin Y = if X == Y then T else Y fi .

eq let X be T in F[Ts] = F[let X be T in Ts].

eq let X be T in (U Us) = (let X be T in U) (let X be T in Us).

eq let X be T in (U=V) = (let X be T in U) = (let X be T in V)

eq let X be T in null = null .

eq let Xbe T in ((U=V) & S) = (let X be Tin (U=V)) & (let X be T in S).
endo

**%> first without occur check
obj UNIFY is
using SUBST with SYSTEM and TERMS .
op unify_ : System -> System [prec 120].
op fail : -> Eqn .
var T : Term . vars Ts Us : NeTermList .
vars S S’ S8’’ : System . var X : Id .
eq unify S = {{S}} .
eqS & (T=T) &S’ =S &S’
eq S & fail & S’ = fail .
eq let X be T in fail = fail .
eq {null} = null .

eq {fail} = fail .
vars F G : Op . vars X : Id .
eq {S & (F[Ts] = G[Us]) & S’} = if F==Gand | Ts | == | Us |

then {S & (Ts = Us) & S’} else fail fi .
eq {S&{S’ & X =T) & S’’}} = if X == T then {S & {S’ & S’’}} else
{X=T) & (let Xbe T in S) & {let X be T in S’ & S’’}} fi .

endo

reduce unify *f[’g[’X] ’Y] = *£[’g[’h[’Y]] *h[’Z]1].

reduce unify *f£[’X ’Y] = *£[’Y ’g[’Y]].

reduce unify C£[’gl’X] ’Y] = *£[’g[’>h[’Y]] *h[’Z]1]) & C’h[’X] = °2Z).

reduce unify ’f[’X ’g[’Y]] = °£[’Z °Z].
reduce unify ’f[’X ’g[’Y]] = *f[’Z].
reduce unify *£[°Y ’g[’Y]] = *£[°h[’Z] *Z].

reduce unify *f[’Y ’a[nill] = f[’g[’alnill] ’Z].
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**x> now add occur check
obj UNIFY-OCH is using UNIFY .
Id TermList -> Bool .

op _in_
vars X Y : Id .
var T : Term .

eq X in Y = X ==

eq X in F[Ts] = X in Ts .

var F :

var Ts :

Op .
NeTermList .

eq X in TTs =X in T or X in Ts .
= fail if X in T .

cq X =17

endo

reduce
reduce
reduce
reduce
reduce
reduce
reduce

C.4 Some Theorem Proving

unify
unify
unify
unify
unify
unify
unify

fg[’X] °Y] = *£[°gl’h(’Y1] °h[’Z]1].
f°X Y] = 2£[°Y 'gl’Y1].
Cfl’gl’x] °Y] = *£[°gl’h[°Y]1] *h[’Z]]) & Ch[’X] = °Z).

Jf[;x 7g[JY]:|
Jf[’x ’g[JY]]
Jf[’Y ’g[JY]]

f[°Z °Z].
£[07Z].
*£[°h[’Z] °Z].

Y ’alnil]] = *£[°gl’alnil]] °Z].

Because OBJ3 is rigorously based upon order sorted equational logic, every OBJ3 computation proves some
theorem. By choosing the right specification and the right term, these computations can be made to prove
interesting theorems, as the following examples demonstrate. It is not enough just to give the OBJ code for a
proof — called its proof score — and then do the computation; it is also necessary to show that if all reductions
in the proof score evaluate to true, then the theorem really has been proved. Many such justifications are
given in [51], from which the proof scores in this section were taken. Further justifications, and some more
complex proofs, including the verification of parameterized modules, and some hardware circuits, may be
found in [59]; see also [66]. Such proof scores are generated and checked by Kumo [65, 64, 78, 60].
The following simple specification of the natural numbers is used in several examples below.

: Nat -> Nat [prec 1]

-> Nat .

obj NAT is
sort Nat .
op 0 : -> Nat .
op s_
op _+_ : Nat Nat
vars L M N : Nat .
eqM+0=NM.

eqM+ s N=sM+N)

endo

C.4.1 Associativity of Addition

The following proves that addition of natural numbers is associative.

open .

ops 1 mn :

-> Nat .

**x* base case, n=0: 1+(m+0)=(1+m)+0
reduce 1 + (m + 0) == (1L +m) + 0 .

*%* induction step

eql+ (m+mn)=(A+m)+n.
reduce 1 + (m + s n) == (1 +m) + sn .

close

*x*% thus we can assert

obj ASSOC is
protecting NAT .
vars—-of NAT .
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eqL+ M+ N) = (L+M+N.
endo

C.4.2 Commutativity of Addition

The following proves that addition of natural numbers is commutative.

open .
vars-of NAT .
ops mn : -> Nat .

*** show lemma0O: O + n = n, by induction on n
***x base for lemmaO, n=0

reduce 0 + 0 ==

*%% induction step

eq 0 +n=n.

reduce 0 + (s n) == s n .
*x*% thus we can assert
eq 0+ N=N.

x*%* show lemmal: (s m) + n = s(m + n), again by induction on n
**x* base for lemmal, n=0

reduce (s m)+ 0 == s(m + 0)

*%* induction step

eq (s m)+ n = s(m + n)

reduce (s m) + (s n) == s(m + s n)

**x* thus we can assert

eq (s M)+ N = s(M + N).

*%% show m + n = n + m, again by induction on n
***x the base case, n=0

reducem + 0 == 0 + m .

*%* induction step

egm+n=n+m.

reduce m + (s n) == (s n) + m .

close

Of course, we must not assert commutativity as a rewrite rule, or we would get non-terminating reductions.
The above two proofs show that we are entitled to use associative-commutative rewriting for +, and we do
so below.

It is interesting to contrast the above proofs with corresponding proofs due to Paulson in Cambridge LCF
[129]. The LCF proofs are much more complex, in part because LCF functions are partial, and therefore
must be proved total, whereas functions are automatically total (on their domain) in equational logic.

C.4.3 Formulafor 1+...+n

We now give a standard inductive proof over the natural numbers, the formula for the sum of the first n
positive natural numbers,

1+24+...+n=n(n+1)/2.
Here we take advantage of the two results proven above by giving + the attributes assoc and comm; the
score, as given, will not work if either (or both) of these attributes are deleted. This application of as-
sociative/commutative rewriting saves the user from having to worry about the ordering and grouping of
subterms within terms headed by +.

obj NAT is
sort Nat .
op 0 : -> Nat .
op s_ : Nat -> Nat [prec 1]
op _+_ : Nat Nat -> Nat [assoc comm]
vars M N : Nat .
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eqM+0=NM.

eqM+ s N=sM+N).
op _*_ : Nat Nat -> Nat .
eqM*x0=0.
eqM*sN=(M= N+ M.
endo
open .
vars-of NAT .
ops mn : -> Nat .

**x*x first show two lemmas, 0*n=0 and (sm)*n=(m*n)+n
**x* base for first lemma

reduce 0 * 0 ==

*%* induction step for first lemma

eq 0O *xn=20.

reduce 0 * s n ==

**x* thus we can assert

eq O x N=0 .

*x* base for second lemma

reduce (s n)*x 0 == (n * 0) + O .

*%* induction step for second lemma
eq (sm) *n=(m* n)+n .

reduce (s m)*(s n) == (m * s n)+ s n .
**x* thus

eq (s M)*x N = (M *x )+ N .

*x* now define

op sum : Nat -> Nat .
eq sum(0) = 0 .
eq sum(s N) = (s N)+ sum(N)

**x*x show sum(n)+sum(n)=n*sn

*x* base case

reduce sum(0) + sum(0) == 0 * s 0 .

*%% induction step

eq sum(n) + sum(n) = n * s n .

reduce sum(s n) + sum(s n) == (s n)*(s s n)
close

C.4.4 Fermat’s Little Theorem for p =3

The so-called “little Fermat theorem” says that
z? = z (mod p)

for any prime p, i.e., that the remainder of 2? by p equals the remainder of z by p. The following OBJ3
proof score for the case p = 3 needs a slightly more sophisticated natural number object which assumes
that we have already proven that multiplication is associative and commutative. This is a nice example of
an inductive proof where there are non-trivial relations among the constructors. (We thank Dr. Emmanuel
Kounalis for doubting that OBJ3 could handle non-trivial relations on constructors, and then presenting the
challenge to prove this result.)

obj NAT is
sort Nat .
op 0 : -> Nat .
op s_ : Nat -> Nat [prec 1]
op _+_ : Nat Nat -> Nat [assoc comm]
vars L M N : Nat .
eqM+0=M.
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egqM+ s N=sMM+ N

op _*_ : Nat Nat -> Nat [assoc comm]
eqM*x0=0.
eqM*x s N=(M= N+ M.
eqL * (M +N) = (L *xM + (L *N)
eqM+M+M=0.

endo

*** base case, x = 0

reduce 0 * 0 *x 0 ==

*%% induction step

open .

op x : —> Nat .

eq X ¥ X * X =X .

reduce (s x)*(s x)*(s x) == s x .
close

The same technique can be used for p = 5, p = 7, etc., but something more sophisticated is needed to get
the result for all primes.

C.4.5 Left and Right Group Axioms

A standard example in group theory is to prove that the right handed versions of the axioms follow from
the left handed versions. It is straightforward to do this example using OBJ’s apply feature. The terms
following the numbers in square brackets (e.g., [0]) show what the result should be.

th GROUPL is

sort Elt .

op _*_ : Elt Elt -> Elt .

op e : ->Elt .

op _-1 : Elt -> Elt [prec 2]

var A B C : Elt .

[1id] eq e x A = A .

[Inv] eq A -1 * A = e .

[las] eq A *x (B * C) = (A * B) *x C .
endth

open .
op a : -> Elt .

*x% first, prove the right inverse law:
start a * a -1 .

**xx> [0] (a * a -1)

apply -.1lid at term .

kx> [1] e * (a * a -1)

apply -.lnv with A = (a -1) within term .
*kxk> [2] ((a -1) -1 * a -1) * (a * a -1)
apply .las at term .

*x*x> [3] ((a -1 -1 * a -1)* a)x a -1
apply -.las with A = (a -1 -1) within term .
*xx> [4] ((a -1 -1 *x (a -1 *x a)) *x a -1
apply .lnv within term .

**xx> [B] (a -1 -1 *x e) *x a -1
apply -.las at term .

*kx> [6] a -1 -1 * (e x a -1)
apply .lid within term .

***> [7] a -1 -1 *x a -1
apply .lnv at term .

**xx> [8] e
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**%* we can now add the proven equation
[rnv] eq (A *x (A -1)) = e .

*%% next, we prove the right identity law:
start a * e .

**xx> [0] a * e

apply -.1lnv with A = a within term .
*xx> [1] a *(a -1 * a)

apply .las at term .

*kk> [2] (a *x a -1)* a
apply .rnv within term .

*x*x> [3] e * a
apply .lid at term .

*xx> [4] a

**%> we can add the proven equation
[rid] eq A * e = A .
close

This example can be simplified by assuming associativity of the group multiplication as an attribute:

th GROUPLA is
sort Elt .
op _*_ : Elt Elt -> Elt [assoc]
op e : —> Elt .
op _-1 : E1t -> Elt [prec 2]
var A : Elt .
[1id] eqe * A=A .
[linv] eq A -1 x A = e .
endth

open .
op a : -> Elt

**xx first, prove the right inverse law:
start a *x a -1 .
apply -.1lid at term .
*%%> should be: e * a * a -1
apply -.linv with A = (a -1) within term .
*%*x> should be: a -1 -1 *x a -1 *x a *x a -1
apply .linv at [2 .. 3] of term .
*%*> should be: a -1 -1 *x e *x a -1
apply reduction at term .
**x*x> should be: e

**x* add the proven equation:
[rinv] eq A * A -1 = e

**x% second prove the right identity law:
start a * e .
apply -.linv with A = a within term .
*%*x> should be: a * a -1 * a
apply .rinv at [1 .. 2]
**x*> should be: e * a
apply reduction at term .
**x*> should be: a

*%* add the proven equation:
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[rid] eq A *x e = A .
close

C.4.6 Injective Functions

Proving that an injective function with a right inverse is an isomorphism gives a good illustration of apply
when there are conditional equations.

th INJ is

sorts A B .

op f_ : A ->B .

opg_ :B->A.

var A : A . vars BB’ : B .

[lnv] eqg £ A = A .

[inj] cq B = B’ if g B == g B’
endth

open .
opb:->B.

start £ g b .

apply .inj with B’ = b at term .
apply red at term .

*%%> should be: b

close

What happens here is that, in order to apply the rule .inj to £ g b with B’ = b, we must first prove that
the condition is true, which in this case is that g £ g b == g b. Therefore, OBJ3 shifts its focus from the
original term for reduction, to the condition, so that red (i.e., reduction) is actually applied tog £ g b ==
g b. In fact, the rule .1lnv applies, to give g b == g b, which reduces to true by a built in rule for ==.
Therefore the given term, £ g b is rewritten to b. This establishes the equation

eqf gb="Db .
and hence that
eqf gb="Db .

so that g is indeed as isomorphism.

C.5 Lazy Evaluation

This subsection gives the famous Sieve of Erasthothenes, which finds all the prime numbers. Since this is an
infinite structure, laziness is needed to actually run it.

obj LAZYLISTIX :: TRIV] is

sort List .

subsort Elt < List .

op nil : -> List .

op __ : List List -> List [assoc idr: nil strat (0)]
endo

obj SIEVE is
protecting LAZYLIST[INT]
op force : List List -> List [strat (1 2 0)]
op show_upto_ : List Int -> List .
op filter_with_ : List Int -> List .
op ints-from_ : Int -> List .
op sieve_ : List -> List .
op primes : -> List .
var P I E : Int .
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var S L : List .

eq force(L,S) =L S .

eq show nil upto I = nil .

eq show E S upto I = if I == 0 then nil
else force(E,show S upto (I - 1)) fi .

eq filter nil with P = nil .

eq filter I S with P = if (I rem P) == 0 then filter S with P
else I (filter S with P) fi .

eq ints-from I = I (ints-from (I + 1))

eq sieve nil = nil .

eq sieve (I S) = I (sieve (filter S with I))

eq primes = sieve (ints-from 2)

endo

reduce show primes upto 10 .
*%%> should be: 2 3 5 7 11 13 17 19 23 29

C.6 Combinators

The convention for terms in combinatory algebra requires the use of gathering attributes. Some rather nice
calculations can then be done, in exactly the usual notation. Here is the basic object:

obj COMBINATORS is

sort T .
op __ : TT ->T [gather (E e)]. **x forces left association
ops SKI : ->T.
vars MNP : T .
eqg KMN=M.
eqI M=M.
eqSMNP=M™MP) (NP).
endo

Now the reductions, all of which should evaluate to true, because all of them correspond to identities of
combinatory algebra:

open .
opsmnp: —>T.

red S K K == 1Im.
red SKSm==1Im.
red SIIIm==1Im.

red Kmn == S(S(X S)(S(K K)K))(K(SK K))m n .
red Smn p == S(S(K S) (S(K(S(K S))) (S(K(S(K K)))S)))(K(K(SKK)))mn p .
red S(KK) mn p == S(S(K S)(S(K K)(S(K S)K)))(KK) mn p .

let X =S 1.
red X XXXm=XEXX)m.
close

The last of these takes 27 rewrites, and is not the sort of thing that one would like to do by hand!

C.7 A Number Hierarchy

The various number systems used in modern mathematics exhibit a very rich hierarchy of sorts and subsorts,
from the nonzero natural numbers up to the quarternions. The way this example avoids division by zero is
also a nice illustration of using order sorted algebra to define functions on subsorts. (Most of the work on
this example was done by Dr. José Meseguer.)
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obj NAT is
sorts Nat NzNat Zero .
subsorts Zero NzNat < Nat .
op 0 : -> Zero .
op s_ : Nat -> NzNat .
op p- : NzNat -> Nat .
op _+_ : Nat Nat -> Nat [assoc comm]
op _*_ : Nat Nat -> Nat .
op _*_ : NzNat NzNat -> NzNat .
op _>_ : Nat Nat -> Bool .
op d : Nat Nat -> Nat [comm]
op quot : Nat NzNat -> Nat .
op gcd : NzNat NzNat -> NzNat [comm]

vars N M : Nat . vars N’ M’ : NzNat .
eqp s N=N.

eq N+ 0=N.

eq (s N) + (sM) =ss (N+ M

eqN x 0 =0.

eq O *x N=20.

eq (s N) * (s M) =s (N+ (M+ (N *xM))

eq 0 > M = false .

eq N’ > 0 = true .

eqs N>sM=N>M.

eq d(O,N) = N

eq d(s N, s M) = d(N,M)

eq quot(N,M’) = if ((N > M’) or (N == M’)) then s quot(d(N,M’),M’)

else 0 fi .
eq gcd(N’,M’) = if N’ == M’ then N’ else (if N’ > M’ then
ged(d(N’,M’),M’) else gcd(N’,d(N’,M?)) fi) fi .
endo
obj INT is

sorts Int NzInt .

protecting NAT .

subsort Nat < Int .

subsorts NzNat < NzInt < Int .

op —_ : Int -> Int .

op —_ : NzInt -> NzInt .

op _+_ : Int Int -> Int [assoc comm]
op _*_ : Int Int -> Int .

op _*_ : NzInt NzInt -> NzInt .
op quot : Int NzInt -> Int .
op gcd : NzInt NzInt -> NzNat [comm]

vars I J : Int . vars I’ J’ : NzInt .

vars N’ M’ : NzNat .

eq--I=1.

eq - 0=0.

eqI +0=1.

eq M’ + (- N?) = if N’ == M’ then 0 else
(if N’ > M’ then - d(N’,M’) else d(N’,M’) fi) fi .

eq (-I) + (- 1) = - (I+J)

eqI *x0=0.

eq 0 *x I =0.

eqI * (-J) =-(1Ix*J)

eq (-J) *xI=-(IxJ)

eq quot(0,I’) = 0 .

eq quot(- I’,J’) = - quot(I’,J’)

eq quot(I’,- J’) = - quot(I’,J’)
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eq gcd(- I7,J°) = gcd(I’,J%)
endo

obj RAT is
sorts Rat NzRat .
protecting INT .
subsort Int < Rat .
subsorts NzInt < NzRat < Rat .
op _/_ : Rat NzRat -> Rat .
op _/_ : NzRat NzRat -> NzRat .

op -_ : Rat -> Rat .

op -_ : NzRat -> NzRat .

op _+_ : Rat Rat -> Rat [assoc comm]
op _*_ : Rat Rat -> Rat .

op _*_ : NzRat NzRat -> NzRat .

vars I’ J’ : NzInt . vars R S : Rat .

vars R’ S’ : NzRat .

eqR/ (R” /8)=@®*S8’) /R

eq R/R) /S =R/ (R *87)

cq J’ / I’ = quot(J’,gcd(J?,I%)) / quot(I’,gcd(J’,I’))
if ged(J’?,I’) =/=s 0 .

eqR /s 0=R.

eq0 /R =0
eqR/ (-R’) = (-R) / R’
eq- (R/R’)=(R) /R .
eqR+ (S/R)=(R=*R) +8) /R
eqR *x (8/R)=(R=x*S) /R
eq (S/R’)*R=@®=*S) /R
endo

obj CPX-RAT is
sorts Cpx Imag NzImag NzCpx .
protecting RAT .
subsort Rat < Cpx .
subsort NzRat < NzCpx .
subsorts NzImag < NzCpx Imag < Cpx .
subsorts Zero < Imag .
op _i : Rat -> Imag .
op _i : NzRat -> NzImag .

op -_ : Cpx -> Cpx .

op -_ : NzCpx -> NzCpx .

op _+_ : Cpx Cpx -> Cpx [assoc comm]

op _+_ : NzRat NzImag -> NzCpx [assoc comm]
op _*_ : Cpx Cpx -> Cpx .

op _*_ : NzCpx NzCpx -> NzCpx .

op _/_ : Cpx NzCpx -> Cpx .

op _# : Cpx -> Cpx .

op |_I"2 : Cpx -> Rat .

op |_|"2 : NzCpx -> NzRat .

vars R S : Rat . vars R’ R’’ S’ S’’ : NzRat .
vars A B C : Cpx .

eq 01i=0.

eqC+0=C.

eq (R1i) + (81i) = R +8) 1.

eq -(S’ 1) = (- §8?) .
eqR *x (5i) = (R *8S)i.
eq (Si) * R= (R *S) i .

R

eq -(R’> + (8” 1)) = (- R?) + ((- 87) i)
1
S
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eq (Ri) * (Si) =- (R *8S) .
eq C * (A + B) (C* A) + (C*B) .
eq (A+B) xC=(Cx* A) + (C=*B) .
eq R #=R .
eq (R? + (S? i))# = R’ + ((- 87) i) .
eq (87 i) # = ((- 87) i) .
eq| C|72=C* (C#) .
eq (s; 1) / R’ = (sz / R”) i .
eq (R? + (87 1)) /R’ = (R /R’) + ((82 /R’) 1) .
eqA / (R 1) =A* (((-s0)/ R) 1) .
eqA / (R + (R” 1)) =
Ax(®R” / IR+ (R 1))I72) + ((-R) / R + (R 1))]72) 1)).

endo

obj QUAT-RAT is
sorts Quat NzQuat J NzJ .
protecting CPX-RAT .
subsorts NzJ Zero < J < Quat .
subsorts NzCpx < NzQuat Cpx < Quat .
subsort NzJ < NzQuat .
op _j : Cpx -=> J .
op _j : NzCpx -> NzJ .
op —_ : Quat -> Quat .

op _+_ : Quat Quat -> Quat [assoc comm] .
op _+_ : Cpx NzJ -> NzQuat [assoc comm] .
op _*_ : Quat Quat -> Quat .

op _*_ : NzQuat NzQuat -> NzQuat .

op _/_ : Quat NzQuat -> Quat .

op _# : Quat -> Quat .

op |_|"2 : Quat -> Rat .

op |_I"2 : NzQuat -> NzRat .

vars 0 P Q : Quat . vars B C : Cpx .
vars C’ : NzCpx .

eq 0 j=0.

eqQ+0=0Q.

eq (C+ (B j))=(-0C + ((-B) j) .
eq (C j) + (BJj)=(+B) j.

eqC* (B j)=(C*B)j.

eq (B j) *C=(Bx*(C#) j .

eq (C j) *» (B j)=-(Cx*x (B#) .

eqQ * (0+P)=(@*0)+(Q*P) .

eq (0+P) *xQ=(@0x*Q + (P *xQ .

eq P+ Q) #=@CF# +Q# .

eq (Cj) #=(-20C j .

eq | QI72=0Q* (@ #) .

eqQ/ (C” ) =Q* (s 0/ (-C)) J) .

eqQ / (C+(C” 3))=0Q = (((C#) / I(C+(C jNI"2) +

(¢-=c) / I(C +(C 3N172) 3)) .

endo
obj TST is

protecting QUAT-RAT .
ops 123456789 : -> NzNat [memo] .

eql=s50. eq2=s1 eq 3 =82 .
eq4=s53. eqb=s54. eqb=s5.
eq7=s6. eq8=s87 eq 9 =858 .
endo
reduce 3 + 2 .
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reduce
reduce

0 W N

3 %
PP
reduce 4 >
reduce d(2,8)
reduce quot(7,2)
reduce gcd(9,6)
reduce (- 4) + 8 .
reduce (- 4) * 2 .
reduce 8 / (- 2) .
reduce (1 / 3) + (4 / 6)
reduce | 1 + (2 i) |2 .
reduce | (1 + (3 1)) + (1 + ((-2) 1)) |2 .
reduce (3 + ((3 1) + ((-2) 1)) / ((2 1) + 2)
reduce (2 + ((3 i) D)) * ((5 1) + (7 )
reduce (1 + ((1 1) j)) / (2 j)

C.8 Categories and Coproducts

This subsection specifies categories and coproducts. Some familiarity with category theory may be needed
(e.g., sections 2.3 and 3.9 of [88]); on the other hand, the code may also provide a more concrete understanding
of the categorical concepts; see also [136]. Note how universal morphisms are defined as a subsort, and also
the use of sort constraints. (Recall that the semantics of op-as is not yet implemented.) The use of memo
has quite a significant effect on performance in this example.

**x* theory of categories
th CAT-TH is
sorts Mor Obj
ops (d0_) (d1_.) : Mor -> 0Obj

op-as _;_ : Mor Mor -> Mor for M1 ; M2 if d1 M1 == d0 M2 [assoc]
op id_ : 0Obj -> Mor .
var 0 : 0bj

vars M MO M1 : Mor .

eq d0 id 0 =0 .

eqdl id 0 =0 .

eq d0 (MO ; M1) = d0O MO .
eq d1 (MO ; M1) = 41 M1 .
eq (id dO M); M =M .
eqM; iddi M =M.

endth

*** generic category of sets
obj CAT-SET[X :: TRIV] is
sort Fn .
protecting SET[X]
ops (d0_) (d1.) : Fn -> Set .
op-as _;_ : Fn Fn -> Fn for F1 ; F2 if d1 F1 == d0 F2 [assoc]
op id_ : Set -> Fn .
op-as _of_ : Fn Elt -> Elt for F of X if (X in d0 F) and (F of X in d1 F)
var 0 : Set .
vars F FO F1 : Fn .

var E : Elt .
eq d0 id 0 = 0 .
eqdl id 0 =0

eq d0 (FO ; F1) = 40 FO .
eq d1 (FO ; F1) = 41 F1 .
eq (iddOF) ; F=F .

eqF ; idd1 F =F .

eq (FO ; F1) of E = FO of (F1 of E)
eq (id 0) of E = E .
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endo

**x*x CAT-SET always gives a category

view CAT-SET-AS-CAT from CAT-TH to CAT-SET is
sort Obj to Set .
sort Mor to Fn .

endv

**% 2-cones in C
obj CO2CONE[C :: CAT-TH] is
sort Co2cone .
define Base is 2TUPLE[Obj,0bj]
op-as cone : Mor Mor -> Co2cone for cone(M1,M2) if d1 M1 == 41 M2 .
ops j1 j2 : Co2cone -> Mor .
op apex : Co2cone -> 0Obj
op base : Co2cone -> Base .
vars M1 M2 : Mor .
eq jl(cone(M1,M2)) = M1 .
eq j2(cone(M1,M2)) = M2 .
eq apex(cone(M1,M2)) = d1 M1 .
eq base(cone(M1,M2)) = << d0 M1 ; 40 M2 >> .
endo

**x* theory of coproduct in C
th CO2PROD-TH[C :: CAT-TH] is
sort Uco2cone .
protecting CO2CONE[C]

subsort Uco2cone < Co2cone . *%% a very nice subsort!

op ucone : 0Obj Obj -> Uco2cone . *** coproduct cone

op _++_ : 0Obj Obj -> 0bj . *** coproduct object

op-as umor : Uco2cone Co2cone -> Mor for umor(U,C) if base(U) == base(C)

vars A B : 0Obj
vars F G H : Mor .
eq apex(ucone(A,B)) = A ++ B .
eq base(ucone(4,B)) << A ; B> .
eq (jl(ucone(A,B))); umor(ucone(A,B),cone(F,G)) =
eq (j2(ucone(A,B))); umor(ucone(A,B),cone(F,G)) =
cq H = umor(ucone(A,B) ,cone(F,G))
if (j1(ucone(A,B)); H == F) and (j2(ucone(A,B)); H == G)
endth

I
| 1
Qm

**x% theory of injections for building a coproduct
th 2INJ-TH is
sort Elt .
ops 10 il iOinv ilinv : Elt -> Elt .
ops i0pred ilpred : Elt -> Bool .
var E : Elt .
eq i0inv(iO(E)) =
eq ilinv(il(E)) .
eq iOpred(iO(E)) = true .

non
=

eq iOpred(il(E)) = false .
eq ilpred(il1(E)) = true .
eq ilpred(i0(E)) = false .

endth
**x* coproduct in a category of sets, given injections for it

obj CO2PROD-CAT-SET[J :: 2INJ-TH] is
sort Uco2cone .
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extending CO2CONE[view to CAT-SET[J] is
sort Obj to Set .
sort Mor to Fn .

endv]

subsort Uco2cone < Co2cone .

op ucone : Set Set -> Uco2cone .

op-as umor : Uco2cone Co2cone -> Fn for umor(U,C) if base(U) == base(C)

ops I0 Il : Set -> Set .

op _++_ : Set Set -> Set [memo]

vars A B S : Set .

vars F G : Fn .

var E : E1t .

eq IO({}P = {} .

eq IO({ E } +8) = { i0(E) } + I0(S)
eq I1({H = {} .

eq I1({ E } +8) = { i1(E) } + I1(S)

eq A ++ B = I0(A) U I1(B)

eq apex(ucone(A,B)) = A ++ B .

eq base(ucone(A,B)) = << A ; B >> .

cq jl(ucone(A,B)) of E = iO(E) if E in A .

cq j2(ucone(A,B)) of E = i1(E) if E in B .

cq umor (ucone(A,B) ,cone(F,G)) of E = F of i0inv(E) if iOpred(E)

cq umor (ucone(A,B) ,cone(F,G)) of E = G of ilinv(E) if ilpred(E)
endo

*%% CO2PROD-CAT-SET gives a coproduct

*x*x view CO2PROD-CAT-SET-AS-CO2PROD-TH[J :: 2INJ-TH]

*kok from CO2PROD-TH[CAT-SET[J]] to CO2PROD-CAT-SET[J] endv
**x* don’t have parameterized views yet

*%x% constructions for the category of sets of integers
make CAT-SET-INT is CAT-SET[INT]*(op omega to ints) endm

*** coproduct in the category of sets of integers
make CO2PROD-CAT-SET-INT is
CO2PROD-CAT-SET [view to INT is
var I : Elt .
op i0(I) to (2 * I)
op i0inv(I) to (I quo 2)
op iOpred(I) to (I rem 2 == 0)
op i1(I) to 1 + (2 * I)
op i1inv(I) to ((I - 1) quo 2)
op ilpred(I) to (I rem 2 == 1)
endv]
endm

*%% this says the above really is a coproduct
view CO2PROD-CAT-SET-INT-VIEW from CO2PROD-TH[view to CAT-SET[INT] is
sort Obj to Set .
sort Mor to Fn . endv]
to CO2PROD-CAT-SET-INT is endv
*%* note the view within view and empty body of outermost view

*x* some test cases

obj CO2PROD-TEST is
protecting CO2PROD-CAT-SET-INT .
ops sl s2 s3 s4 : -> Set [memo]

eqsl={1}.
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opg: ->Fn

eq g of 3 =2

eqgof 2=1

eq d0 g = s4

eq dl g = s3 .
endo
reduce base(ucone(sl,sl)) . *x*x> should be: <<{1};{1}>>
reduce apex(ucone(sl,sl)) . *x*x> should be: {2,3}
reduce umor (ucone(sl,sl1),cone(id s1,id s1)) of 2 . ***> should be: 1
reduce umor (ucone(sl,sl1),cone(id s1,id s1)) of 3 . ***> should be: 1
reduce base(ucone(s2,s3)) . ***> should be: <<{1,2};{1,2,3}>
reduce apex(ucone(s2,s3)) . ***> should be: {2,4,3,5,7}
reduce umor (ucone(s2,s3),cone(id s2,id s3)) of 2 . ***> should be: 1
reduce umor (ucone(s2,s3),cone(id s2,id s3)) of 4 . ***> should be: 2
reduce umor (ucone(s2,s3),cone(id s2,id s3)) of 3 . ***> should be: 1
reduce umor (ucone(s2,s3),cone(id s2,id s3)) of 5 . ***> should be: 2
reduce umor (ucone(s2,s3),cone(id s2,id s3)) of 7 . ***> should be: 3
reduce base(ucone(s4 ,s3)) . ***> should be: <<{2,3};{1,2,3}>>
reduce apex(ucone(s4,s3)) . ***> should be: {4,6,3,5,7}
reduce umor (ucone(s4,s3),cone(g,id s3)) of 4 . *xx> should be: 1
reduce umor (ucone(s4,s3),cone(g,id s3)) of 6 . *xx> should be: 2
reduce umor (ucone(s4,s3),cone(g,id s3)) of 3 . *xx> should be: 1
reduce umor (ucone(s4,s3),cone(g,id s3)) of 5 . ***> should be: 2
reduce umor (ucone(s4,s3),cone(g,id s3)) of 7 . *%*x> should be: 3

D Built-ins and the Standard Prelude

This Appendix gives details of how Lisp can be called from within OBJ3 programs, with a number of
examples, including the complete OBJ3 standard prelude.

D.1 The Lisp Interface

OBJ3 provides two ways to take advantage of the (Common-)Lisp underlying its implementation: built-in
sorts and built-in righthand sides for rules; we call rules with such built-in righthand sides built-in rules.

Built-in sorts are sorts whose elements are constants represented by Lisp values. General mechanisms are
provided for reading, printing, creating Lisp representations for, and testing sort membership for constants
of these sorts. In general, built-in sorts can be used in any context where a non-built-in sort can be used,
although a constant of a built-in sort cannot be the lefthand side of a rule.

The built-in rules come in two varieties, a simplified version that makes writing rules for operators defined
on built-in sorts easy, and a general kind that allows arbitrary actions on the redex to be specified. However,
to take full advantage of this latter type of rule, one must be familiar with the internal term representation
of OBJ3 and the implementation functions for manipulating this representation. Built-in rules can be used
wherever an ordinary rule can be.

D.1.1 Built-in Sorts

Built-in sorts may contain any (countable) number of constants. For example, a version of NATS with a
built-in sort Nat is equivalent to an idealized non-built-in version of the form

obj NATS is
sort Nat .
ops 0123456789 10 11 12 13 ... : -> Nat .
op _+_ : Nat Nat -> Nat .
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**x*x etc.
endo

with an infinite number of constants. (The name NATS is chosen to avoid clashing with the predefined object
NAT.) Some other useful built-in sorts are floating-point numbers, identifiers, strings, and arrays.

Constants in a built-in sort have an associated Lisp representation. Such a built-in sort is introduced by
a declaration of the form

bsort (Sortld) ((Token-Predicate) (Creator) (Printer) {Sort-Predicate))

which gives the name of the sort, two Lisp functions for reading, a function for printing constants of the
sort, and a predicate that can be used to test whether a Lisp value represents a constant of the given sort.
A sort declaration of this kind can occur wherever an ordinary sort declaration can occur.

When an OBJ expression is read, it is first lexically analyzed into a sequence of tokens that are either
special single character symbols, such as “(” and “]1”, or else are sequences of characters delimited by these
special single character symbols or spaces. Internally, such tokens are represented by Lisp strings. For
example, the representation of the token “37” is the Lisp string "37" of length two.

In more detail now:

e (Token-Predicate) is a Lisp predicate that can be applied to an input token (a Lisp string) to determine
if the token is a representation of a value in the built-in sort (it is applied by funcall); for example,
"37" from NATS should result in true and "A+B" in false. With this mechanism, the syntactic
representation of a built-in constant can only be a single token.

e (Creator) is a Lisp function that will map a token (a Lisp string) to a Lisp representation for that token
as a built-in constant. The Lisp function read-from-string is very useful as a creator function for
built-in sorts that correspond directly to Lisp types. For example, "37" should be mapped to the Lisp
value 37.

e (Printer) is a Lisp function that will print out the desired external representation of the internal Lisp
value representing one of the built-in sort constants. The Lisp function prinl is very useful as a
(Printer) function for printing out values that correspond directly to Lisp types. For example, 37
should be printed by printing the digit 3 followed by the digit 7. Because the user can define the
printer function to meet particular needs, there is no assumption that this function is an inverse to
the {Creator) function. Indeed, the syntactic representation of a built-in constant may involve many
tokens, but then this representation cannot be read in as a built-in constant.

e (Sort-Predicate) is a Lisp predicate that is true only for Lisp values that are representations of constants
in the built-in sort. For example, 3 should be considered to be in sort Nat, and -3 should not. The
purpose and use of this predicate are discussed further below.

For example, to define NATS we might first define some Lisp functions, with

ev (progn
(defun obj_NATS$is_Nat_token (token)
(every #’digit-char-p token))
(defun obj_NATS$create_Nat (token) (read-from-string token))
(defun obj_NATS$print_Nat (x) (prinl x))
(defun obj_NATS$is_Nat (x) (and (integerp x) (<= 0 x))))

Then we can define

obj NATS is
bsort Nat (obj_NATS$is_Nat_token obj_NATS$create_Nat
obj_NATS$print_Nat obj_NATS$is_Nat) .
endo

which supports the natural number constants, as in

0BJ> red 100 .
reduce in NATS : 100
rewrites: 0

result Nat: 100
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However, this object is not very useful, because no operators have been associated to the built-in sort.

Warning: A current implementation restriction does not allow a built-in constant to be the lefthand side
of a rule. Built-in constants are always considered to be in reduced form, so that rule applications are never
attempted on them.

D.1.2 Subsorts of Built-in Sorts

It is possible for a built-in sort to be a subsort of another built-in sort, but a non-built-in sort cannot be a
subsort of a built-in sort. However, a non-built-in sort can be a supersort of a built-in sort. For the sort of
newly created built-in constants to be properly assigned, a sort predicate must be provided for each built-in
sort. An example of this will later be seen in a version of the rational numbers using Common Lisp rationals.

When there are built-in subsorts of the sort of a newly created built-in constant, then the sort that is
assigned to the constant is determined by scanning the list of subsorts, applying the sort predicates to the
Lisp value to determine if it lies in the corresponding subsort, and choosing the lowest acceptable sort as
the sort of the constant. It is assumed that there is always a unique lowest sort. It is critical only that the
sort predicate for a built-in sort should be false for values that are in supersorts of the built-in sort. It is
not necessary for it to be false for constants in subsorts of the given sort.

If there is no enclosing built-in supersort, then it can be the constant true, and have a definition like

(defun obj_NATS$is_Nat (x) t)

because the (Sort-Predicate) function will only be called for built-in constants of that sort (if it is called at
all). This will not affect the operational behavior of OBJ in this case. However, it is better for the predicate
to be exact in order to allow the easy incorporation of new supersorts.

D.1.3 Built-in Rules

Built-in rules provide a way of using Lisp expressions to perform computations. These are essential for the
usefulness of built-in sorts, but they can also be used for non-built-in data. Built-in rules are either of a
special simple form or else are general.

Simple built-in rules can be unconditional or conditional, with the syntax

bq (Term) = (Lisp Exzpression) . |
cbq (Term) = (Lisp FExpression) if (BoolTerm) .

The key restriction on simple built-in rules is that the sort of each variable appearing in the lefthand side
must be a built-in sort.

The lefthand side of these rule is matched against terms in exactly the usual fashion; also, in the condi-
tional case, the condition is just an OBJ term, and it is treated in exactly the same way as a condition in a
non-built-in rule. If a match is found for the variables in the lefthand side such that each variable matches
a built-in constant (and the condition is satisfied if the built-in rule is conditional), then the righthand side
is evaluated in a Lisp environment with Lisp variables having names corresponding to the OBJ variables
(as usual in Common Lisp, the case, upper or lower, of variables in the Lisp expression is ignored) bound
to the Lisp value of the built-in constants to which they were matched. Because the variables must match
constants of the corresponding built-in sorts, a bottom-up evaluation strategy is necessary, regardless of the
strategy specified for the operator. The sort of the lefthand side is usually a built-in sort, and in this case
the Lisp value of the righthand side of the rule is automatically converted to a built-in constant of that sort.
If the sort of the lefthand side is not a built-in sort, then, with one exception that will be mentioned next,
the value of the righthand side should be a Lisp representation of a term of that sort (or a subsort of that
sort). A special case is that, if the sort of the lefthand side is Bool, then the value of the righthand side Lisp
expression can be any Lisp value that will be converted to a Boolean value by mapping nil to false and all
other Lisp values to true. For this case, a special conversion is performed; this makes it very easy to define
predicates.

As an example, consider

obj NATS is
bsort Nat (obj_NATS$is_Nat_token obj_NATS$create_Nat
obj_NATS$print_Nat obj_NATS$is_Nat) .
op _+_ : Nat Nat -> Nat .
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vars M N : Nat .
bg M+ N=(+MN
endo

We can then do the following reduction.

0BJ> red 123 + 321 .
reduce in NATS : 123 + 321
rewrites: 1

result Nat: 444

Because the matching of the lefthand side is done in the usual fashion, the operators appearing in the
lefthand side can even be associative and commutative.
The general form of a built-in rule has the following syntax

bq (Term) = (Lisp Expression) . |
cbq (Term) = (Lisp Expression) if (BoolTerm)

where now the variables in the lefthand side can have arbitrary sorts. The lefthand side and condition are
treated as usual.

The process of applying the rule is a bit different in this case. The lefthand side is matched as usual
creating the correspondence between variables in the lefthand side and subterms of the term being rewritten.
The righthand side is evaluated in an environment where Lisp variables with names corresponding to the
OBJ variables (case is ignored) are bound to the internal OBJ3 representation of the terms matched by the
variables. The Lisp value of the righthand side is expected to be an internal OBJ3 representation of a term
that then destructively replaces the top-level structure of the term matched. An exception is that, if the
Lisp code evaluates the expression (obj$rewrite fail), then the rewrite is aborted and the term is left
unchanged. (This has the effect of making the rule conditional in an implicit way; the condition is checked
in the Lisp code for the righthand side.) An additional feature is that the righthand side is evaluated in an
environment where module is bound to the module that the rule comes from; this feature is necessary to
correctly treat general built-in rules in instances of parameterized modules.

The following is a simple example:

obj NATS is
bsort Nat (obj NATS$is Nat_token obj NATS$create Nat
obj NATS$print Nat obj NATS$is Nat)
op _+_ : Nat Nat -> Nat .
vars M N : Nat .
bg M+ N=(+MN

op print _ : Nat -> Nat .
beq print M = (progn (princ " = ") (term$print M) (terpri) M)
endo

The operator print returns just its argument, but has the side-effect of printing the term resulting from
evaluating its argument preceded by the “=" sign. For example,

red (print (3 + 2)) + 4 .

produces the following output from OBJ3:

reduce in NATS : print (3 + 2) + 4
=5

rewrites: 3

result Nat: 9

The line containing “= 5” is the output produced by the use of print. Such print operators can be very
useful; in many cases, one may want to add an extra argument that provides an output label. General
built-in rules can be written to perform arbitrary transformations on a term using any of the functions
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defined in the OBJ3 implementation. Thus it is useful to be familiar with the functions provided by the
implementation when writing such general built-in rules. Some basic functions are discussed below.

It is often useful to initialize some Lisp variables after certain OBJ objects are created. This can be done
using eval or ev. There are examples of this in the OBJ3 standard prelude.

In general, the module that the rules are associated with may be an instance of a parameterized module.
In this case, it is necessary to write the rules so that the extra parameter module is used to create structures
within that module. When locating the correct instance of an operator one must first determine its module,
then the sorts of its arguments and result, and then its name. In the case where there are no ambiguities,
some simpler functions can be used, e.g., to find an operator based only on its name.

Functions that are useful for the general built-in rules are given below (note that these are all Lisp func-
tions from the OBJ3 implementation). The Lisp functions will be described, in part, by giving declarations
similar to OBJ operator declarations. Of course these need to be interpreted as informal descriptions of Lisp
functions that may have side-effects and that manipulate particular Lisp representations of the values given
as arguments.

The sorts that will be referred to are:

e Bool, NzNat, Lisp-Value
Bool, NzNat, and Lisp-Value are OBJ sort names for the related standard Lisp types.

e Sort-Name
A Sort-Name is a Lisp string naming a sort.

e Op-Name
An Op-Name is a Lisp list of the tokens, represented as Lisp strings, that constitute the name of the
operator. For example, the name of _+_ : Nat Nat -> Nat is ("_" "+" "_"),

e Sort-Order
A Sort-0Order is a representation of a partial order on the sorts.

e Sort, Operator, Term, Module, Module-Expression
Sort, Operator, Term, Module, and Module-Expression correspond to the Lisp representations of
these sorts. Values of the sorts Sort, Operator, Term, and Module are composite objects with many
components, some of which are likely not to be of interest here. For these sorts, functions selecting the
interesting features of the values are given below.

e SortSet
SortSet is a set of sorts represented by a list.

e LIST[Term], LIST[Sort]
LIST[-] indicates that the values so described will be Lisp lists of the specified sort.

The following functions are useful for term manipulation:

e modexp_eval$eval : Module-Expression — Module
The argument can be the name of a specific named module, such as "INT". This can be used to find
specific named modules.

e sort$is built in : Sort — Bool
This predicate decides whether the sort given is a built-in sort.

e module$sort_order : Module — Sort-Order
This selector provides access to the sort order for the given module, i.e., the representation of the sort
structure.

e sort_order$is_included_in : Sort-Order Sort Sort — Bool
This predicate decides if the first sort is a subsort of the second in the given sort order.

e sort_order$is strictly_included_in : Sort-Order Sort Sort — Bool
Same as above but excludes the case when two sorts are equal.

e sort_order$lower _sorts : Sort-Order Sort — SortSet
This function produces a list of the sorts lower than a given sort in the given sort order.

84



mod_eval$$find sort_in : Module Sort-Name — Sort
This function can be used to find the named sort in the given module. A typical sort name is “"Int"”.

sort$name : Sort — Sort-Name
This selector provides the name of a given sort.

operator$name : Operator — Op-Name
This selector provides the name of the given operator.

operator$is_same operator : Operator Operator — Bool
This predicate decides if the two operators are the same operator.

operator$arity : Operator — LIST[Sort]
This selector provides the arity of the given operator as a list of sorts, which may be nil.

operator$coarity : Operator — Sort
This selector provides the co-arity of the given operator.

mod_eval$$find operator_in : Module Op-Name LIST[Sort] Sort — Operator
This function locates the operator with the given name, arity (list of sorts) and coarity (value sort),
or returns nil if there is none such.

mod_eval$$find operator named in : Module Op-Name — Operator
This function attempts to locate an operator purely based on its name.

term$is_var : Term — Bool

This predicate decides if a term is a variable. It may be that the terms that you are manipulating
are primarily be ground terms, but, in general, it is preferable to consider the case of variables in the
definitions of functions.

term$is_constant : Term — Bool
This predicate decides if a term is a constant.

term$head : Term — Operator
This function produces the operator that is the head operator of a non-variable term. It is an error to
apply this function to a term that is a variable.

term$subterms : Term — LIST[Term]
This function produces the list of top-level subterms of the given term.

term$make term : Operator LIST[Term] — Term
This function creates a new term with the given head operator and list of arguments.

term$make term with _sort_check : Operator LIST[Term] — Term

This function is similar to the last, but may replace the operator with a lower operator in the case of
overloading. If there is a lower overloaded operator whose arity fits the sorts of the given arguments,
then this operator will be used instead of the given operator.

term$arg n : Term NzNat — Term
This function gives easy access to the n-th (counting from 1) top-level argument of the given term.

term$sort : Term — Sort
This function computes the sort of a term whether or not it is a variable.

term$is reduced : Term — Bool
This function checks whether or not the term has been marked as fully reduced. This flag is updated
by side-effect.

term$!replace : Term Term — Term

The Lisp representation for the first argument term is destructively altered in such a way that it will
appear to have the same term structure as the second term argument. The altered representation of
the first term is returned.

term$!update lowest_parse_on_top : Term — Term
This will update the sort of the term, for example, when a subterm has been altered so that it now
has a lower sort.
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e term$retract_if needed : Sort-Order Term Sort — Term
This function either returns the term, or a retract applied to the term depending on whether or not
the sort of the term is included in the given sort.

e term$is built_in_constant : Term — Bool
This predicate decides if the term is a built-in constant or not.

e term$similar : Term Term — Bool
Tests if the two terms have the same term structure without taking attributes into account.

e term$equational equal : Term — Bool
Tests if the terms have the equivalent structure taking attributes into account.

e term$make built_in constant : Sort Lisp-Value — Term
This function creates a term which is a built-in constant for the given built-in sort and Lisp value.
The sort predicate for the built-in sort is not applied.

o term$make built_in constant with sort_check : Sort Lisp-Value — Term
Similar to above, but may replace the given sort by a lower sort.

e term$built_in value : Term — Lisp-Value
This function produces the Lisp value from a built-in constant.

e obj BOOL$is_true : Term — Bool
This function tests whether the term given as its argument is the constant true. The value is a Lisp
boolean, i.e. T for true and NIL for false.

e rew$!normalize : Term — Term
This is the OBJ evaluation function. The term given as an argument is reduced and is updated by
side-effect as well as being returned as the value of the function.

The following functions are specific to terms where the top operator is associative (A) or associative-
commutative (AC):

e term$list_assoc_subterms : Term Operator — LIST[Term]
This function computes the list of subterms of the given term that are on the fringe of the tree at
the top of the term the nodes of which are all terms headed with the given associative operator or
operators overloaded by this operator. This can be the whole term.

e term$list AC_subterms : Term Operator — LIST[Term]
Similar to the above, but for associative-commutative (AC) operators.

o term$make right_assocnormal_form : Operator LIST[Term] — Term
This function builds a term from the given associative operator and the list of terms by building a
right-associated binary tree.

e term$make right assoc normal form with sort_check : Operator LIST[Term] — Term
Similar to the above, but may replace the operator by lower operators.

The predefined object BUILT-IN (see Section D.3) allows the creation of built-in subterms of righthand
sides of rules. The default syntax is “built-in: (Lisp)”, where the Lisp expression represents a function, to
be funcall-ed, that takes one argument, which is a substitution, and produces two values, a term which is
the intended instantiation for this subterm, and a success indicator . In general, it will be necessary to deal
with the incompatibility of the sort Built-in with the sorts of other operators in the righthand side. Here
is a sketch of a use of this feature:

op r : Universal -> A .

var X : A .

eq £(X) = X + r(built-in: (lambda (u) (create-term u)))
eqr(X) =X .

Note that “built-in:” is now a very special keyword, and cannot be used in any other context (this can
be disabled by “ev (setq obj _BUILT-IN$keyword nil)”).
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D.2 Examples

We now give a number of somewhat larger examples, including cells (which have internal memory), arrays
of integers, and an efficient sorting program. Other examples appear in the standard prelude, although the
Lisp code used in the standard prelude is not given in this paper.

D.2.1 Cells

The basic idea of this example is very simple, namely to provide a parameterized object that creates cells
containing values of a given sort. Such cells are an abstract version of procedural variables that can be
modified by side-effects or destructive assignments. Of course, this module is not functional.

*%* obj code for cells
ev (defun set-cell-rule (i x) (setf (cadr i) x) i)

obj CELL[X :: TRIV] is

sort Cell .

op cell _ : Elt -> Cell .

op new-cell _ : Elt -> Cell .
op val _ : Cell -> Elt .

op set _ _ : Cell Elt -> Cell .
var I : Cell .

var X : Elt .

eq new-cell X = cell X .

eq val (cell X) =X .

beq set I X = (set-cell-rule I X)
endo

*** sample program using this
obj TEST is
pr CELL[INT]

sort A .
subsort Int Cell < A .
op _I_ : AA->A.

opdbl _ : A ->A .
op incr _ : A > A .

var UV : A .
var C : Cell .

eqdbl U=U | U .

eq incr (U | V) = (incr U) | (incr V)
eq incr C = val (set C (1 + (val C)))
endo

red incr (dbl (dbl (dbl (new-cell 0)))) .
%k result A: ((1 | 2) | (31 4)) | (B 6 | (71 8))
D.2.2 Arrays of Integers

The following code provides arrays of integers that can be modified by side-effect. This might be useful for
a functional program for table-lookup (side-effects would only be used for building the table).

ev
(defun arrayint$print (x)
(princ n [u )
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(dotimes (i (length x))
(when (< 0 i) (princ ",")) (print$check)
(prinl (aref x 1i)))

(princ "1"))

obj ARRAYINT is
pr INT .
bsort ArrayInt ((lambda (x) nil) (lambda (x) (break))
arrayint$print (lambda (x) t))

op make-array : Nat Int -> ArrayInt .

op length _ : ArrayInt -> Nat .
op _[_] : ArrayInt Nat -> Int .
op _[_] := _ : ArrayInt Nat Int -> ArrayInt .

var A : ArrayInt .
var I : Int .
var N : Nat .

bq make-array(N,I) = (make-array (list N) :initial-element I)
bq length(A) = (length A)
bq A[N] = (aref A N)
bq A[N] := I = (progn (setf (aref A N) I) A)
endo

The commands

red make-array(10,1) .
red (make-array(10,1))[5]
red (make-array(10,1))[5] := 33 .

produce the following output:

reduce in ARRAYINT : make-array(10,1)
rewrites: 1
result ArrayInt: [1,1,1,1,1,1,1,1,1,1]

reduce in ARRAYINT : make-array(10,1) [5]
rewrites: 2
result NzNat: 1

reduce in ARRAYINT : make-array(10,1) [5]:= 33
rewrites: 2
result ArrayInt: [1,1,1,1,1,33,1,1,1,1]

D.2.3 Sorting

This example defines a parameterized sorting module. The parameter provides the partial order used and
the sorting is done using the Lisp function sort. A small point of some interest is that an operator named
_<<_ is introduced as an alias for the parameter operator - < _ simply to provide an easy way to locate the
parameter operator after instantiation. This is needed because the name of a parameter operator cannot be
known for an instance of the parameterized module, where such a parameter may have been mapped to an
arbitrary term by the view defining the instantiation. For similar reasons, the operator _<<_ as well as the
other operators _,_ and empty appearing in the parameterized SORT module below should not be renamed
by a module renaming.
As usual, the parameter of our sorting module is the theory of partially ordered sets:

th POSET is

88



sort Elt .

op _<_ : Elt Elt -> Bool .

vars E1 E2 E3 : Elt .

eq E1 < E1 = false .

cq E1 < E3 = true if E1 < E2 and E2 < E3 .
endth

The Lisp function sort-list used in the SORT module below has two arguments, a module (namely the
given instantiation of the parameterized module SORT) and a list to be sorted. Its definition is as follows:

ev
; NOTE: sort-list will not work if any of the operators found by name,
; i.e. _<<_, empty, and _,_, below are renamed in a module renaming.

(defun sort-list (mod 1)
(let ((test (mod_eval$$find_operator_named_in
mod 7(||_|| Neg n_n)))
(empty (mod_eval$$find_operator_named_in
mod ’ ("empty")))
(conc (mod_eval$$find_operator_named_in
mod *("_" "," "_"))))
(if (eq empty (term$head 1))
1
(let ((sorted (sort (term$list_assoc_subterms 1 conc)
#’ (lambda (x y)
(obj_BOOL$is_true
(rew$!normalize
(term$make_term test
(1ist x y)))))
)))
(term$make_right_assoc_normal_form_with_sort_check
conc sorted)
)
)

We are now ready to define a parameterized sorting module with a built-in equation involving the
sort-list function:

obj SORT[ORDER :: POSET] is

sort List .

subsort Elt < List .

op empty : -> List .

op _,_ : List List -> List [assoc idr: empty]

op sort _ : List -> List .

op _<<_ : Elt Elt -> Bool .

vars E1 E2 : Elt .

eq E1 << E2 = E1 < E2 .

var L : List .

beq sort L = (sort-list module L)
endo

Here is a sample reduction for sorting lists of integers.

obj TEST is pr SORT[INT] . endo

red sort (9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
**x%> result List: 0,1,2,3,4,5,6,7,8,9
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D.3 The Standard Prelude

Before giving the prelude, we comment on some changes since Release 1 of OBJ3:

e The module THAT has been renamed to LAST-TERM, and the operator [that] has been renamed to
[term].

e The module RAT has been slightly changed so that the built-in constant values are printed like 1/2,
rather than 1 / 2, and the same syntax (1/2) can be used for the input of these constants. (Previously,
there was no syntax for the input of these constants.)

e The object BUILT-IN has been modified to allow the creation of built-in subterms of right sides of
rules, as discussed in Section D.1.

e A object LISP has been added. It provides a built-in Lisp sort. The default syntax is “lisp: (Lisp)”.
This can be used to allow the use of string data with Lisp syntax for the strings. The keyword that
introduces the data (above “lisp:”) can be changed to be some other symbol by setq-ing the variable
obj_LISP$keyword to that other token (e.g. “string:”). Note that “lisp:” is now a very special key-
word, and cannot be used in any other context (this can be disabled by “ev (setq obj _LISP$keyword
nil)”).

What follows is the exact text of the standard prelude that is used to build OBJ3; it uses many Lisp
functions that are not defined here, but rather in another file.

--- 0BJ standard prelude
ev (setq *obj$include_BOOL* nil)

obj UNIVERSAL is
sort Universal .
endo

ev (progn (obj_UNIVERSAL$install) ’domne)

obj ERR is

bsort Err
(obj_ERR$is_Err_token
obj_ERR$create_Err
obj_ERR$print_Err
obj_ERR$is_Err) .

endo

ev (progn (obj_ERR$install) ’done)

obj BUILT-IN is

bsort Built-in
(obj_BUILT-IN$is_Built-in_token
obj_BUILT-IN$create_Built-in
obj _BUILT-IN$print_Built-in
obj _BUILT-IN$is_Built-in)

endo

ev (progn (obj_BUILT-IN$install) ’done)

obj LISP is

bsort Lisp
(obj_LISP$is_Lisp_token
obj_LISP$create_Lisp
obj_LISP$print_Lisp
obj_LISP$is_Lisp)

endo
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obj TRUTH-VALUE is
sort Bool .
op false : -> Bool .
op true : -> Bool .
endo

obj TRUTH is
pr TRUTH-VALUE .
pr UNIVERSAL .
op if_then_else_fi : Bool Universal Universal -> Universal
[polymorphic obj_BOOL$if_resolver intrinsic strategy (1 0)
gather (& & &) prec 0]

op _==_ : Universal Universal -> Bool
[polymorphic obj_BOOL$eqeq_resolver strategy (1 2 0) prec 51]
op _=/=_ : Universal Universal -> Bool

[polymorphic obj_BOOL$non-eqeq_resolver strategy (1 2 0) prec 51]
ev (obj_TRUTH$setup)
var XU YU : Universal .
eq if true then XU else YU fi = XU .
eq if false then XU else YU fi = YU .
ev (obj_TRUTH$install)
beq XU == YU =
(obj_BOOL$coerce_to_Bool (term$equational_equal XU YU))
beq XU =/= YU =
(obj_BOOL$coerce_to_Bool (not (term$equational_equal XU YU)))
ev (obj_TRUTH$install)
endo

obj BOOL is

pr TRUTH .

op _and_ : Bool Bool -> Bool [assoc comm idr: true
strat (1 2 0)
gather (e E) prec 55]

op _or_ : Bool Bool -> Bool [assoc comm idr: false
strat (1 2 0)
gather (e E) prec 59]

op _xor_ : Bool Bool -> Bool [assoc comm idr: false
strat (1 2 0)
gather (e E) prec 57]

op not_ : Bool -> Bool [prec 53]

op _implies_ : Bool Bool -> Bool [gather (e E) prec 61]

ev (obj_BOOL$setup)

vars A B : Bool .

eq not true = false .

eq not false = true .

eq false and A = false .

eq true or A = true .

eq A implies B = (not A) or B .

eq true xor true = false .
endo

obj IDENTICAL is

pr BOOL .

op _===_ : Universal Universal -> Bool [strategy (0) prec 51]
op _=/==_ : Universal Universal -> Bool [strategy (0) prec 51]
var XU YU : Universal .

beq XU === YU =
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(obj_BOOL$coerce_to_Bool (term$similar XU YU))

beq XU =/== YU =

endo

(obj_BO0OL$coerce_to_Bool (not (term$similar XU YU)))

ev (progn (obj_IDENTICAL$setup) ’done)

obj LAST-TERM is
protecting UNIVERSAL .
protecting TRUTH-VALUE .

op
op
€q
endo

last-term-undefined : -> Universal .
[term] : -> Universal .
[term] = last-term-undefined .

ev (progn (obj_LAST-TERM$install) ’done)

obj NZNAT is
bsort NzNat

(obj_NZNAT$is_NzNat_token obj_NZNAT$create_NzNat prinil

obj_NZNAT$is_NzNat) .

protecting BOOL .

op _+_ : NzNat NzNat -> NzNat [assoc comm prec 33]
op d : NzNat NzNat -> NzNat [comm]
op _*_ : NzNat NzNat -> NzNat [assoc comm idr: 1 prec 31]
op quot : NzNat NzNat -> NzNat [gather (E e) prec 31]
op _<_ : NzNat NzNat -> Bool [prec 51]
op _<=_ : NzNat NzNat -> Bool [prec 51]
op _>_ : NzNat NzNat -> Bool [prec 51]
op _>=_ : NzNat NzNat -> Bool [prec 51]
op s_ : NzNat -> NzNat [prec 15]
vars NN NM : NzNat .
bg NN + NM = (+ NN NM)
bq d(NN,NM) = (if (= NN NM) 1 (abs (- NN NM)))
bq NN * NM = (% NN NM)
bq quot(NN,NM) = (if (> NN NM) (truncate NN NM) 1)
bg NN < NM = (< NN NM)
bg NN <= NM = (<= NN NM)
bg NN > NM = (> NN NM)
bg NN >= NM = (>= NN NM)
bg s NN = (1+ NN)
jbo
obj NAT is
bsort Nat

(obj_NAT$is_Nat_token obj_NAT$create_Nat prinil

obj_NAT$is_Nat) .

protecting NZNAT .
bsort Zero

(obj_NAT$is_Zero_token obj_NAT$create_Zero prinil

obj_NAT$is_Zero) .

subsorts NzNat < Nat .
subsorts Zero < Nat .

op
op
op
op
op

_+_ : Nat Nat -> Nat [assoc comm idr: O prec 33]
sd : Nat Nat -> Nat [comm]

_x_ : Nat Nat -> Nat [assoc comm idr: 1 prec 31]
_quo_ : Nat NzNat -> Nat [gather (E e) prec 31]

_rem_ : Nat NzNat -> Nat [gather (E e) prec 31]
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op _divides_ : NzNat Nat -> Bool [prec 51]
op _<_ : Nat Nat -> Bool [prec 51]

op _<=_ : Nat Nat -> Bool [prec 51]
op _>_ : Nat Nat -> Bool [prec 51]
op _>=_ : Nat Nat -> Bool [prec 51]

op s_ : Nat -> NzNat [prec 15]
op p_ : NzNat -> Nat [prec 15]
var M N : Nat .
var NN : NzNat .

*%% eq N+ 0 =N .
bq sd(M,N) = (abs (- M N))
eq N*0=0.
bg M quo NN = (truncate M NN)
bg M rem NN = (rem M NN)
bg NN divides M = (= 0 (rem M NN))
eq N < 0 = false .
eq 0 < NN = true .
eq NN <= 0 = false .
eq 0 <= N = true .
eq 0 > N = false .
eq NN > 0 = true .
eq 0 >= NN = false .
eq N >= 0 = true .
eq s 0=1.
bg p NN = (- NN 1)

jbo

obj INT is

bsort Int
(obj_INT$is_Int_token obj_INT$create_Int prinl
obj_INT$is_Int) .

bsort NzInt
(obj_INT$is_NzInt_token obj_INT$create_NzInt prinil
obj_INT$is_NzInt)

protecting NAT .

subsorts Nat < Int .

subsorts NzNat < NzInt < Int .

op -_ : Int -> Int [prec 15]

op —_ : NzInt -> NzInt [prec 15]

op _+_ : Int Int -> Int [assoc comm idr: 0O prec 33]
op _—_ : Int Int -> Int [gather (E e) prec 33]

op _*_ : Int Int -> Int [assoc comm idr: 1 prec 31]

op _*_ : NzInt NzInt -> NzInt [assoc comm idr: 1 prec 31]

op _quo_ : Int NzInt -> Int [gather (E e) prec 31]
op _rem_ : Int NzInt -> Int [gather (E e) prec 31].

op _divides_ : NzInt Int -> Bool [prec 51]
op _<_ : Int Int -> Bool [prec 51]

op _<=_ : Int Int -> Bool [prec 51]
op _>_ : Int Int -> Bool [prec 51]
op _>=_ : Int Int -> Bool [prec 51]

op s_ : Int -> Int [prec 15]
vars I J : Int .
var NJ : NzInt .
bg - I=(-1I)
bgI+J=GTID

xkk bqgI-J=(-1IJ
eq I -J=1+(-J)

bg I *J=((1IJ)
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bg I quo NJ = (truncate I NJ)

bq I rem NJ = (rem I NJ)

bgq NJ divides I = (= 0 (rem I NJ))
bgI<J=KID

bq I <=J=(<=11J)
bqI>J=(GT117I).
bgI>J=(=1J)
eqs I =1+T1.
jbo
obj RAT is
bsort Rat
(obj_RAT$is_Rat_token obj_RAT$create_Rat obj_RAT$print
rationalp)

bsort NzRat
(obj_RAT$is_NzRat_token obj_RAT$create_NzRat obj_RAT$print
obj_RAT$is_NzRat)

protecting INT .

subsorts Int < Rat .

subsorts NzInt < NzRat < Rat .

op -_ : Rat -> Rat [prec 15]

op -_ : NzRat -> NzRat [prec 15]

op _+_ : Rat Rat -> Rat [assoc comm idr: 0 prec 33]
op _—_ : Rat Rat -> Rat [gather (E e) prec 33]

op _*_ : Rat Rat -> Rat [assoc comm idr: 1 prec 31]

*
op _*_ : NzRat NzRat -> NzRat [assoc comm idr: 1 prec 31]
op _/_ : Rat NzRat -> Rat [gather (E e) prec 31]

op _/_ : NzRat NzRat -> NzRat [gather (E e) prec 31]

op _rem_ : Rat NzRat -> Rat [gather (E e) prec 31]

op _<_ : Rat Rat -> Bool [prec 51]

op _<=_ : Rat Rat -> Bool [prec 51]
op _>_ : Rat Rat -> Bool [prec 51]
op _>=_ : Rat Rat -> Bool [prec 51]

vars R S : Rat .
vars NS : NzRat .
bg - R = (- R)

bg R / NS = (/ R NS)
bg R rem NS = (rem R NS)
bg R<S = (<R YS)
bq R <= S = (<= R 8)
bg R>S = (RS)
bg R> S = (>=R 9)
jbo
obj ID is

bsort Id (obj_ID$is_Id_token obj_ID$create_Id obj_ID$print_Id
obj_ID$is_Id)

pr BOOL .

op _<_ : Id Id -> Bool [prec 51]

var 'X 'Y : Id .

--— the variable names have been chosen so that they are not Id’s

bg !X < !'Y = (string< !X !'Y)

endo
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obj QID is

—-— Quoted IDentifier

--— symbols starting with ’ character

bsort Id (obj_QID$is_Id_token obj_QID$create_Id obj_QID$print_Id
obj_QID$is_Id) .

endo

obj QIDL is

protecting QID .

pr BOOL .

op _<_ : Id Id -> Bool [prec 51]
var XY : Id .

bg X < Y = (string< X Y)

endo

th TRIV is
sort Elt .
endth

obj FLOAT is

bsort Float
(obj_FLOAT$is_Float_token obj_FLOAT$create_Float obj_FLOAT$print_Float
obj_FLOAT$is_Float)

pr BOOL .

op -_ : Float -> Float [prec 15]

op _+_ : Float Float -> Float [assoc comm prec 33]
op _-_ : Float Float -> Float [gather (E e) prec 33]
op _*_ : Float Float -> Float [assoc comm prec 31]

op _/_ : Float Float -> Float [gather (E e) prec 31]
op _rem_ : Float Float -> Float [gather (E e) prec 31]
op exp : Float -> Float .

op log : Float -> Float .

op sqrt : Float -> Float .

op abs : Float -> Float .

op sin : Float -> Float .

op cos : Float -> Float .

op atan : Float -> Float .

op pi : -> Float .

op _<_ : Float Float -> Bool [prec 51]

op _<=_ : Float Float -> Bool [prec 51]
op _>_ : Float Float -> Bool [prec 51]
op _>=_ : Float Float -> Bool [prec 51]

op _=[_]_ : Float Float Float -> Bool [prec 51]

vars X Y Z : Float .
bgX+Y=(HZXY)
bq - X = (- X) .
bgX-Y=(-XY)
bg X * Y= (xXY)
bqX/Y=C(XY) .
bg X rem Y = (rem X Y)
bq exp(X) = (exp X)
bq log(X) = (log X)
bq sqrt(X) = (sqrt X)
bg abs(X) = (abs X)
bg sin(X) = (sin X)
bq cos(X) = (cos X)
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bq atan(X) = (atan X)

bg pi = pi .

bg X <Y=(KZXY

bg X <=Y=(=X1Y)
bgX>Y=0CXY)
bgX>Y=0(G=XY)

bg X=[Z]1Y) = (< (abs (- XY)) 2)
endo

obj 2TUPLE[C1 :: TRIV, C2 :: TRIV] is
sort 2Tuple .
op <<_;_>> : Elt.Cl1l E1t.C2 -> 2Tuple .
op 1x_ : 2Tuple -> E1t.C1 .
op 2x_ : 2Tuple -> E1t.C2 .
var el : E1t.C1 .
var e2 : E1t.C2 .
eq 1x << el ; e2 >> = el .
eq 2% << el ; e2 >> =e2 .
endo

obj 3TUPLE[C1 :: TRIV, C2 :: TRIV, C3 :: TRIV] is
sort 3Tuple .
op <<_;_;_>> : E1t.C1 E1t.C2 E1t.C3 -> 3Tuple .
op 1*_ : 3Tuple -> E1t.C1 .
op 2*%_ : 3Tuple -> E1t.C2 .
op 3*_ : 3Tuple -> E1t.C3 .
var el : E1t.C1 .
var e2 : E1t.C2 .
var e3 : El1t.C3 .
eq 1*x << el ; e2 ; e3 >> = el .
eq 2% << el ; e2 ; e3 >> = e2 .

eq 3% << el ; e2 ; e3 > = e3 .

endo

obj 4TUPLE[C1 :: TRIV, C2 :: TRIV, C3 :: TRIV, C4 :: TRIV] is
sort 4Tuple .
op <<_j;_;_3;->> : E1t.C1 E1t.C2 E1t.C3 E1t.C4 -> 4Tuple .

op 1*_ : 4Tuple -> E1t.C1 .

op 2*_ : 4Tuple -> E1t.C2 .

op 3*_ : 4Tuple -> E1t.C3 .

op 4x_ : 4Tuple -> E1t.C4 .

var el : E1t.C1 .

var e2 : E1t.C2 .

var e3 : E1t.C3 .

var e4 : Elt.C4 .

eq 1* << el ; e2 ; e3 ; ed >> = el .
eq 2% << el ; e2 ; e3 ; e4 >> = e2 .
eq 3% << el ; e2 ; e3 ; e4 >> = e3 .
eq 4% << el ; e2 ; e3 ; e4d >> = ed .

endo

ev (setq *obj$include_BOOL* t)
ev (progn (obj$prelude_install) ’done)
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