Automatic Theorem Proving

Definition

 Automated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs.

The Dream

source: http://www.cs.utexas.edu/users/moore/

Good News

- First-order logic together with set theory is expressive enough to serve as a foundation for mathematics
 - Frege, Whitehead, Russel
 - First-order logic consists of predicates, quantifiers, variables, and logical connectives, e.g.

 $\forall X, Y[mother(X, Y) \text{ if } parent(X, Y) \land female(X)]$

More Good News

- First-order logic is sound and complete Goedel
 - For any finite first-order theory *T* and any sentence *s* in the language of the theory, there is a formal proof of *s* in *T* if and only if *s* is satisfied by every model of *T*,

For all models M of some theory T, $T \vdash s$ iff $M \models s$

Some Bad News

- First-order logic is *semi-decidable* Church/ Turing
 - Given some decision procedure P:
 - P will accept and return a proof for some sentence s if s is valid.
 - P can reject or *loop forever* if s is *not* valid.

→ The first blow to our dream!

More Bad News

- Any decision procedure P given some valid sentence s runs at best in NP time.
 - That is, the time it takes to run P grows exponentially with the complexity of the sentence s.

Problem

 If an ATP runs a long time you don't know if the cause of this is the undecidability problem or the NP problem.

Goedel's Incompleteness Theorem

- Even though first-order logic is sound and complete there are some domains that are not finitely axiomatizable – that is there are no finite theories that describe this domain,
 - e.g. arithmetic
- This implies that any finite representation A of some infinite theory T such as arithmetic is incomplete,

For all models M of some theory T and $A \subset T$ is finite, $A \vdash s$ implies $M \models s$

Perhaps Some More Bad News

- Even if we accept the previous issues and continue to press on...
- ...the proofs that some decision procedure is likely to construct are completely unstructured

```
1 y v x = x v y \& (x v y) v z = x v (y v z) \& ((x v y)' v (x' v y)')' = y # answer(robbins basis) # label(non clause) # label(goal). [goal].
2(((x \vee y)' \vee z)' \vee (x \vee (z' \vee (z \vee u)'))')' = z # label(DN1). [assumption].
3 c1 v c2 != c2 v c1 | (c2 v c1) v c3 != c2 v (c1 v c3) | ((c2 v c1)' v (c2' v c1)')' != c1 # answer(robbins basis). [deny(1)].
4 c2 v c1 != c1 v c2 | (c2 v c1) v c3 != c2 v (c1 v c3) | ((c2 v c1)' v (c2' v c1)')' != c1 # answer(robbins basis). [copy(3),flip(a)].
5((x \vee y)' \vee (((z \vee u)' \vee x)' \vee (y' \vee (y \vee w)'))')' = y. [para(2(a,1),2(a,1,1,1,1))].
18 ((x \vee x')' \vee x)' = x'. [para(2(a,1),5(a,1,1,2))].
22 (x' \vee (x \vee (x \vee (x \vee y)')))) = x. [para(18(a,1),2(a,1,1,1))].
27 ((x \lor y)' \lor (x' \lor (y' \lor (y \lor z)'))')' = y. [para(22(a,1),2(a,1,1,1,1))].
31 (((x v y)' v z)' v (x v z)')' = z. [para(22(a,1),2(a,1,1,2,1,2))].
58 ((x \vee y)' \vee (x' \vee y)')' = y. [para(22(a,1),31(a,1,1,1,1))].
64 (x v ((y v z)' v (y v x)')') = (y v x)'. [para(31(a,1),31(a,1,1,1))].
65 ((((((x \vee y)' \vee z)' \vee u)' \vee (x \vee z)')' \vee z)' = (x \vee z)'. [para(31(a,1),31(a,1,1,2))].
66 \text{ c2 v c1} = \text{c1 v c2} (\text{c2 v c1}) \text{ v c3} = \text{c2 v (c1 v c3)} \text{ # answer(robbins basis)}. [back rewrite(4),rewrite([58(29)]),xx(c)].
94 (((((x \vee (x \vee y)')' \vee z)' \vee x)' \vee (x \vee y)')' = x. [para(58(a,1),2(a,1,1,2))].
101 (((x v x') v x)' v x')' = x. [para(18(a,1),58(a,1,1,2))].
111 ((x \vee y)' \vee ((z \vee x)' \vee y)')' = y. [para(58(a,1),31(a,1,1,1,1))].
                                                                                                     source: prover9 proof archive
112 (x \vee (y \vee (y' \vee x)'))' = (y' \vee x)'. [para(58(a,1),31(a,1,1,1))].
6181 \times v (y \vee z) = z \vee (y \vee x). [para(6167(a,1),999(a,1,2)),rewrite([6179(3),796(4),6179(4)])].
6182 $F # answer(robbins basis). [resolve(6181,a,1138,a)].
```

Some Successes

- Perhaps the most famous success in fully automatic theorem proving is the proof of the *Robbins Conjecture*:
 - A problem first posed by E.V.Huntington in 1933 and then refined by Herbert Robbins:

For all elements *a*, *b*, and *c*:

- 1. Associativity: $a \lor (b \lor c) = (a \lor b) \lor c$
- 2. Commutativity: $a \lor b = b \lor a$
- 3. Robbins equation: $\neg (\neg (a \lor b) \lor \neg (a \lor \neg b)) = a$
- Are all Robbins algebras Boolean?
- Yes! proved by William McCune with the theorem prover EQP in 1996 – it took 172 hrs ≈ 1 week

source: http://www.cs.unm.edu/~mccune/papers/robbins/

Other Fully Automatic TPs

• E -

http://wwwlehre.dhbw-stuttgart.de/~sschulz/ E/E.html

• ACL2 -

http://www.cs.utexas.edu/users/moore/acl2/

• Prover9 -

http://www.cs.unm.edu/~mccune/prover9/

Many others

Yet...

- After almost 50 years of research in fully automatic theorem proving the results are pretty thin...
- ...perhaps a better strategy is a collaboration between proof author and automatic theorem prover.

Proof Assistants

Definition

 In computer science and mathematical logic, a proof assistant or interactive theorem prover is a software tool to assist with the development of formal proofs by human-machine collaboration. This involves some sort of interactive proof editor, or other interface, with which a human can guide the search for proofs, the details of which are stored in, and some steps provided by, a computer.

Proof Assistants

- proof assistants avoid decidability problems by relying on the human to structure the proof in such a way that only valid sentences need to validated.
- proof assistants avoid the NP problems because typically proofs are broken down into small steps that don't require a lot of search in order to be validated
- interesting ramification: logics used in proof assistants do not have to be complete!
 - the TP does not have to rely on the fact that everything that is true in the models can be proven
 - rather, we rely on the fact that the conclusion follows from the premises
 - this allows us to use much more powerful logics in proof assistants than would be possible in fully automatic theorem provers

The Mizar System

- Perhaps the oldest proof assistant started in 1973 by Andrzej Trybulec.
- Based on first-order logic and set theory
- Very large library of existing proofs as of 2012:
 - 1150 articles written by 241 authors
 - these contain more than 10,000 formal definitions of mathematical objects and about 52,000 theorems proved on these objects
 - some examples are: Hahn–Banach theorem, König's lemma, Brouwer fixed point theorem, Gödel's completeness theorem and Jordan curve theorem.

A Simple Mizar Proof: $\sqrt{2}$ is irrational

theorem sqrt 2 is irrational proof assume sqrt 2 is rational; then consider i being Integer, n being Nat such that W1: n<>0 and W2: sqrt 2=i/n and W3: for i1 being Integer, n1 being Nat st n1<>0 & sqrt 2=i1/n1 holds n<=n1 by RAT 1:25; A5: i=sqrt 2*n by W1,XCMPLX 1:88,W2; C: sqrt 2>=0 & n>0 by W1,NAT 1:19,SQUARE 1:93; then $i \ge 0$ by A5, REAL 2:121; then reconsider m = i as Nat by INT 1:16; A6: $m^m = n^n^*(sqrt 2^sqrt 2)$ by A5 .= n*n*(sqrt 2)^2 by SQUARE 1:def 3 .= 2*(n*n) by SQUARE 1:def 4; then 2 divides m*m by NAT 1:def 3; then 2 divides m by INT 2:44, NEWTON:98; then consider m1 being Nat such that W4: m=2*m1 by NAT 1:def 3; m1*m1*2*2 = m1*(m1*2)*2.= 2*(n*n) by W4,A6,XCMPLX 1:4; then 2*(m1*m1) = n*n by XCMPLX_1:5; then 2 divides n*n by NAT 1:def 3; then 2 divides n by INT 2:44, NEWTON:98; then consider n1 being Nat such that W5: n=2*n1 by NAT 1:def 3; A10: m1/n1 = sqrt 2 by W4,W5,XCMPLX 1:92,W2; A11: n1>0 by W5,C,REAL 2:123; then 2*n1>1*n1 by REAL 2:199; hence contradiction by A10, W5, A11, W3; end:

source: Freek Wiedijk's book The Seventeen Provers of the World

The Coq System

- Started in 1984
- Implements a higher order logic: higher-order type theory
 - not complete and not decidable but sound
 - very expressive
- Coq is used in a large variety of domains such as formalization of mathematics, specification and verification of computer programs, etc.

Example: $\sqrt{2}$ is irrational

Theorem irrational_sqrt_2: irrational (sqrt 2%nat). intros p q H H0; case H. apply (main_thm (Zabs_nat p)). replace (Div2.double (q * q)) with (2 * (q * q)); [idtac unfold Div2.double; ring]. case (eq_nat_dec (Zabs_nat p * Zabs_nat p) (2 * (q * q))); auto; intros H1. case (not_nm_INR H1); (repeat rewrite mult_INR). rewrite <- (sqrt_def (INR 2)); auto with real. rewrite H0; auto with real.	main_thm = fun n : nat => It wf ind n
field; auto with real; case p; simpl; intros; ring.	(fun n0 : nat => forall p : nat, n0 * n0 = Div2.double (p * p) -> p = 0) (fun (n0 : nat)
Qed.	(H : forall m : nat,
	$m < n0 \rightarrow forall p : nat, m ^ m = Div2.double (p ^ p) \rightarrow p = 0)$ (p : nat) (H0 : n0 * n0 = Div2.double (p * p)) =>
	match Peano_dec.eq_nat_dec n0 0 with
	left H1 => et H2 :=
	eq_ind_r (fun n : nat => n * n = Div2.double (p * p) -> p = 0)
	match p as n return ($0 * 0 = \text{Div2.double} (n * n) \rightarrow n = 0$) with
	$ O => fun H2 : 0 ^ 0 = Div2.double (0 ^ 0) => H2$ S n0 =>
	fun H2 : 0 * 0 = Div2.double (S n0 * S n0) =>
	let H3 :=
	eq_ind (0 ^ 0) (fun ee : nat =>
	match ee with
	O => True
	$ S_=>$ False end) I (Div2 double (S n0 * S n0)) H2 in
	False_ind (S n0 = 0) H3
	end H1 in
	H2 H0

Isabelle

- Isabelle is a proof assistant which implements higher-order logic:
 - LCF lambda calculus extended with logical constructs
 - incomplete, undecidable, but sound
- Isabelle is developed at University of Cambridge (Larry Paulson), Technische Universität München (Tobias Nipkow) and Université Paris-Sud (Makarius Wenzel).
- The main application is the formalization of mathematical proofs and in particular *formal verification*, which includes proving the correctness of computer hardware or software and proving properties of computer languages and protocols.

Example: $\sqrt{2}$ is irrational

```
theorem sqrt2 not rational:
 "sqrt (real 2) ∉ Q"
proof
 assume "sqrt (real 2) \in \mathbb{Q}"
 then obtain m n :: nat where
  n nonzero: "n \neq 0" and sqrt rat: "!sqrt (real 2)! = real m / real n"
  and lowest terms: "gcd m n = 1"...
 from n nonzero and sqrt rat have "real m = |sqrt (real 2)| * real n" by simp
 then have "real (m^2) = (sqrt (real 2))^2 * real (n^2)" by (auto simp add: power2 eq square)
 also have "(sqrt (real 2))^2 = real 2" by simp
 also have "... * real (m^2) = real (2 * n^2)" by simp
 finally have eq: m^2 = 2 * n^2 ...
 hence "2 dvd m<sup>2</sup>" ...
 with two is prime have dvd m: "2 dvd m" by (rule prime dvd power two)
 then obtain k where "m = 2 * k" ...
 with eq have "2 * n^2 = 2^2 * k^2" by (auto simp add: power2 eq square mult ac)
 hence n^2 = 2 * k^2 by simp
 hence "2 dvd n2" ...
 with two is prime have "2 dvd n" by (rule prime dvd power two)
 with dvd m have "2 dvd gcd m n" by (rule gcd greatest)
 with lowest terms have "2 dvd 1" by simp
 thus False by arith
qed
```

Observations

• Pros:

- Powerful reasoning mechanisms deduction, induction, tactics, etc
- Expressive proof languages
- Cons:
 - steep learning curve for the systems
 - the complicated proof languages represent an adoption hurdle

Prolog as a Proof Assistant

- I am interested in ATP coming from a formal semantics for programming languages angle:
 - build programming language models
 - reason about these models

Prolog as a Proof Assistant

- I needed the following:
 - a language that can serve both as a specification language and a language to reason about specifications
 - a language is easy to learn
 - simple first-order logic
 - modus ponens as the main deduction mechanism
 - robust implementation
 - something that does not feel like a graduate student project [©]

Prolog as Proof Assistant

- Prolog fits the bill
 - designed as a programming language
 - rigorously based on first-order logic
 - uses a resolution based deduction engine (think automated modus ponens)
 - easy to learn
 - ISO standarized
 - lots of commercial and open source implementations available
 - I use SWI Prolog (www.swi-prolog.org)

Prolog as a Proof Assistant

• Downside:

- no equational reasoning
 - writing a proof that $\sqrt{2}$ is irrational is difficult in Prolog
- no type system
 - will not catch typos in term structures difficult debugging

Prolog – A Simple Program

% facts female(betty). male(bob). parent(betty,bob).	
% rule mother(X,Y) :- parent(X,Y),female(X).	$\forall X, Y[\mathrm{mother}(X, Y) \ \mathrm{if} \ \mathrm{parent}(X, Y) \land \mathrm{female}(X)]$
% query :- mother(Q,bob).	$\exists Q [ext{mother}(Q, ext{bob})]$

You just learned 90% of the Prolog language!

Prolog – Another Program

% recursive counting of elements % in a list.

% base case: % the count of an empty list is 0 count([],0).

% recursive step:

% the count of any list List is Count if

- % List can be divided into a First element and the Rest of the list and
- % T is the count of the Rest of the list and
- % Count is T plus 1.

count(List,Count) :-

```
List=[ First | Rest ],
count(Rest,T),
Count is T + 1.
```

% try it!

:- count([1,2,3],P),writeIn(P).

Prolog as a Theorem Prover

- We have developed a library that makes Prolog deductions sound but incomplete
 - This is OK because we are using it as a proof assistant – only soundness is required.
 - interesting side node with a little bit of work
 Prolog could be made *quasi-complete*
- Our library makes Prolog easy to use as a TP

- We will define a simple calculator like language
- build a first-order logic model
- and then reason about the model


```
% syntax definition -- Lisp like prefix notation for expressions
%
% syntax of expressions
%
% E ::= X
%
%
     | mult(E,E)
%
     | plus(E,E)
%
     | minus(E,E)
%
% syntax of statements
%
% S ::= assign(X,E)
%
     | print(E)
    | S @ S
%
%
% L ::= <any integer digit>
% X ::= <any variable name>
```

Example: assign(x,plus(10,1)) @ print(x)

% semantic definition of integer expressions

```
L -->> L :-
is_int(L),!.
```

```
B:: X -->> V :-
is_var(X),
lookup(X,B,V),!.
```

```
B:: mult(E1,E2) -->> V :-
B:: E1 -->> V1,
B:: E2 -->> V2,
V xis V1 * V2,!.
```

```
B:: plus(E1,E2) -->> V :-
B:: E1 -->> V1,
B:: E2 -->> V2,
V xis V1 + V2,!.
```

```
B:: minus(E1,E2) -->> V :-
B:: E1 -->> V1,
B:: E2 -->> V2,
V xis V1 - V2,!.
```

- A simple 'abstract interpreter' model
- The main operator in a semantic specification is the 'maps to' operator -->>
- This operator maps a piece of syntax into its semantic domain (under the possible context of a state – the '::' part)

% semantic definition of statements
B:: assign(X,E) -->> [(X,V) | B] : is_var(X),
 B:: E -->> V,!.
B:: print(E) -->> B : B:: E -->> V,
 write('Output value: '),
 write('Output value: '),
 writeln(V),!.
B:: S1 @ S2 -->> B2 : D: O1 = N D1

B:: S1 -->> B1, B1:: S2 -->> B2,!. Given a state the semantic value of a statement is another state!

% for convenience make '@' infix and left associative :- op(725,yfx,@).

Running a Calc Program

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 6.6.6) Copyright (c) 1990-2013 University of Amsterdam, VU Amsterdam SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to redistribute it under certain conditions. Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- consult('calc-sem.pl').

% xis.pl compiled 0.00 sec, 33 clauses
% preamble.pl compiled 0.01 sec, 45 clauses
% calc-sem.pl compiled 0.01 sec, 58 clauses
true.

```
?- s:: assign(x,plus(10,1)) @ print(x) -->> S.
Output value: 11
S = [ (x, 11)|s].
```

?-

Proof – Semantic Equivalence

:->>> 'Show that mult(2,3) is semantically equiv to add(3,3),'.
:->>> 'it suffices to show that'.
:->>> ' (forall s)(exists V)'.
:->>> ' [s:: mult(2,3)-->>V ^ s:: plus(3,3)-->>V]'.

% proof

```
:- show s:: mult(2,3)-->>V, s:: plus(3,3)-->>V.
```

Proof – All Programs Terminate

- This is obvious because our language does not have function calls or loops
- but it still nice to actually prove it!
- The proof will show that the execution of any and every program will result in a value.
- Because syntactic domains can be viewed as inductively defined sets we can use induction to prove this.

Proof – All Programs Terminate

• Recall our syntax:

Proof – All Programs Terminate

:- >>> 'induction on expressions'.	
:- >>> 'Base cases:'.	:- >>> 'induction on programming constructs'.
 :- >>> 'Variables'. :- >>> 'Assume that states are finite'. :- assume lookup(x,s,vx). :- show s:: x>> vx. 	 :- >>> 'Base cases:'. :- >>> 'assignments'. :- assume s:: e>> ve. :- show s:: assign(x,e)>> [(x,ve) s].
:- >>> 'Constants'. :- assume is_int(n). :- show s:: n>> n.	:- >>> 'print'. :- assume s:: e>> ve. :- show s:: print(e)>> s.
:- >>> 'Inductive cases'.	:- >>> 'Inductive step:'.
:- >>> 'Operators'. :- >>> 'mult'. :- assume s:: a>> va. :- assume s:: b>> vb. :- show s:: mult(a,b)>> va*vb.	:- >>> 'composition'. :- assume _A:: s1>> v1. :- assume _B:: s2>> v2. :- show s:: s1 @ s2>> v2.
:- >>> 'the remaining operators'. :- >>> 'can be proved similarly'.	L

- Fully automatic TP seems to be doomed because of the semi-decidability and NP trap
- Collaborative ATP or Proof Assistants build on the strengths of the structured approach humans take to theorem proving
- Collaborative ATP or Proof Assistants are versatile; going beyond mathematical theorem proving -- we have hardware verification, programming language semantics, etc.
- We are interested in Prolog as a theorem prover because of its simplicity, robustness, and availability – easy to learn – interesting as a first step into the theorem proving arena

Shameless Plug

- If you are interested in a mathematical approach to programming languages and theorem proving...
- ...I teach a course in programming language semantics which applies some of the things we saw here and more – CSC501

Thank You!

- Slides and Prolog code available at my homepage :
 - http://homepage.cs.uri.edu/faculty/hamel/

(under publications in the talks section)