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Overview
oo

e Self-Organization
e Basic SOM Algorithm
e Applications of SOM we have worked on

e Model “Goodness of Fit”
- Standard Approaches, e.g., Quantization error

-~ New Approach: Convergence Test with 2-Sample test.
e New Approaches to SOM Visualization

-~ Connected Components
- Cartograms



Self-Organization and Learning
—

e Self-organization refers to a process in
which the internal organization of a
system increases automatically without
being guided or managed by an outside
source.

e This process is due to local interaction
with simple rules.

e Local interaction gives rise to global
structure.

= We can interpret emerging global
structures as |learned structures.

= Learned structures appear as
clusters of similar objects.
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Local Interaction

Complexity : Life at the Edge of Chaos, Roger Lewin,
University Of Chicago Press; 2nd edition, 2000



Game of Life

- ,:_':. II: "= e Most famous example of self-organization -
Game of Life

r e Simple local rules:

- - Any live cell with fewer than two live neighbours dies, as if
caused by under-population.

- - Any live cell with two or three live neighbours lives on to the

next generation.

— Any live cell with more than three live neighbors dies, as if
by overcrowding.

CRRR. - Any dead cell with exactly three live neighbors becomes a
ey wm mm me live cell, as if by reproduction.
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Source: http://en.wikipedia.org/wiki/Conway's_Game_of_Life



Supervised vs.Unsupervised
Learning

e In supervised learning we train algorithms with predefined
concepts and functions based on labeled data, e.g.
D={(xy)|x€&eX y&{yesno}.
e |n unsupervised learning we are given a set of instances X
(without labels) and we let the algorithm discover interesting
properties of this set.

e Most unsupervised learning algorithms are based on the
idea of discovering similarities between elements in the set
X.



SOM Architecture
]

e A feed-forward neural network architecture based on

competitive learning invented by Teuvo Kohonen in
1981.

e Does not depend on a priori selection of number of
clusters to search for — will find the appropriate
number of clusters for given the set of instances.

e Sometimes is considered a 2D projection of clusters
In high-dimensional space.



SOM Architecture

Computational
Layer
ml ~A
‘\x ) / Input Layer

e SOM has a feed-forward structure with a single computational layer arranged in
rows and columns.

Each neuron is fully connected to the input node in the input layer.

e The goal is to organize the neurons in the computational layer into
clusters/regions associated with patterns in the instance set X.



Self-Organizing Maps
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Visualization

Algorithm:
Emerging global > Repeat until Done
“mme \ For each observation in Data Table Do
, Find the neuron that best describes the observation.
= Make that neuron look more like the observation.
Smooth the immediate neighborhood of that neuron.
End For
\iﬁﬁ o YYLK“O ZX? End Repeat
O O._,.Q

Local Interaction



Feature Vector Construction
]

In order to use SOMs we need to describe our objects
— Feature Vectors

N
> mall medium big Tw olegs Fourlegs Ha Hoove M Feath Hu Ru Fly Sw im
1 0 0 1 0 0 0 0 1 0 0 0 1
J
N
> mall medium big Tw olegs Fourleg Ha Ho Mane Feath Hu Ru Fly Sw im
0 0 1 0 1 1 1 0 0 0 1 0 0




Training a SOM
.

small | medium | big }:;2 I;:;l: Hair| Hooves | Mane | Feathers |Hunt| Run [Fly| Swim
Dove 1 0 0] 1 0 0 0 0 1 0 0 |1 0
Hen 1 0 0 1 0 0 0 0 1 0 0[O0 0
Duck 1 0 0] 1 0 0 0 0 1 0 010 1
Goose 1 0 0 1 0 0 0 0 1 0 0 |1 1
Owe 1 0 0] 1 0 0 0 0 1 1 0 |1 0
Hawk 1 0 0] 1 0 0 0 0 1 1 0 |1 0
Eagle 0 1 0 1 0 0 0 0 1 1 0 |1 0
Fox 0 1 0] 0 1 1 0 0 0 1 0|0 0
Dog 0 1 0| 0 1 1 0 0 0 0 1 0 0
Wolf 0 1 0] 0 1 1 0 1 0 1 1 |10 0
Cat 1 0 0] 0 1 1 0 0 0 1 0|0 0
Tiger 0 0 110 1 1 0 0 0 1 110 0
Lion 0 0 1 0 1 1 0 1 0 1 1 0 0
Horse 0 0 1[0 1 1 1 1 0 0 1 [0 0
Zebra 0 0 110 1 1 1 1 0 0 110 0
Cow 0 0 1[0 1 1 1 0 0 0 0|0 0
Table of Feature Vectors
Tiger
Lion
L
.
Horse

Zebra

“Grid of Neurons”

Visualization
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SOMs Sample the Data Space

Image source: www.peltarion.com

e Given some distribution in the data
space, SOM will try to construct a sample
that looks like it was drawn from the
same distribution.

Algorithm:

Repeat until Done
For each observation in Data Table Do
Find the neuron that best describes the observation.
Make that neuron look more like the observation.
Smooth the immediate neighborhood of that neuron.

End For
End Repeat




SOM Visualization
]

Visualization of
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Comparison
S

e Pros:

- K-means - SOM does not need an a priori
estimate of the number of clusters to look for.

— Hierarchical Clustering - SOM can deal with
ambiguity, assignment of points to multiple
clusters.

e Cons:

— Training time can be substantial, especially for
large maps with lots of training data.



Applications of SOM
c__

Infrared Spectroscopy

Goal: to find out if compounds are chemically related without
performing an expensive chemical analysis.

Each compound is tested for light absorbency in the infrared
spectrum.

Specific chemical structures absorb specific ranges in the infrared
spectrum.

This means, each compound has a specific “spectral signature”.

Sensitivity of Raman Spectra to Chemical Functional Groups, Kevin Judge, Chris
W. Brown, and Lutz Hamel. Appl Spectrosc. 2008 Nov;62(11):1221-5.

Sensitivity of Infrared Spectra to Chemical Functional Groups, Kevin Judge,
Chris W. Brown, and Lutz Hamel. Anal. Chem., 80 (11), 4186-4192, 2008.
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Organizing-Map

MIR Spectra
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MIR SOM

Functional Groups
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Applications of SOM
c__

e \We investigated bacteria using spectroscopy:

- Can we detect spectroscopic differences between
bacteria metabolizing different sugars?

- Can we detect spectroscopic differences between
the different stages of a bacterium’s existence?

- Can we detect spectroscopic differences between
Gram-Positive and Gram-Negative bacteria?

Bayesian Probability Approach to Feature Significance for Infrared Spectra of
Bacteria, Lutz Hamel, Chris W. Brown, Applied Spectroscopy, Volume 66, Number 1,
2012.



SOM

Bacterium b-cereus on different agars
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Significance Spectrum
b-cereus on different agars
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SOM

Bacteria Spectra
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Significance Spectrum vs
b-subtilis 1t Derivative Spectra
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Gram-Pos. vs. Gram-Neg.
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Significance Spectrum
c__
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Applications of SOM
c__

e Genome Clustering

- Goal: trying to understand the phylogenetic relationship
between different genomes.

— Compute bootstrap support of individual genomes for
different phylogentic tree topologies, then cluster based on
the topology support.

Unsupervised Learning in Detection of Gene Transfer, Lutz Hamel, Neha Nahar,
Maria S. Poptsova, Olga Zhaxybayeva, and J. Peter Gogarten. Journal of
Biomedicine and Biotechnology, vol. 2008, Article ID 472719, 7 pages, 2008.
doi:10.1155/2008/472719

PentaPlot: A Software Tool for the lllustration of Genome Mosaicism, Lutz Hamel,
Olga Zhaxybayeva, and J. Peter Gogarten. BMC Bioinformatics, 2005 6:139,
http://www.biomedcentral.com/1471-2105/6/139

Visualization of the phylogenetic content of five genomes using dekapentagonal
maps, Olga Zhaxybayeva, Lutz Hamel, Jason Raymond and J Peter Gogarten. Genome
Biology, 2004 5:R20, http://genomebiology.com/2004/5/3/R20



Phylogenetic Visualization with
SOMs
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Figure 8. Tree reconstructed from the
selected clusters (red dots on the left map)
that fell Into white areas on the blpartition
superposition map (on the right).

Figure 9: Analysis of the conflicting bipartition
(see text for explanation).

GPX: A Tool for the Exploration and Visualization of Genome Evolution, Neha
Nahar, Maria S. Poptsova, Lutz Hamel, and J. Peter Gogarten. Proceedings of the
IEEE 7th International Symposium on Bioinformatics & Bioengineering (BIBEQ7),
Oct 14th-17th 2007, Boston, pp1338 - 1342, IEEE Press, ISBN 1-4244-1509-8.



Applications of SOM
c__

e Clustering Proteins based on the architecture of their
activation loops.
— Align the proteins under investigation.
— Extract the functional centers.
— Turn 3D representation into 1D feature vectors.
— Cluster based on the feature vectors.

Toward Protein Structure Analysis with Self-Organizing Maps, Lutz Hamel, Gongqin
Sun, and Jing Zhang, IEEE 2005 Symposium on Computational Intelligence in
Bioinformatics and Computational Biology, pp506-513, La Jolla, CA, IEEE, 2005,
ISBN 0-7803-9387-2.



rocessing of Protein Structures
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Fig.3: Alignment of active site structures in proteins; a) active site
of cAMP-dependent procin-kinase (IATP), b) active site of
glycogen synthase kinase-3f (1GNG), c) the extracted and locally
aligned structures surrounding the active sites are shown.
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Fig. 4: Protein feature vector construction: a) the 3D structure of a protein without side-chains; b) the normalized structure of the functional center of the protein,
the crosses pinpoint the normalized locations of the a-carbons representing our normalized model; ¢) encoding the normalized model by using cubic subunits; if
there is a normalized ¢t-carbon atom in a cubic subunit then the subunit is assigned a 1, otherwise it is assigned a 0; d) the 3D structure of the cubic subunits is
unfolded giving rise to a one dimensional feature vector describing the structure of the protein; each position in the feature vector describes the state of a single
subunit of the original 3D structure.
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Structural Classification of GTPases
« 1]

Can we structurally distinguish between the Ras and Rho subfamilies?
- Ras: 121P, 1CTQ, and 1QRA
- Rho: 1A2B and 1TOW3
-~ F=p-loop, r=10A

Ras
10TO A 4

10RA A
121P Rho

121P
& Ras

1CTQ
1QRA
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Model Fitting
S
e Standard approach is minimizing the quantization
error. By =3 Y lwt) x|

cEY xeX (1)

$3833:
PR
00868
i

e However, there exists no statistical criterion that tells
us when the quantization error is good enough!

e In the limit (enough neurons, enough time) the
quantization error can always be reduced to =0
=> Qverfitting!

e Therefore not very useful as a “Goodness of Fit”
criterion.
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e QOur approach is different: we treat the training data
and the set of neurons as two individual populations.

e \We say that a maps has converged if both
populations appear to have been dawn from the
same distribution.

e This is easily testable with appropriate 2-sample
tests.

A Population Based Convergence Criterion for Self-Organizing Maps, Benjamin Ott and Lutz Hamel, submitted.



2-Sample Tests
S

e \ariance:
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Error vs. Convergence

Quantization Error

04

06

Convergence

/

Convergence with
non-zero quantization
error - no overfitting!



Observations
]

e SOMSs, in most applications, are severely
undertrained and therefore do not represent the

underlying structure reliably!

Convergence
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Visualizations

e \We have developed two new SOM
visualizations that assist in interpreting the
structure of the data:

— Starburst
— Cartogram

Improved Interpretability of the Unified Distance Matrix with Connected
Components, Lutz Hamel and Chris W. Brown. Proceeding of the 7th International
Conference on Data Mining, July 18-21, 2011, Las Vegas Nevada, USA, ISBN:
1-60132-168-6, pp338-343, CSREA Press, 2011.

Cartogram Data Projection for Self-Organizing Maps, David Brown and Lutz Hamel,
submitted.



Starburst
]

e Assists in identifying clusters on the SOM
Unified-Distance map (Umat)

e Starbursts are constructed by

— First following the steepest gradient on the Umat
to the center of the cluster (the center of the
cluster has a gradient of 0)

- Then connecting all points who gradient vector
point to a particular center to that center.
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Cartogram Data Projection
—

e Technique borrowed from geographic map making

e Distort the SOM map to highlight features of interest:
— Data density
— Label clashes (if labels are available)
-~ Risk factors, etc.

e Map training data back onto map in a meaningful
fashion, l.e., it conveys the data distribution around
the neuron in data space.



Cartogram
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Cartogram
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Figure 7. S0M of the cardiotocography data set using the expert assessment of risk as cell size.

D Ayres-de Campos, 1. Bernardes, A. Garrido, J. Marques-de-Sa,
and L. Pereira-Leite, *SisPorto 2.0: & program for automated
analysis of cardiotocograms.,” S Matern Fetal Med, vol. 9, no. 5,
pp. 311-8, 2000.



Conclusions
oo

e SOMs are powerful tools for data
visualization and discovery

e Our new convergence criterion puts SOM
training on a solid statistical foundation

e Our new visualization techniques help
interpreting the map generated by the SOM
algorithm



Thank You!
« ]

e Questions?

www.cs.uri.edu/~hamel



