
An Inductive Programming Approach to

Algebraic Specification

Lutz Hamel and Chi Shen

Department of Computer Science and Statistics
University of Rhode Island
Kingston, RI 02881, USA

hamel@cs.uri.edu, shenc@cs.uri.edu

Abstract. Inductive machine learning suggests an alternative approach
to the algebraic specification of software systems: rather than using test
cases to validate an existing specification we use the test cases to induce a
specification. In the algebraic setting test cases are ground equations that
represent specific aspects of the desired system behavior or, in the case
of negative test cases, represent specific behavior that is to be excluded
from the system. We call this inductive equational logic programming.
We have developed an algebraic semantics for inductive equational logic
programming where hypotheses are cones over specification diagrams.
The induction of a hypothesis or specification can then be viewed as a
search problem in the category of cones over a specific specification di-
agram for a cone that satisfies some pragmatic criteria such as being as
general as possible. We have implemented such an induction system in
the functional part of the Maude specification language using evolution-
ary computation as a search strategy.

1 Introduction

Inductive machine learning [1, 2] suggests an alternative approach to the alge-
braic specification of software systems: rather than using test cases to validate
an existing specification we use the test cases to induce a specification. In the
algebraic setting specifications are equational theories of a system where the test
cases are ground equations that represent specific aspects of the desired system
behavior or, in the case of negative test cases, represent specific behavior that
is to be excluded from the system. Acceptable specifications must satisfy the
positive test cases and must not satisfy the negative test cases. It is interest-
ing to observe that in this alternative approach the burden of constructing a
specification is placed on the machine. This leaves the system designer free to
concentrate on the quality of the test cases for the desired system behavior. In
addition to the positive and negative test cases an inductive equational logic
program can also contain a background theory.

A simple example illustrates our notion of inductive equational logic pro-
gramming. Here we are concerned with the induction of a stack specification
from a set of positive test cases for the stack operations top, push, and pop. In

2

fmod STACK-PFACTS is
sorts Stack Element .

ops a b : -> Element .
op v: -> Stack .
op top : Stack -> Element .

op pop : Stack -> Stack .
op push : Stack Element -> Stack .

eq top(push(v,a)) = a .

eq top(push(push(v,a),b)) = b .
eq top(push(push(v,b),a)) = a .
eq pop(push(v,a))= v .

eq pop(push(push(v,a),b)) = push(v,a) .
eq pop(push(push(v,b),a)) = push(v,b) .

endfm

(a)

fmod STACK is
sorts Stack Element .

op top : Stack -> Element .
op pop : Stack -> Stack .
op push : Stack Element -> Stack .

var S : Stack . var E : Element .

eq top(push(S,E)) = E .
eq pop(push(S,E)) = S .

endfm

(b)

Fig. 1. (a) Positive test cases for the inductive acquisition of the specification for the
stack operations top, push, and pop. (b) An hypothesis that satisfies the test cases.

Figure 1(a) the positive facts are given as a theory in the syntax of the Maude
specification language [3]. Here the function symbol push can be viewed as a
stack constructor and each of the test cases gives an instance of the relationship
between the constructor and the function top or pop. The set of negative ex-
amples and the background knowledge are empty. A hypothesis or specification
that satisfies the positive facts is given in Figure 1(b). It is noteworthy that
our implementation of an inductive equational logic system within the Maude
specification system induces the above specification unassisted.

Since our system is implemented in an algebraic setting, that is, it is im-
plemented in the functional part of the Maude specification languages, it made
sense to develop an algebraic semantics for inductive equational logic program-
ming. As we will develop later on in this paper, an inductive equational logic
program can be viewed as a specification diagram in the category of equational
theories. A hypothesis is a cone over a specification diagram and the induction of
a hypothesis can then be viewed as a search problem in the category of cones over
a specification diagram for a cone that satisfies pragmatic criteria such as being
as general as possible without being trivial. As it turns out, the most general
cone for a specification diagram is trivial (the empty theory). It is interesting
to note that the simplest possible hypothesis which is obtained from “memo-
rizing” all the facts is an initial object in the category of cones or a co-limit of
the specification diagram. We believe that this view of inductive equational logic
programming is novel and its algebraic nature crystallized many implementation
issues for us in the Maude setting that were murky in the normal semantics [4]
usually associated with inductive logic programming. This is especially true with
dealing with negative facts in the algebraic setting.

The search strategy of our system is based on genetic programming employing
evolutionary concepts to identify appropriate cones or hypotheses. Our system
sets itself apart from other induction systems in that we consider multi-concept
learning and robustness vital aspects for the usability of an induction system.

3

Multi-concept learning [5] allows the system to induce specifications for multiple
function symbols at the same time (see Figure 1). Robustness enables the system
to induce specifications even in the presence of inconsistencies in the facts [6].

This paper is structured as follows. Section 2 describes the algebraic seman-
tics that underlies the design of our system. Due to space constraints we state
all our results without proofs. A manuscript is in preparation which will eluci-
date our mathematical constructions in more detail. In Section 3 we sketch our
implementation. We describe some experiments using our system in Section 4.
In Section 5 we describe work closely related to ours. And finally, Section 6
concludes the paper with some final remarks and future research.

2 An Algebraic Semantics

Many sorted equational logic, at the foundation of algebraic specification, is the
logic of substituting equals for equals with many sorted algebras as models and
term rewriting as the operational semantics [7, 8]. Briefly, an equational theory
or specification is a pair (Σ,E) where Σ is an equational signature and E is
a set of Σ-equations. Each equation in E has the form (∀X)l = r, where X is
a set of variables distinct from the equational signature and l, r ∈ TΣ(X) are
terms. 1 If X = ∅, that is, l and r contain no variables, then we say the equation
is ground. When there is no confusion theories are denoted by their collection
of equations, in this case E. We say that a theory E semantically entails an
equation e, E |= e, iff A |= e for all algebras A where A |= E. We say that
a theory E deductively entails an equation e, E ⊢ e, iff e can be derived from
E via equational reasoning. Given two theories T = (Σ,E) and T ′ = (Σ′, E′),
then a theory morphism φ : T → T ′ is a signature morphism φ : Σ → Σ′ such
that E′ |= φ(e), for all e ∈ E. Soundness and completeness for many-sorted
equational logic is defined in the usual way [9]: E |= e iff E ⊢ e.

Inductive logic programming concerns itself with the induction of first-order
theories or hypotheses from facts and background knowledge [4]. Although it
is possible to induce theories from positive facts only, including negative facts
helps to constrain the domain. Therefore, both positive as well as negative facts
are typically given. This is also true for the case of inductive equational logic
programming. Here the positive facts represent a theory that needs to hold in
the hypothesis and the negative facts represent a theory that should not hold
in the hypothesis. Before we develop our semantics we have to define what we
mean by facts and background knowledge.

Definition 1. A theory (Σ,F) is called a Σ-facts theory (or simply facts)
if each f ∈ F is a ground equation. A theory (Σ,B) is called a background
theory if it defines auxiliary concepts that are appropriate for the domain to be
learned. The equations in B do not necessarily have to be ground equations.

1 Here we only consider many-sorted, unconditional equations, but the material de-
veloped here easily extends to more complicated equational logics.

4

In the algebraic setting it is cumbersome to express theories in terms of a sat-
isfaction relation that does not satisfy a set of equations. Therefore, we need a
little bit more machinery in order to deal with negative facts more readily.

Definition 2. Given a many-sorted signature Σ, then an equation of the form
(∀∅)t 6= t′ = true is called an inequality constraint, where t, t′ ∈ TΣ(∅) and
{6=, true} ⊂ Σ with the usual boolean sort assignments and interpretations. A
theory (Σ,E) is called an inequality constraints theory iff all equations in
E are inequality constraints.

Our inequality constraints are not unlike Ehrig and Mahr’s first order logical
constraints [10]. We use inequality constraints to rewrite a negative Σ-facts
theory as an inequality constraints theory. The idea being that we move from
models that should not satisfy the negative facts to models that should satisfy the
corresponding inequality constraints theory. We need the following proposition.

Proposition 1. Given a theory (Σ,E) and an equation (∀∅)l = r, where l, r ∈
TΣ(∅), such that E 6|= (∀∅)l = r, then E |= (∀∅)(l 6= r) = true iff E 6|= (∀∅)l = r.

Let E be some Σ-theory and let N be a Σ-facts theory such that E 6|= e, for
all e ∈ N . We can now rewrite every equation (∀∅)l = r in N as an inequality
constraint (∀∅)(l 6= r) = true. Call this new set of equations N̂ , the inequality
constraints theory. Observe that E |= ê, ê ∈ N̂ iff E 6|= e, e ∈ N , as required.

A positive fact theory, a background theory, and an inequality constraint
theory together make up an inductive equational logic program. This gives rise
to the notion of a specification diagram.

Definition 3. Given a background theory B, (positive) facts F , and an inequal-

ity constraints theory N̂ derived from negative facts N , we say that the following
diagram is a specification diagram,

B F

N̂

ψ

__??????? φ

??�������

where φ and ψ are theory morphisms.

The intuition behind a specification diagram is that in an inductive equational
logic program neither the background theory nor the positive facts should violate
the inequality constraints. Now we define a cone over a specification diagram.

Definition 4. Let ψ : N̂ → B and φ : N̂ → F be a specification diagram, then
a cone over the specification diagram is defined as,

A

B

αB

>>~~~~~~~~
F

αF

``@@@@@@@

N̂

ψ

__???????

α
N̂

OO

φ

??�������

5

where αB, αF , and α
N̂

are theory morphisms and the diagram commutes. We
call the apex or cone object A a hypothesis. When there is no confusion we
often denote cones by their apex objects.

It is easy to see that the cones over a specification diagram S form a category, call
it H(S), with cone morphisms between them; let P and Q be objects in H(S),
then a cone morphism c : Q → P is a theory morphism such that c|S = idS .
From an inductive programming point of view we are interested in the most
general cone in H(S), where we define the relation more general as follows.

Definition 5. Let P and Q be cones in H(S), then we say that P is more
general than Q iff there exists a cone morphism Q→ P .

Intuitively we might say that we are interested in the terminal object of the
category H(S), since by definition this is the most general cone. Unfortunately,
the terminal object in H(S) is a cone whose apex object is the empty theory.
Thus, from a machine learning point of view this object is not very interesting.
On the other hand, it is worthwhile to note that the initial object in H(S), that
is the least general cone in H(S), is the co-limit of the specification diagram S

and is easily constructed by simply pasting together or memorizing the theories
in the specification diagram. Given this, it is easy to see that we have to resort to
searching the category of cones over a specification diagram for an appropriate
cone that is more general than the initial cone but not as general as the terminal
cone. Therefore, our semantics seems to corroborate the well established notion
of “generalization as search” [11].

Notions similar to the normal semantics developed for first order inductive
logic programming [4] can be recovered from our semantics. Prior and posterior
satisfiability as well as posterior sufficiency are direct consequences of our def-
inition of a cone over a specification diagram. Prior necessity is a consequence
of our definition of a specification diagram in that we do not admit morphisms
from F to B.

3 Implementation

We have implemented an equational theory induction system within the func-
tional part of the Maude specification language [3, 6, 12]. The mathematical view
of inductive equational logic programming given in the previous section is more
refined than those given in our previous accounts and reflects more accurately
what happens in our implementation. The induction system is accessible from
the Maude prompt via the induce command. The induce command returns an
equational theory given a positive and a negative fact theory, as well as a back-
ground theory,

> induce theory-name pfacts nfacts background parameters

where theory-name is the name to be given to the induced theory, pfacts is
the name of the positive fact theory, nfacts is the name of the negative facts
theory, and background is the name of the background theory. Finally, parameters

6

denotes parameters that allow the user to assert some control over the induction
process. In the terminology of the previous section the returned equational theory
is the apex object of the most appropriate cone given the specification diagram
derived from the pfacts, nfacts, and background theories.

Our induction process is an evolutionary search in the category of cones over
a specification diagram for the most general cone whose apex object is not an
empty theory (or an approximation to this cone, since evolutionary systems are
not guaranteed to find the global optimum). More specifically, our system is
based on genetic programming [13]. Genetic programming distinguishes itself
from other evolutionary techniques in that it directly manipulates abstract syn-
tax trees making it well suited for the induction of equational theories. In the
following we refer to apex objects as hypotheses or pre-hypotheses (the mean-
ing of which will be made precise below). It is clear that given a specification
diagram and a hypothesis we can always recover the cone and given a cone we
can always extract the hypothesis.

One key aspect of any search strategy and in particular evolutionary search
strategies is that it needs to quantitatively distinguish between “good” and “bad”
hypotheses. In order to accomplish this we endowed our induction system with
the following objective function to be maximized:

fitness(H) = facts(H) + constraints(H) +
1

length(H)
+

1

terms(H)
, (1)

where H denotes a (pre-) hypothesis, facts(H) is the number of (positive) facts
satisfied by H , constraints(H) is the number of inequality constraints satisfied
by H , length(H) and terms(H) denote the number of equations and terms in
H , respectively. The fitness function is designed to primarily exert evolutionary
pressure towards finding true hypotheses that satisfy all the facts and constraints
(first and second terms). In addition, in the tradition of Occam’s Razor, the fit-
ness function also exerts pressure towards finding the shortest hypothesis (third
and fourth terms). Note that we call a hypothesis a pre-hypothesis or pre-cone
if it does not satisfy some of the facts or constraints.

Our search strategy based on genetic programming can be summarized as
follows:

1. Compute an initial (random) population of (pre-) hypotheses;

2. Evaluate the fitness of each (pre-) hypothesis;
3. Perform theory reproduction using genetic crossover and mutation opera-

tors;

4. Compute new population of (pre-) hypotheses;
5. Goto step 2 or stop if target criteria have been met.

This series of steps does not significantly differ from the standard genetic pro-
gramming paradigm [13]. The only real difference being that the fitness evalua-
tion is mainly a proof obligation that the following theory morphism conditions
hold: H |= αF (f) for all f ∈ F and H |= α

N̂
(n) for all n ∈ N̂ given a hypothesis

H , facts F , and inequality constraints N̂ . The morphism αB is usually taken
to be the theory inclusion and therefore there is no proof obligation. Soundness

7

and completeness of many-sorted equational logic allows us to replace semantic
entailment with its proof-theoretic counterpart. This, in turn, allows us to au-
tomate the proofs by using the equations in the hypotheses as rewrite rules. It
is interesting to note that hypotheses for which the theory morphism conditions
do not hold will usually score a lower fitness value than hypotheses for which the
theory morphism conditions do hold, especially in later generations of the evolu-
tionary computation. From a genetic programming point of view it is important
to not simply discard the theories for which the theory morphism conditions do
not hold, because these pre-hypotheses could represent important partial solu-
tions that upon later genetic recombination with other partial solutions could
represent interesting hypotheses in their own right. In the evolutionary frame-
work it is sufficient to simply label (pre-) hypotheses according to their fitness
instead of discarding low performing ones outright.

Another important aspect of the evolutionary computation is the design of
the genetic crossover and mutation operators. The design of these operators have
a large impact on the quality of the solutions found by evolutionary computa-
tions. Our crossover operator allows for two types of crossovers:

1. Expression-level crossover - allows expression subtrees at the level of the
left and right sides of equations to be exchanged between theories.

2. Equation-level crossover - allows the exchange of whole equations or sets
of equations between theories.

The crossover operator works as expected with the only caveat that it has to
respect typing information within the terms. Our system implements three dif-
ferent mutation operators:

1. Expression-level mutation - non-deterministally select an expression node
in the abstract syntax of a theory, generate a new expression tree with the
same sort, replace the original expression with the newly generated expres-
sion tree.

2. Equation addition/deletion - non-deterministically select an equation to
be deleted from some theory, or generate a new equation and add it to some
theory.

3. Literal generalization - non-deterministically choose a terminal expression
node and replace it with a variable of the appropriate sort.

Again, the biggest difference between our mutation operator and the standard
genetic programming mutation operator is that it has to respect the strict typing
rules of many-sorted equational logic.

In our implementation we use the fitness convergence rate as a termination
criterion. Should the fitness of the best individuals increase by less than 1%
over 25 generations we terminate the evolutionary search since significant fitness
improvement seems highly unlikely.

Our genetic programming engine is implemented as a strongly typed genetic
programming system using Matthew Wall’s GALib C++ library [14] within
Maude. The system uses Maude’s rewrite engine to dispense with the theory

8

morphism proof obligations during fitness evaluation. Since the equations in the
hypotheses are generated at random, there is no guarantee that the theories do
not contain circularities throwing the rewriting engine into an infinite rewriting
loop while computing the fitness of a particular hypothesis. To guard against
this situation we allow the user to set a parameter that limits the number of
rewrites the engine is allowed to perform during the proof of each equation in
the fact and constraints theories. This pragmatic approach proved very effective.
The alternative would have been an in-depth analysis of the equations in each
hypothesis adding significant overhead to the execution time of the evolutionary
algorithm.2

As a final note on our implementation we need to acknowledge that prema-
ture convergence is a general problem in evolutionary computation. In this case,
the population of an evolutionary algorithm converges on a suboptimal solution
early on during the computation. Once this happens, there is little chance for
the algorithm to discover other, more appropriate solutions. In order to prevent
an evolutionary algorithm to converge prematurely a population is divided into
multiple sub-populations (also called demes [15]) with only limited communica-
tion between them. The idea is that even if premature convergence occurs in
some of the demes, diversity is maintained in the overall population due to the
limited communication among the demes. The limited communication among
the demes also serves to reseed diversity should some of the demes have prema-
turely converged. In our implementation we divide our population of hypotheses
into ten demes where each deme carries a population of typically between 20
and 30 individual hypotheses.

4 Experiments

We have already mentioned that our system is able to induce the canonical stack
theory given in the introduction, Figure 1. It is probably worthwhile to list some
statistics in association with that experiment: We used an overall population of
200 individuals distributed over 10 demes; it took an average of 30 generations
in the 50 trial runs to converge on the canonical solution; every single of the
50 trial runs converged on the canonical solution; each run took about 100 sec-
onds on a 1.3GHz G4 Apple iBook.3 It is also noteworthy that the hypothesis
shown is virtually unedited with the exception for some renaming of variables
for readability purposes. This is true with all hypotheses discussed here.

The stack induction problem looks straight forward from a conceptual point
of view, however, from a machine learning point of view we are faced with a multi-
concept learning problem in the sense that both the top and pop operations each
represent a different concept to be acquired. That multi-concept learning is not

2 At this point the authors are not even sure if circularity in a term rewriting system is
a decidable property making an even stronger argument for our pragmatic approach.

3 This experimental setup applies to all following experiments: a population of 200
individuals spread over 10 demes and 50 trial runs performed on a 1.3GHz G4 Apple
iBook.

9

a guaranteed property of an induction algorithm is witnessed by the fact that
other theory induction algorithms fail to produce a sensible theory in context of
multi-concept learning (e.g. [16]).

fmod SUM-PFACTS is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

op sum : Nat Nat -> Nat .

eq sum(0,0) = 0 .

eq sum(s(0),s(0)) = s(s(0)) .

eq sum(0,s(0)) = s(0) .

eq sum(s(s(0)),0) = s(s(0)) .

eq sum(s(0),0) = s(0) .

eq sum(s(0),s(s(0))) = s(s(s(0))) .

eq sum(s(s(0)),s(s(0))) = s(s(s(s(0)))) .

eq sum(s(s(s(0))),s(0)) = s(s(s(s(0)))) .

eq sum(s(s(s(0))),s(s(0))) = s(s(s(s(s(0))))) .

endfm

(a)

fmod SUM-NFACTS is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

op sum : Nat Nat -> Nat .

eq sum(s(0),0) = 0 .

eq sum(0,0) = s(0) .

eq sum(s(0),s(0)) = s(0) .

eq sum(s(0),s(0)) = 0 .

eq sum(s(s(0)),s(s(0))) = s(s(0)) .

endfm

(b)

fmod SUM is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

op sum : Nat Nat -> Nat .

vars A B C : Nat .

eq sum (A,0) = A .

eq sum (A,s(C)) = sum(s(A),C) .

endfm

(c)

Fig. 2. Positive facts (a) and negative facts (b) for the induction of the sum function.
A hypothesis for the sum function (c).

In our next experiment we illustrate that our system can acquire recursive
specifications. In this experiment we induce the specification of the function
sum that adds two natural numbers. The natural numbers are given in Peano
notation, where the numbers are represented as 0 7→ 0, s(0) 7→ 1, s(s(0)) 7→ 2,
etc. The positive and negative facts are given by the theories in Figure 2 (a)
and (b), respectively. The positive facts specify examples of applying the sum

function to a number of small natural numbers. Also included are examples that
show that summation is commutative. The negative facts consist of equations
that should not hold in the induced specification for sum. Each equation in this
theory is a counter example to the definition of the function sum. The background
theory for this experiment is empty. Given the above theories our system will
induce a hypothesis (or a variant that is isomorphic to this theory) as given
in Figure 2(c). Some quick statistics: it took an average of 40 generations to
produce a solution; we produced a minimal, recursive solution 32 times over 50
runs (for the other solutions the system noticed that it only had to produce a
solution that specified the functionality of sum over the given small integers and
it devised a non-recursive hypothesis); each run took about 120 seconds.

In our final experiment we demonstrate the usage of background knowledge
during the induction process. The problem is to find a recursive way to sum the
numbers in a list, given the knowledge of how to sum two numbers. Figure 3
displays the relevant theories. It is perhaps noteworthy that we use the theory
induced in the previous experiment as background knowledge for the current
experiment. Note that in Figure 3(d) the first two equations are due to the
background information and the last two equations specify the actual solution.
Some statistics on this experiment: it took an average of 35 generations to pro-
duce a solution; 38 of our 50 runs produced a solution similar to the one shown

10

fmod SUM-LIST-PFACTS is

sorts Nat NatList .

op 0 : -> Nat .

op s : Nat -> Nat .

op nl : -> NatList .

op c : NatList Nat -> NatList .

op suml : NatList -> Nat .

eq suml(c(nl,0)) = 0 .

eq suml(c(nl,s(0))) = s(0) .

eq suml(c(nl,s(s(0)))) = s(s(0)) .

eq suml(c(c(nl,0),s(0))) = s(0) .

eq suml(c(c(nl,s(0)),s(0))) = s(s(0)) .

eq suml(c(c(nl,s(s(0))),s(0))) = s(s(s(0))) .

eq suml(c(c(nl,s(s(0))),s(s(0)))) = s(s(s(s(0)))) .

eq suml(c(c(nl,0),s(s(0)))) = s(s(0)) .

eq suml(c(c(nl,0),s(s(s(0))))) = s(s(s(0))) .

eq suml(c(c(nl,s(s(0))),0)) = s(s(0)) .

endfm

(a)

fmod SUM-LIST-NFACTS is

sorts Nat NatList .

op 0 : -> Nat .

op s : Nat -> Nat .

op nl : -> NatList .

op c : NatList Nat -> NatList .

op suml : NatList -> Nat .

eq suml(c(nl,0)) = s(0) .

eq suml(c(nl,s(0))) = 0 .

eq suml(c(nl,s(s(0)))) = s(0) .

eq suml(c(c(nl,0),s(0))) = s(s(0)) .

eq suml(c(c(nl,s(0)),s(0))) = s(s(s(0))) .

eq suml(c(c(nl,s(0)),s(0))) = s(0) .

eq suml(c(c(nl,s(0)),s(s(0)))) = s(s(0)) .

eq suml(c(c(nl,0),s(s(0)))) = s(s(s(0))) .

eq suml(c(c(c(nl,s(0)),s(0)),s(0))) = s(s(0)) .

eq suml(c(c(c(nl,s(0)),0),s(0))) = s(0) .

endfm

(b)

fmod SUM-LIST-BACKGROUND is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

op sum : Nat Nat -> Nat .

vars A B : Nat .

eq sum(0,A) = A .

eq sum(s(A),B) = s(sum(A,B)) .

endfm

(c)

fmod SUM-LIST is

sorts Nat NatList .

op 0 : -> Nat .

op s : Nat -> Nat .

op sum : Nat Nat -> Nat .

op nl : -> NatList .

op c : NatList Nat -> NatList .

op suml : NatList -> Nat .

vars NatA NatB NatC : Nat .

vars NatListA NatListB NatListC : Nat .

eq sum(0,NatA) = NatA .

eq sum(s(NatA),NatB) = s(sum(NatA,NatB)) .

eq suml(nl) = 0 .

eq suml(c(NatListA,NatB)) = sum(suml(NatListA),NatB) .

endfm

(d)

Fig. 3. Induction with background information: (a) positive facts, (b) negative facts,
(c) background theory, and (d) resulting hypothesis.

in Figure 3(d) (the other solutions were non-recursive and did not generalize
well beyond the test cases); each run took about 130 seconds.

These experiments highlight both the strength and weakness of the evolution-
ary approach to theory induction. The weakness is that in order to gain some
confidence in an induced theory one needs to rerun the induction experiment
multiple times. Only if the same or isomorphic theories are being discovered
multiple times does one gain some confidence that the found theory constitutes
a reasonable hypothesis. The strength of the evolutionary approach is that the
likelihood of the search space being traversed in exactly the same way with ev-
ery run is very low. Therefore, running the induction algorithm multiple times
and inducing the same or isomorphic theories in different runs means that the
induced (isomorphic) theories do represent a quasi global optimum. Perhaps a
more statistical approach by applying leave-one-out cross-validation would be
appropriate here in order to establish some confidence that the induced speci-
fications generalize well. For additional and more complex examples please see
Shen’s thesis [12].4

4 http://homepage.cs.uri.edu/faculty/hamel/dm/theses/Chi-thesis-2006.pdf

11

5 Related Work

The synthesis of equational and functional programs has a long history in com-
puting extending back into the mid 1970’s, e.g. [17–20]. The approaches use
deductive as well as inductive techniques for the induction of recursive func-
tional programs from formal specifications. This is in contrast to our machine
learning setting where generalization is achieved by searching through an ap-
propriate space. The advantages of the machine learning setting is that we can
include positive and negative examples, as well as background information in a
natural way. We also can incorporate “meta-properties” such as multi-concept
learning and robustness [6]. For an insightful overview of the synthesis of equa-
tional programs see [21]. A survey that looks at the synthesis of predicate logic
programs is [22].

The two approaches most related to ours are [16] and [23]. Both approaches
use inductive learning with positive and negative examples of the functions to
be induced. The former approach considers unsorted equational logic as the rep-
resentation language using inverse narrowing as the search heuristic. Although
this approach is very fast in inducing programs it is not robust and cannot be
used in multi-concept settings. The latter approach uses a many-sorted, higher-
order functional language as its representation language and uses an evolutionary
algorithm as its induction heuristic. We should also mention Roland Olsson’s in-
ductive functional programming system Adate [24].

6 Conclusions and Further Work

We presented a system that given a set of positive and negative examples and
relevant background knowledge will induce an algebraic specification. In this
setting the examples are ground equations that can be considered test cases:
the positive examples need to hold in the induced specification and the negative
examples should not hold in the induced specification. We have implemented
this system in the functional part of the Maude specification language. Our
algebraic semantics for inductive equational logic programming elucidates many
of the details necessary for the implementation of the system.

Future work will extend our approach to include full order-sorted, conditional
equational logic. We will also investigate whether our approach can be extended
to hidden-sorted equational logic. In this context it will be interesting to see
how our evolutionary induction system can deal with function symbol invention
(similar to predicate invention) which will most likely be necessary in order to
evolve objects with hidden state and visible behavior. We would like to inves-
tigate the integration of our induction engine in Maude using its metalanguage
facilities [25] .

References

1. Muggleton, S.: Inductive acquisition of expert knowledge. Addison-Wesley, Read-
ing, Mass. (1990)

12

2. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
3. Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Que-

sada, J.: Maude: Specification and programming in rewriting logic. Theoretical
Computer Science 285(2) (2002) 187–243

4. Muggleton, S., Raedt, L.D.: Inductive logic programming: Theory and methods.
Journal of Logic Programming 19/20 (1994) 629–679

5. Michalski, R.S., Wnek, J.: Learning Hybrid Descriptions. In: Proceedings IIS,
Augustow, Poland (1995)

6. Hamel, L., Shen, C.: Inductive acquisition of algebraic specifications, tech report
tr06-317. Technical report, Dept. of Computer Science and Statistics, University
of Rhode Island (2006)

7. Wechler, W.: Universal Algebra for Computer Scientists. Springer-Verlag (1992)
8. Burstall, R., Goguen, J.: Institutions: abstract model theory for specification and

programming. JACM 39(1) (1992) 95–146
9. Goguen, J., Meseguer, J.: Completeness of many-sorted equational logic. ACM

SIGPLAN Notices 17(1) (1982) 9–17
10. Ehrig, H., Mahr, B.: Fundamentals of algebraic specification 2: module specifica-

tions and constraints. Springer-Verlag New York, Inc. New York, NY, USA (1990)
11. Mitchell, T.M.: Generalization as search. Artificial Intelligence 18(2) (1982) 203–

226
12. Shen, C.: Inductive Equational Logic in Maude. Master’s thesis, University of

Rhode Island (2006)
13. Koza, J.R.: Genetic Programming: On the Programming of Computers by Natural

Selection. MIT Press, Cambridge, MA (1992)
14. Wall, M.: GAlib: A C++ Library of Genetic Algorithm Components. Mechanical

Engineering Department, Massachusetts Institute of Technology, Aug (1996)
15. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA (1989)
16. Hernandez-Orallo, J., Ramrez, M.: Inverse Narrowing for the Induction of Func-

tional Logic Programs. Proc. Joint Conference on Declarative Programming,
APPIA–GULP–PRODE 98 (1998) 379–393

17. Burstall, R.M., Darlington, J.: A Transformation System for Developing Recursive
Programs. Journal of the Association for Computing Machinery 24(1) (1977) 44–
67

18. Summers, P.: A Methodology for LISP Program Construction from Examples.
JACM 24(1) (1977) 161–175

19. Manna, Z., Waldinger, R.: A Deductive Approach to Program Synthesis. TOPLAS
2(1) (1980) 90–121

20. Kitzelmann, E., Schmid, U.: Inductive synthesis of functional programs: An ex-
planation based generalization approach. Journal of Machine Learning Research 7
(2006) 429–454

21. Dershowitz, N., Reddy, U.: Deductive and Inductive Synthesis of Equational Pro-
grams. JSC 15(5/6) (1993) 467–494

22. Deville, Y., Lau, K.: Logic program synthesis. Journal of Logic Programming
19(20) (1994) 321–350

23. Kennedy, C.J., Giraud-Carrier, C.: An evolutionary approach to concept learning
with structured data. In: Proceedings of ICANNGA, Springer Verlag (1999) 1–6

24. Olsson, R.: Inductive functional programming using incremental program trans-
formation. Artificial Intelligence 74(1) (1995) 55–58

25. Martı-Oliet, N., Meseguer, J., Verdejo, A.: Towards a strategy language for Maude.
Proceedings WRLA (2004) 391–414

