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Definition 

!  Automated theorem proving (also known as 
ATP or automated deduction) is a subfield of 
automated reasoning and mathematical logic 
dealing with proving mathematical theorems 
by computer programs. 

Source: Wikipedia 



The Dream 

Zzzz 

source: http://www.cs.utexas.edu/users/moore/ 



Good News 

!  First-order logic together with set theory is 
expressive enough to serve as a foundation 
for mathematics 
!  Frege, Whitehead, Russel 
!  First-order logic consists of predicates, quantifiers, 

variables, and logical connectives, e.g. 



More Good News 

!  First-order logic is sound and complete – 
Goedel 
!  For any finite first-order theory T and any 

sentence s in the language of the theory, there is 
a formal proof of s in T if and only if s is satisfied 
by every model of T, 



Some Bad News 

!  First-order logic is semi-decidable – Church/
Turing 
!  Given some decision procedure P: 

!  P will accept and return a proof for some sentence s if 
s is valid. 

!  P can reject or loop forever if s is not valid.  

"The first blow to our dream! 



More Bad News 

!  Any decision procedure P 
given some valid sentence s 
runs at best in NP time. 
!  That is, the time it takes to run P 

grows exponentially with the 
complexity of the sentence s. 

" The second blow to our dream! 



Problem 

!  If an ATP runs a long time you don’t know if 
the cause of this is the undecidability problem 
or the NP problem. 



Goedel’s Incompleteness 
Theorem 
!  Even though first-order logic is sound and 

complete there are some domains that are not 
finitely axiomatizable – that is there are no finite 
theories that describe this domain, 
!  e.g. arithmetic 

!  This implies that any finite representation A of 
some infinte theory T such as arithmetic is 
incomplete, 



Perhaps Some More Bad News 
!  Even if we accept the previous issues and 

continue to press on… 
!  …the proofs that some decision procedure is 

likely to construct are completely unstructured 
1 y v x = x v y & (x v y) v z = x v (y v z) & ((x v y)' v (x' v y)')' = y # answer(robbins_basis) # label(non_clause) # label(goal).  [goal]. 
2 (((x v y)' v z)' v (x v (z' v (z v u)')')')' = z # label(DN1).  [assumption]. 
3 c1 v c2 != c2 v c1 | (c2 v c1) v c3 != c2 v (c1 v c3) | ((c2 v c1)' v (c2' v c1)')' != c1 # answer(robbins_basis).  [deny(1)]. 
4 c2 v c1 != c1 v c2 | (c2 v c1) v c3 != c2 v (c1 v c3) | ((c2 v c1)' v (c2' v c1)')' != c1 # answer(robbins_basis).  [copy(3),flip(a)]. 
5 ((x v y)' v (((z v u)' v x)' v (y' v (y v w)')')')' = y.  [para(2(a,1),2(a,1,1,1,1,1))]. 
18 ((x v x')' v x)' = x'.  [para(2(a,1),5(a,1,1,2))]. 
22 (x' v (x v (x' v (x v y)')')')' = x.  [para(18(a,1),2(a,1,1,1))]. 
27 ((x v y)' v (x' v (y' v (y v z)')')')' = y.  [para(22(a,1),2(a,1,1,1,1,1))]. 
31 (((x v y)' v z)' v (x v z)')' = z.  [para(22(a,1),2(a,1,1,2,1,2))]. 
58 ((x v y)' v (x' v y)')' = y.  [para(22(a,1),31(a,1,1,1,1,1))]. 
64 (x v ((y v z)' v (y v x)')')' = (y v x)'.  [para(31(a,1),31(a,1,1,1))]. 
65 (((((x v y)' v z)' v u)' v (x v z)')' v z)' = (x v z)'.  [para(31(a,1),31(a,1,1,2))]. 
66 c2 v c1 != c1 v c2 | (c2 v c1) v c3 != c2 v (c1 v c3) # answer(robbins_basis).  [back_rewrite(4),rewrite([58(29)]),xx(c)]. 
94 ((((x v (x v y)')' v z)' v x)' v (x v y)')' = x.  [para(58(a,1),2(a,1,1,2))]. 
101 (((x v x') v x)' v x')' = x.  [para(18(a,1),58(a,1,1,2))]. 
111 ((x v y)' v ((z v x)' v y)')' = y.  [para(58(a,1),31(a,1,1,1,1,1))]. 
112 (x v (y v (y' v x)')')' = (y' v x)'.  [para(58(a,1),31(a,1,1,1))]. 
… 
6181 x v (y v z) = z v (y v x).  [para(6167(a,1),999(a,1,2)),rewrite([6179(3),796(4),6179(4)])]. 
6182 $F # answer(robbins_basis).  [resolve(6181,a,1138,a)]. 
 
 

source: prover9 proof archive 



Some Successes 
!  Perhaps the most famous success in fully 

automatic theorem proving is the proof of the 
Robbins Conjecture: 
!  A problem first posed by E.V.Huntington in 1933 and 

then refined by Herbert Robbins: 
 
 

!  Are all Robbins algebras Boolean? 
!  Yes! – proved by William McCune with the theorem 

prover EQP in 1996 – it took 172 hrs ≈	
 1	
 week 
source: http://www.cs.unm.edu/~mccune/papers/robbins/ 



Other Fully Automatic TPs 

!  E - 
http://wwwlehre.dhbw-stuttgart.de/~sschulz/
E/E.html 

!  ACL2 - 
http://www.cs.utexas.edu/users/moore/acl2/ 

!  Prover9 - 
http://www.cs.unm.edu/~mccune/prover9/ 

!  Many others 



Yet… 

!  After almost 50 years of research in fully 
automatic theorem proving the results are 
pretty thin… 

!  …perhaps a better strategy is a collaboration 
between proof author and automatic theorem 
prover. 



Proof Assistants 



Definition 
!  In computer science and mathematical logic, a 

proof assistant or interactive theorem prover is a 
software tool to assist with the development of 
formal proofs by human-machine collaboration. 
This involves some sort of interactive proof 
editor, or other interface, with which a human 
can guide the search for proofs, the details of 
which are stored in, and some steps provided 
by, a computer. 

source: http://en.wikipedia.org/wiki/Proof_assistant 



Proof Assistants 
!  proof assistants avoid decidability problems by relying on 

the human to structure the proof in such a way that only 
valid sentences need to validated. 

!  proof assistants avoid the NP problems because typically 
proofs are broken down into small steps that don’t require a 
lot of search in order to be validated 

!  interesting ramification: logics used in proof assistants do 
not have to be complete! 
!  the TP does not have to rely on the fact that everything that is 

true in the models can be proven 
!  rather, we rely on the fact that the conclusion follows from the 

premises 
!  this allows us to use much more powerful logics in proof 

assistants than would be possible in fully automatic theorem 
provers 



The Mizar System 
!  Perhaps the oldest proof assistant – started in 

1973 by Andrzej Trybulec. 
!  Based on first-order logic and set theory 
!  Very large library of existing proofs – as of 2012: 

!  1150 articles written by 241 authors 
!  these contain more than 10,000 formal definitions of 

mathematical objects and about 52,000 theorems 
proved on these objects 

!  some examples are: Hahn–Banach theorem, König's 
lemma, Brouwer fixed point theorem, Gödel's 
completeness theorem and Jordan curve theorem. 

http://mizar.org/ 



A Simple Mizar Proof: √2 is 
irrational 

theorem 
  sqrt 2 is irrational 
proof 
 assume sqrt 2 is rational; 
 then consider i being Integer, n being Nat such that 
W1: n<>0 and 
W2: sqrt 2=i/n and 
W3: for i1 being Integer, n1 being Nat st n1<>0 & sqrt 2=i1/n1 holds n<=n1 
      by RAT_1:25; 
A5: i=sqrt 2*n by W1,XCMPLX_1:88,W2; 
C: sqrt 2>=0 & n>0 by W1,NAT_1:19,SQUARE_1:93; 
 then i>=0 by A5,REAL_2:121; 
 then reconsider m = i as Nat by INT_1:16; 
A6: m*m = n*n*(sqrt 2*sqrt 2) by A5 
  .= n*n*(sqrt 2)^2 by SQUARE_1:def 3 
  .= 2*(n*n) by SQUARE_1:def 4; 
 then 2 divides m*m by NAT_1:def 3; 
 then 2 divides m by INT_2:44,NEWTON:98; 
 then consider m1 being Nat such that 
W4: m=2*m1 by NAT_1:def 3; 
 m1*m1*2*2 = m1*(m1*2)*2 
    .= 2*(n*n) by W4,A6,XCMPLX_1:4; 
 then 2*(m1*m1) = n*n by XCMPLX_1:5; 
 then 2 divides n*n by NAT_1:def 3; 
 then 2 divides n by INT_2:44,NEWTON:98; 
 then consider n1 being Nat such that 
W5: n=2*n1 by NAT_1:def 3; 
A10: m1/n1 = sqrt 2 by W4,W5,XCMPLX_1:92,W2; 
A11: n1>0 by W5,C,REAL_2:123; 
  then 2*n1>1*n1 by REAL_2:199; 
 hence contradiction by A10,W5,A11,W3; 
end; 

source: Freek Wiedijk’s book The Seventeen Provers of the World   



The Coq System 
!  Started in 1984 
!  Implements a higher order logic: higher-order 

type theory 
!  not complete and not decidable but sound 
!  very expressive 

!  Coq is used in a large variety of domains such 
as formalization of mathematics, specification 
and verification of computer programs, etc. 

source: https://coq.inria.fr  



Example: √2 is irrational 
Theorem irrational_sqrt_2: irrational (sqrt 2%nat). 
intros p q H H0; case H. 
apply (main_thm (Zabs_nat p)). 
replace (Div2.double (q * q)) with (2 * (q * q)); 
 [idtac | unfold Div2.double; ring]. 
case (eq_nat_dec (Zabs_nat p * Zabs_nat p) (2 * (q * q))); auto; intros H1. 
case (not_nm_INR _ _ H1); (repeat rewrite mult_INR). 
rewrite <- (sqrt_def (INR 2)); auto with real. 
rewrite H0; auto with real. 
assert (q <> 0%R :> R); auto with real. 
field; auto with real; case p; simpl; intros; ring. 
Qed. 

main_thm = 
fun n : nat => 
lt_wf_ind n 
  (fun n0 : nat => forall p : nat, n0 * n0 = Div2.double (p * p) -> p = 0) 
  (fun (n0 : nat) 
     (H : forall m : nat, 
          m < n0 -> forall p : nat, m * m = Div2.double (p * p) -> p = 0) 
     (p : nat) (H0 : n0 * n0 = Div2.double (p * p)) => 
   match Peano_dec.eq_nat_dec n0 0 with 
   | left H1 => 
       let H2 := 
         eq_ind_r (fun n : nat => n * n = Div2.double (p * p) -> p = 0) 
           match p as n return (0 * 0 = Div2.double (n * n) -> n = 0) with 
           | O => fun H2 : 0 * 0 = Div2.double (0 * 0) => H2 
           | S n0 => 
               fun H2 : 0 * 0 = Div2.double (S n0 * S n0) => 
               let H3 := 
                 eq_ind (0 * 0) 
                   (fun ee : nat => 
                    match ee with 
                    | O => True 
                    | S _ => False 
                    end) I (Div2.double (S n0 * S n0)) H2 in 
               False_ind (S n0 = 0) H3 
           end H1 in 
       H2 H0 
   | right H1 => .... 



Isabelle 
!  Isabelle is a proof assistant which implements higher-order 

logic: 
!  LCF – lambda calculus extended with logical constructs 
!  incomplete, undecidable, but sound 

!  Isabelle is developed at University of Cambridge (Larry 
Paulson), Technische Universität München (Tobias 
Nipkow) and Université Paris-Sud (Makarius Wenzel). 

!  The main application is the formalization of mathematical 
proofs and in particular formal verification, which includes 
proving the correctness of computer hardware or software 
and proving properties of computer languages and 
protocols. 

source: http://isabelle.in.tum.de 



Example: √2 is irrational 

theorem sqrt2_not_rational: 
  "sqrt (real 2) ∉ ℚ" 
proof 
  assume "sqrt (real 2) ∈ ℚ" 
  then obtain m n :: nat where 
    n_nonzero: "n ≠ 0" and sqrt_rat: "¦sqrt (real 2)¦ = real m / real n" 
    and lowest_terms: "gcd m n = 1" .. 
  from n_nonzero and sqrt_rat have "real m = ¦sqrt (real 2)¦ * real n" by simp 
  then have "real (m²) = (sqrt (real 2))² * real (n²)" by (auto simp add: power2_eq_square) 
  also have "(sqrt (real 2))² = real 2" by simp 
  also have "... * real (m²) = real (2 * n²)" by simp 
  finally have eq: "m² = 2 * n²" .. 
  hence "2 dvd m²" .. 
  with two_is_prime have dvd_m: "2 dvd m" by (rule prime_dvd_power_two) 
  then obtain k where "m = 2 * k" .. 
  with eq have "2 * n² = 2² * k²" by (auto simp add: power2_eq_square mult_ac) 
  hence "n² = 2 * k²" by simp 
  hence "2 dvd n²" .. 
  with two_is_prime have "2 dvd n" by (rule prime_dvd_power_two) 
  with dvd_m have "2 dvd gcd m n" by (rule gcd_greatest) 
  with lowest_terms have "2 dvd 1" by simp 
  thus False by arith 
qed 



Observations 

!  Pros: 
!  Powerful reasoning mechanisms – deduction, 

induction, tactics, etc 
!  Expressive proof languages 

!  Cons: 
!  steep learning curve for the systems 
!  the complicated proof languages represent an 

adoption hurdle 



Prolog as a Proof Assistant 

!  I am interested in ATP coming from a formal 
semantics for programming languages angle: 
!  build programming language models  
!  reason about these models 



Prolog as a Proof Assistant 

!  I needed the following: 
!  a language that can serve both as a specification 

language and a language to reason about 
specifications 

!  a language is easy to learn 
!  simple first-order logic 
!  modus ponens as the main deduction mechanism 

!  robust implementation 
!  something that does not feel like a graduate student 

project ☺ 

 



Prolog as Proof Assistant 
!  Prolog fits the bill 

!  designed as a programming language  
!  rigorously based on first-order logic 
!  uses a resolution based deduction engine (think 

automated modus ponens) 
!  easy to learn 
!  ISO standarized 
!  lots of commercial and open source 

implementations available 
!  I use SWI Prolog (www.swi-prolog.org) 



Prolog as a Proof Assistant 

!  Downside: 
!  no equational reasoning 

!  writing a proof that √2 is irrational is difficult in Prolog 
!  no type system 

!  will not catch typos in term structures – difficult 
debugging 



Prolog – A Simple Program 

% facts                                                                                                                          
female(betty). 
male(bob). 
parent(betty,bob). 
 
% rule                                                                                                                          
mother(X,Y) :- parent(X,Y),female(X). 
 
% query                                                                                                                          
:- mother(Q,bob). 

You just learned 90% of the Prolog language! 



Prolog – Another Program 
% recursive counting of elements                                                                                                 
% in a list.                                                                                                                     
 
% base case: 
% the count of an empty list is 0                                                                                                
count([ ],0). 
 
% recursive step: 
% the count of any list List is Count if                                                                                            
%     List can be divided into a First element and the Rest of the list and 
%     T is the count of the Rest of the list and                                                                                        
%     Count is T plus 1.                                                                                                         
count(List,Count) :- 
        List=[ First | Rest ], 
        count(Rest,T), 
        Count is T + 1. 
 
% try it!                                                                                                                        
:- count([1,2,3],P),writeln(P). 



Prolog as a Theorem Prover 

!  We have developed a library that makes 
Prolog deductions sound but incomplete 
!  This is OK because we are using it as a proof 

assistant – only soundness is required. 
!  interesting side node – with a little bit of work 

Prolog could be made quasi-complete 
!  Our library makes Prolog easy to use as a TP 



Semantic Specifications 101 

!  We will define a simple calculator like 
language 

!  build a first-order logic model 
!  and then reason about the model 



Semantic Specifications 101 
% syntax definition -- Lisp like prefix notation for expressions                                                                 
%     
% syntax of expressions    
%                                                                                                                         
%  E ::= X                                                                                                                       
%     |  L                                                                                                                       
%     |  mult(E,E)                                                                                                               
%     |  plus(E,E)                                                                                                               
%     |  minus(E,E)                                                                                                              
% 
% syntax of statements    
%                                                                                                                             
%  S ::= assign(X,E)                                                                                                             
%     |  print(E)                                                                                                                
%     |  S @ S                                                                                                                   
%                                                                                                                                
%  L ::= <any integer digit>                                                                                                     
%  X ::= <any variable name>                                                                                                                                                                                                                                    

Example:  assign(x,plus(10,1)) @ print(x) 



Semantic Specifications 101 
!  A simple ‘abstract 

interpreter’ model 
!  The main operator in a 

semantic specification is 
the ‘maps to’ operator -->> 

!  This operator maps a piece 
of syntax into its semantic 
domain (under the possible 
context of a state – the ‘::’ 
part) 

% semantic definition of integer expressions                                                                                     
 
L -->> L :- 
        is_int(L),!. 
 
B:: X -->> V :- 
        is_var(X), 
        lookup(X,B,V),!. 
 
B:: mult(E1,E2) -->> V :- 
        B:: E1 -->> V1, 
        B:: E2 -->> V2, 
        V xis V1 * V2,!. 
 
B:: plus(E1,E2) -->> V :- 
        B:: E1 -->> V1, 
        B:: E2 -->> V2, 
        V xis V1 + V2,!. 
 
B:: minus(E1,E2) -->> V :- 
        B:: E1 -->> V1, 
        B:: E2 -->> V2, 
        V xis V1 - V2,!. 



Semantic Specifications 101 
!  Given a state the 

semantic value of a 
statement is another 
state! 

% semantic definition of statements                                                                                              
 
B:: assign(X,E) -->> [ (X,V) | B ] :- 
        is_var(X), 
        B:: E -->> V,!. 
 
B:: print(E) -->> B :- 
        B:: E -->> V, 
        write('Output value: '), 
        writeln(V),!. 
 
B:: S1 @ S2 -->> B2 :- 
         B:: S1 -->> B1, 
        B1:: S2 -->> B2,!. 

% for convenience make '@' infix and left associative                                                                       
:- op(725,yfx,@). 
 

That’s it! 



Running a Calc Program 
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 6.6.6) 
Copyright (c) 1990-2013 University of Amsterdam, VU Amsterdam 
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software, 
and you are welcome to redistribute it under certain conditions. 
Please visit http://www.swi-prolog.org for details. 
 
For help, use ?- help(Topic). or ?- apropos(Word). 
 
?- consult('calc-sem.pl'). 
%   xis.pl compiled 0.00 sec, 33 clauses 
%  preamble.pl compiled 0.01 sec, 45 clauses 
% calc-sem.pl compiled 0.01 sec, 58 clauses 
true. 
 
?- s:: assign(x,plus(10,1)) @ print(x) -->> S. 
Output value: 11 
S = [ (x, 11)|s]. 
 
?-  



Proof – Semantic Equivalence 

:- >>> 'Show that mult(2,3) is semantically equiv to add(3,3),'. 
:- >>> 'it suffices to show that'. 
:- >>> '   (forall s)(exists V)'. 
:- >>> '        [s:: mult(2,3)-->>V ^ s:: plus(3,3)-->>V]'. 
 
% proof                                                                                                                          
:- show s:: mult(2,3)-->>V , s:: plus(3,3)-->>V. 
 



Proof – All Programs 
Terminate 

!  This is obvious because our language does 
not have function calls or loops 

!  but it still nice to actually prove it! 
!  The proof will show that the execution of any 

and every program will result in a value. 
!  Because syntactic domains can be viewed as 

inductively defined sets we can use induction 
to prove this.  



Proof – All Programs 
Terminate 

!  Recall our syntax: 

%  E ::= X                                                                                                                       
%     |  L                                                                                                                       
%     |  mult(E,E)                                                                                                               
%     |  plus(E,E)                                                                                                               
%     |  minus(E,E)                                                                                                              
%                                                                                                                                
%  S ::= assign(X,E)                                                                                                             
%     |  print(E)                                                                                                                
%     |  S @ S                                                                                                                   
%                                                                                                                                
%  L ::= <any integer digit>                                                                                                     
%  X ::= <any variable name>                                                                                                                                                                                                                                    



Proof – All Programs 
Terminate 
:- >>> 'induction on expressions'. 
 
:- >>> 'Base cases:'. 
 
:- >>> 'Variables'. 
:- >>> 'Assume that states are finite'. 
:- assume lookup(x,s,vx). 
:- show s:: x -->> vx. 
 
:- >>> 'Constants'. 
:- assume is_int(n). 
:- show s:: n -->> n. 
 
:- >>> 'Inductive cases'. 
 
:- >>> 'Operators'. 
:- >>> 'mult'. 
:- assume s:: a -->> va. 
:- assume s:: b -->> vb. 
:- show s:: mult(a,b) -->> va*vb. 
 
:- >>> 'the remaining operators'. 
:- >>> 'can be proved similarly’. 

:- >>> 'induction on programming constructs'. 
 
:- >>> 'Base cases:'. 
 
:- >>> 'assignments'. 
:- assume s:: e -->> ve. 
:- show s:: assign(x,e) -->> [(x,ve)|s]. 
 
:- >>> 'print'. 
:- assume s:: e -->> ve. 
:- show s:: print(e) -->> s. 
 
:- >>> 'Inductive step:'. 
 
:- >>> 'composition'. 
:- assume _A:: s1 -->> v1. 
:- assume _B:: s2 -->> v2. 
:- show s:: s1 @ s2 -->> v2. 
 



Conclusions 
!  Fully automatic TP seems to be doomed because of the 

semi-decidability and NP trap 
!  Collaborative ATP or Proof Assistants build on the 

strengths of the structured approach humans take to 
theorem proving 

!  Collaborative ATP or Proof Assistants are versatile; going 
beyond mathematical theorem proving -- we have 
hardware verification, programming language semantics, 
etc. 

!  We are interested in Prolog as a theorem prover because 
of its simplicity, robustness, and availability – easy to learn 
– interesting as a first step into the theorem proving arena 



Shameless Plug 

!  If you are interested in a mathematical 
approach to programming languages and 
theorem proving… 

!  …I teach a course in programming language 
semantics which applies some of the things 
we saw here and more – CSC501 



Thank You!  

!  Slides and Prolog code available at my 
homepage : 
!  http://homepage.cs.uri.edu/faculty/hamel/ 

(under publications in the talks section) 


