Automatic Theorem Proving

A Very Brief Introduction

Dr. Lutz Hamel

Computer Science & Statistics
Definition

- Automated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs.

The Dream

source: http://www.cs.utexas.edu/users/moore/
Good News

- First-order logic together with set theory is expressive enough to serve as a foundation for mathematics
 - Frege, Whitehead, Russel
 - First-order logic consists of predicates, quantifiers, variables, and logical connectives, e.g.

\[\forall X, Y [\text{mother}(X, Y) \text{ if } \text{parent}(X, Y) \land \text{female}(X)] \]
More Good News

- First-order logic is sound and complete – Goedel
 - For any finite first-order theory T and any sentence s in the language of the theory, there is a formal proof of s in T if and only if s is satisfied by every model of T,

For all models M of some theory T, $T \vdash s$ iff $M \models s$
Some Bad News

- First-order logic is *semi-decidable* – Church/Turing
 - Given some decision procedure P:
 - P will accept and return a proof for some sentence s if s is valid.
 - P can reject or *loop forever* if s is *not* valid.

➔ The first blow to our dream!
More Bad News

- Any decision procedure P given some valid sentence s runs at best in NP time.
 - That is, the time it takes to run P grows exponentially with the complexity of the sentence s.

⇒ The second blow to our dream!
Problem

- If an ATP runs a long time you don’t know if the cause of this is the undecidability problem or the NP problem.
Goedel’s Incompleteness Theorem

- Even though first-order logic is sound and complete there are some domains that are not finitely axiomatizable – that is there are no finite theories that describe this domain,
 - e.g. arithmetic
- This implies that any finite representation A of some infinite theory T such as arithmetic is incomplete,

For all models M of some theory T and $A \subset T$ is finite, $A \vdash s$ implies $M \models s$
Perhaps Some More Bad News

- Even if we accept the previous issues and continue to press on...

- …the proofs that some decision procedure is likely to construct are completely unstructured.

source: prover9 proof archive
Some Successes

- Perhaps the most famous success in fully automatic theorem proving is the proof of the Robbins Conjecture:

- A problem first posed by E.V. Huntington in 1933 and then refined by Herbert Robbins:

 For all elements a, b, and c:

 1. **Associativity**: $a \lor (b \lor c) = (a \lor b) \lor c$
 2. **Commutativity**: $a \lor b = b \lor a$
 3. **Robbins equation**: $\neg (\neg (a \lor b) \lor \neg (a \lor \neg b)) = a$

- Are all Robbins algebras Boolean?
- Yes! – proved by William McCune with the theorem prover EQP in 1996 – it took 172 hrs ≈ 1 week

source: http://www.cs.unm.edu/~mccune/papers/robbins/
Other Fully Automatic TPs

- E -

- ACL2 -

- Prover9 -

- Many others
Yet…

- After almost 50 years of research in fully automatic theorem proving the results are pretty thin…

- …perhaps a better strategy is a collaboration between proof author and automatic theorem prover.
Proof Assistants
Definition

- In computer science and mathematical logic, a proof assistant or interactive theorem prover is a software tool to assist with the development of formal proofs by human-machine collaboration. This involves some sort of interactive proof editor, or other interface, with which a human can guide the search for proofs, the details of which are stored in, and some steps provided by, a computer.

source: http://en.wikipedia.org/wiki/Proof_assistant
Proof Assistants

- Proof assistants avoid decidability problems by relying on the human to structure the proof in such a way that only valid sentences need to be validated.
- Proof assistants avoid the NP problems because typically proofs are broken down into small steps that don’t require a lot of search in order to be validated.
- Interesting ramification: logics used in proof assistants do not have to be complete!
 - The TP does not have to rely on the fact that everything that is true in the models can be proven.
 - Rather, we rely on the fact that the conclusion follows from the premises.
 - This allows us to use much more powerful logics in proof assistants than would be possible in fully automatic theorem provers.
The Mizar System

- Perhaps the oldest proof assistant – started in 1973 by Andrzej Trybulec.
- Based on first-order logic and set theory
- Very large library of existing proofs – as of 2012:
 - 1150 articles written by 241 authors
 - these contain more than 10,000 formal definitions of mathematical objects and about 52,000 theorems proved on these objects
 - some examples are: Hahn–Banach theorem, König's lemma, Brouwer fixed point theorem, Gödel's completeness theorem and Jordan curve theorem.

http://mizar.org/
A Simple Mizar Proof: $\sqrt{2}$ is irrational

thm
 sqrt 2 is irrational
prf
assume sqrt 2 is rational;
then consider i being Integer, n being Nat such that
W1: n<>0 and
W2: sqrt 2=i/n and
W3: for i1 being Integer, n1 being Nat st n1<>0 & sqrt 2=i1/n1 holds n<=n1
by RAT_1:25;
A5: i=sqrt 2*n by W1,XCMPLX_1:88,W2;
C: sqrt 2>=0 & n>0 by W1,NAT_1:19,SQUARE_1:93;
then i>=0 by A5,REAL_2:121;
then reconsider m = i as Nat by INT_1:16;
A6: m*m = n*n*(sqrt 2*sqrt 2) by A5
 .= n*n*(sqrt 2)^2 by SQUARE_1:def 3
 .= 2*(n*n) by SQUARE_1:def 4;
then 2 divides m*m by NAT_1:def 3;
then 2 divides m by INT_2:44,NEWTON:98;
then consider m1 being Nat such that
W4: m=2*m1 by NAT_1:def 3;
m1*m1*2*2 = m1*((m1*2)*2
 .= 2*(n*n) by W4,A6,XCMPLX_1:4;
then 2*(m1*m1) = n*n by XCMPLX_1:5;
then 2 divides n*n by NAT_1:def 3;
then 2 divides n by INT_2:44,NEWTON:98;
then consider n1 being Nat such that
W5: n=2*n1 by NAT_1:def 3;
A10: m1/n1 = sqrt 2 by W4,W5,XCMPLX_1:92,W2;
A11: n1>0 by W5,C,REAL_2:123;
then 2*n1>1*n1 by REAL_2:199;
hence contradiction by A10,W5,A11,W3;
end;
The Coq System

- Started in 1984
- Implements a higher order logic: higher-order type theory
 - not complete and not decidable but sound
 - very expressive
- Coq is used in a large variety of domains such as formalization of mathematics, specification and verification of computer programs, etc.

source: https://coq.inria.fr
Theorem irrational_sqrt_2: irrational (\sqrt{2} \text{nat}).
intros p q H0; case H0.
apply (\text{main_thm } (\text{Zabs}_\text{nat} p)).
replace (\text{Div2.double } (q * q)) with (2 * (q * q));
[idtac | unfold \text{Div2.double}; ring].
case (eq_nat_dec (\text{Zabs}_\text{nat} p * \text{Zabs}_\text{nat} p) (2 * (q * q))); auto; intros H1.
case (\text{not_nm_INR } _ _ H1); (repeat rewrite \text{mult_INR}).
rewrite <- (sqrt_def (\text{INR} 2)); auto with real.
rewrite \text{H0}; auto with real.
assert (q <> 0\%R :> R); auto with real.
Qed.

main_thm =
 fun n : nat =>
 lt_wf_ind n
(f \text{fun n0 : nat} => \forall p : nat, n0 * n0 = \text{Div2.double } (p * p) \rightarrow p = 0)
(f \text{fun (n0 : nat)}
 \text{(H : \forall m : nat, m < n0 \rightarrow \forall p : nat, m * m = \text{Div2.double } (p * p) \rightarrow p = 0)}
 \text{(p : nat)} (H0 : n0 * n0 = \text{Div2.double } (p * p)) =>
match \text{Peano_dec.eq_nat_dec} n0 0 with
| left H1 =>
 let H2 :=
 eq_ind_r (fun n : nat => n * n = \text{Div2.double } (p * p) \rightarrow p = 0)
 match p as n return (0 * 0 = \text{Div2.double } (n * n) \rightarrow n = 0) with
 | O => fun H2 : 0 * 0 = \text{Div2.double } (0 * 0) => H2
 | S n0 =>
 fun H2 : 0 * 0 = \text{Div2.double } (S n0 * S n0) =>
 let H3 :=
 eq_ind (0 * 0)
 (fun ee : nat =>
 match ee with
 | O => True
 | S _ => False
 end) \text{I (Div2.double } (S n0 * S n0)) \text{H2 in}
 False_ind (S n0 = 0) H3
end H1 in
H2 H0
| right H1 =>
Isabelle

- Isabelle is a proof assistant which implements higher-order logic:
 - LCF – lambda calculus extended with logical constructs
 - incomplete, undecidable, but sound
- Isabelle is developed at University of Cambridge (Larry Paulson), Technische Universität München (Tobias Nipkow) and Université Paris-Sud (Makarius Wenzel).
- The main application is the formalization of mathematical proofs and in particular formal verification, which includes proving the correctness of computer hardware or software and proving properties of computer languages and protocols.

source: http://isabelle.in.tum.de
Example: \(\sqrt{2} \) is irrational

```plaintext
theorem sqrt2_not_rational:
  "sqrt (real 2) \in \mathbb{Q}"
proof
  assume "sqrt (real 2) \in \mathbb{Q}"
  then obtain m n :: nat where
    n_nonzero: "n \neq 0" and sqrt_rat: "|sqrt (real 2)| = real m / real n"
    and lowest_terms: "gcd m n = 1" ..
  from n_nonzero and sqrt_rat have "real m = |sqrt (real 2)| * real n" by simp
  then have "real (m^2) = (sqrt (real 2))^2 * real (n^2)" by (auto simp add: power2_eq_square)
  also have "(sqrt (real 2))^2 = real 2" by simp
  also have "... * real (m^2) = real (2 * n^2)" by simp
  finally have eq: "m^2 = 2 * n^2" ..
  hence "2 dvd m^2" ..
  with two_is_prime have dvd_m: "2 dvd m" by (rule prime_dvd_power_two)
  then obtain k where "m = 2 * k" ..
  with eq have "2 * n^2 = 2^2 * k^2" by (auto simp add: power2_eq_square mult_ac)
  hence "n^2 = 2 * k^2" by simp
  hence "2 dvd n^2" ..
  with two_is_prime have "2 dvd n" by (rule prime_dvd_power_two)
  with dvd_m have "2 dvd gcd m n" by (rule gcd_greatest)
  with lowest_terms have "2 dvd 1" by simp
  thus False by arith
qed
```
Observations

- **Pros:**
 - Powerful reasoning mechanisms – deduction, induction, tactics, etc
 - Expressive proof languages

- **Cons:**
 - Steep learning curve for the systems
 - The complicated proof languages represent an adoption hurdle
Prolog as a Proof Assistant

- I am interested in ATP coming from a formal semantics for programming languages angle:
 - build programming language models
 - reason about these models
Prolog as a Proof Assistant

- I needed the following:
 - a language that can serve both as a specification language and a language to reason about specifications
 - a language is easy to learn
 - simple first-order logic
 - modus ponens as the main deduction mechanism
 - robust implementation
 - something that does not feel like a graduate student project 😊
Prolog as Proof Assistant

- Prolog fits the bill
 - designed as a programming language
 - rigorously based on first-order logic
 - uses a resolution based deduction engine (think automated modus ponens)
 - easy to learn
 - ISO standarized
 - lots of commercial and open source implementations available
 - I use SWI Prolog (www.swi-prolog.org)
Prolog as a Proof Assistant

- Downside:
 - no equational reasoning
 - writing a proof that $\sqrt{2}$ is irrational is difficult in Prolog
 - no type system
 - will not catch typos in term structures – difficult debugging
Prolog – A Simple Program

% facts
female(betty).
male(bob).
parent(betty,bob).

% rule
mother(X,Y) :- parent(X,Y),female(X).

% query
:- mother(Q,bob).

∀X, Y[mother(X, Y) if parent(X, Y) ∧ female(X)]

∃Q[mother(Q,bob)]

You just learned 90% of the Prolog language!
% recursive counting of elements
% in a list.

% base case:
% the count of an empty list is 0
count([],0).

% recursive step:
% the count of any list List is Count if
% List can be divided into a First element and the Rest of the list and
% T is the count of the Rest of the list and
% Count is T plus 1.
count(List,Count) :-
 List=[First | Rest],
 count(Rest,T),
 Count is T + 1.

% try it!
:- count([1,2,3],P),writeln(P).
Prolog as a Theorem Prover

- We have developed a library that makes Prolog deductions sound but incomplete
 - This is OK because we are using it as a proof assistant – only soundness is required.
 - interesting side node – with a little bit of work Prolog could be made quasi-complete
- Our library makes Prolog easy to use as a TP
Semantic Specifications 101

- We will define a simple calculator like language
- build a first-order logic model
- and then reason about the model
% syntax definition -- Lisp like prefix notation for expressions
%
% syntax of expressions
%
% E ::= X
% | L
% | mult(E,E)
% | plus(E,E)
% | minus(E,E)
%
% syntax of statements
%
% S ::= assign(X,E)
% | print(E)
% | S @ S
%
% L ::= <any integer digit>
% X ::= <any variable name>

Example: assign(x,plus(10,1)) @ print(x)
A simple ‘abstract interpreter’ model

The main operator in a semantic specification is the ‘maps to’ operator -->>

This operator maps a piece of syntax into its semantic domain (under the possible context of a state – the ‘::’ part)
Semantic Specifications 101

Given a state the semantic value of a statement is another state!

% semantic definition of statements

B:: assign(X,E) -->> [(X,V) | B] :-
 is_var(X),
 B:: E -->> V,!.

B:: print(E) -->> B :-
 B:: E -->> V,
 write('Output value: '),
 writeln(V),!.

B:: S1 @ S2 -->> B2 :-
 B:: S1 -->> B1,
 B1:: S2 -->> B2,!.

% for convenience make '@' infix and left associative
:- op(725,yfx,@).

That’s it!
Running a Calc Program

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 6.6.6)
Copyright (c) 1990-2013 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- consult('calc-sem.pl').
% xis.pl compiled 0.00 sec, 33 clauses
% preamble.pl compiled 0.01 sec, 45 clauses
% calc-sem.pl compiled 0.01 sec, 58 clauses
true.

?- s:: assign(x,plus(10,1)) @ print(x) -->> S.
Output value: 11
S = [(x, 11)|s].

?-
Proof – Semantic Equivalence

:- >>> 'Show that mult(2,3) is semantically equiv to add(3,3),'.
:- >>> 'it suffices to show that'.
:- >>> ' (forall s)(exists V)'.
:- >>> ' [s:: mult(2,3)-->>V ^ s:: plus(3,3)-->>V]'.

% proof
:- show s:: mult(2,3)-->>V , s:: plus(3,3)-->>V.
Proof – All Programs Terminate

- This is obvious because our language does not have function calls or loops
- but it still nice to actually prove it!
- The proof will show that the execution of any and every program will result in a value.
- Because syntactic domains can be viewed as inductively defined sets we can use induction to prove this.
Proof – All Programs Terminate

- Recall our syntax:

% E ::= X
% | L
% | mult(E,E)
% | plus(E,E)
% | minus(E,E)
%
% S ::= assign(X,E)
% | print(E)
% | S @ S
%
% L ::= <any integer digit>
% X ::= <any variable name>
Proof – All Programs Terminate

:- >>> 'induction on expressions'.

:- >>> 'Base cases:'.

:- >>> 'Variables'.
:- >>> 'Assume that states are finite'.
:- assume lookup(x,s,vx).
:- show s:: x -->> vx.

:- >>> 'Constants'.
:- assume is_int(n).
:- show s:: n -->> n.

:- >>> 'Inductive cases'.

:- >>> 'Operators'.
:- >>> 'mult'.
:- assume s:: a -->> va.
:- assume s:: b -->> vb.
:- show s:: mult(a,b) -->> va*vb.

:- >>> 'the remaining operators'.
:- >>> 'can be proved similarly'.

:- >>> 'induction on programming constructs'.

:- >>> 'Base cases:'.

:- >>> 'assignments'.
:- assume s:: e -->> ve.
:- show s:: assign(x,e) -->> [(x,ve)|s].

:- >>> 'print'.
:- assume s:: e -->> ve.
:- show s:: print(e) -->> s.

:- >>> 'Inductive step:'.

:- >>> 'composition'.
:- assume _A:: s1 -->> v1.
:- assume _B:: s2 -->> v2.
:- show s:: s1 @ s2 -->> v2.
Conclusions

- Fully automatic TP seems to be doomed because of the semi-decidability and NP trap
- Collaborative ATP or Proof Assistants build on the strengths of the structured approach humans take to theorem proving
- Collaborative ATP or Proof Assistants are versatile; going beyond mathematical theorem proving -- we have hardware verification, programming language semantics, etc.
- We are interested in Prolog as a theorem prover because of its simplicity, robustness, and availability – easy to learn – interesting as a first step into the theorem proving arena
Shameless Plug

- If you are interested in a mathematical approach to programming languages and theorem proving…
- …I teach a course in programming language semantics which applies some of the things we saw here and more – CSC501
Thank You!

- Slides and Prolog code available at my homepage:
 - http://homepage.cs.uri.edu/faculty/hamel/

(under publications in the talks section)