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Self-Organizing Maps
(SOMs)
 A neural network approach to

unsupervised machine learning.
 Appealing visual presentation of

learned results as a 2D map.

T. Kohonen, Self-organizing maps, 3rd ed. Berlin ; New York: Springer, 2001.



Self-Organization and
Learning

 Self-organization refers to a process
in which the internal organization of a
system increases automatically
without being guided or managed by
an outside source.

 This process is due to local
interaction with simple rules.

 Local interaction gives rise to global
structure.

Complexity : Life at the Edge of Chaos, Roger Lewin, 
University Of Chicago Press; 2nd edition, 2000 

 We can interpret emerging global
structures as learned structures.

 Learned structures appear as
clusters of similar objects.



Self-Organizing Maps

Data Table

“Grid of Neurons”

Algorithm:

Repeat until Done
  For each row in Data Table Do
    Find the neuron that best describes the row.
    Make that neuron look more like the row.
    Smooth the immediate neighborhood of that neuron.
  End For
End Repeat

≡

Visualization



Feature Vector Construction

In order to use SOMs we need to describe our objects
 Feature Vectors
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Training a SOM

Table of Feature Vectors
Visualization

“Grid of Neurons”



Applications of SOM

 Infrared Spectroscopy
 Goal: to find out if compounds are chemically

related without performing an expensive
chemical analysis.

 Each compound is tested for light
absorbency in the infrared spectrum.

 Specific chemical structures absorb specific
ranges in the infrared spectrum.

 This means, each compound has a specific
“spectral signature”.

 We can use SOMs to investigate similarity.



Training SOM with Spectra

Grid of Neurons

Random  Number Spectra
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Self-Organizing-Map
MIR Spectra



MIR SOM
Functional Groups
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MIR
Centroid Spectra
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MIR
Significance Spectrum
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NIR SOM



Aromatics

Alcohols

Carbonyls

Acids

Alkanes

Amines
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NIR
Centroid Spectra
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NIR
Significance Spectrum
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SOM
Bacterium b-cereus on different agars

Mannitol

Nutrient Blood

Chocolate Blood

“You are what you eat!”



 Significance Spectrum
 b-cereus on different agars
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SOM
Bacteria Spectra

spores  /  vegetative

b-subtilis b-cereus

b-anthracis

b-thur

b-thur

b-subtilis

b-cereus



Significance Spectrum vs
b-subtilis 1st Derivative Spectra
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Applications of SOM

 Genome Clustering
 Goal: trying to understand the

phylogenetic relationship between
different genomes.

 Compute bootstrap support of
individual genomes for different
phylogentic tree topologies, then
cluster based on the topology support.

Joint work with Prof. Gogarten, Dept. Molecular Biology, Univ. of Connecticut



Phylogenetic Visualization
with SOMs
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Applications of SOM

 Clustering Proteins based on the
architecture of their activation loops.
 Align the proteins under investigation.
 Extract the functional centers.
 Turn 3D representation into 1D

feature vectors.
 Cluster based on the feature vectors.

Joint work with Dr. Gongqin Sun, Dept. of Cell and Molecular Biology, URI



Structural Classification of
GTPases
Can we structurally distinguish between the Ras and Rho subfamilies?

 Ras: 121P, 1CTQ, and 1QRA
 Rho: 1A2B and 1OW3
 F = p-loop, r = 10Å

RasRho1A2B

1CTQ



Two Central Questions

 Which features are the most important
ones for clustering?

 How good is the map?



Variance Matters!

 Features with large
variance have a higher
probability of showing
structure than features
with small variance.

 Therefore, features
with large variance
tend to be more
significant to the
clustering process than
features with small
variance.
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Bayes Theorem

 Using Bayes theorem we turn the observed
variances (observed significances) into
significance probabilities:
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Probabilistic Feature
Selection
 Given the significance probability of

each feature of a data set we can ask
interesting questions:
 How many features do we need to

include in our training data in order to
be 95% sure that we included all the
significant features?

 What is the significance level of the
top 10% of my features?



Feature Selection

Significance Plot

Probability Distribution

Significance = 95%

Features?

Features = 10%

Significance?



Evaluating a SOM

 The canonical performance metric form
SOMs is the quantization error.
 Very difficult to related to the training data

(e.g., how small is the optimal quantization
error?)

 Here we take a different approach: we view
a map as non-parametric, generative model.

 This gives rise to a new model evaluation
criterion via the classical two sample
problem.



Generative Models

 A generative model is a model
that we can sample and compute
new values of the underlying
input domain.

 The classical generative model is
the Gaussian function, once we
have fitted the function through
our known samples, then we can
compute the probability of any
sample of the input domain.

 However, the model is
parametric; it is governed by the
mean µ and the standard
deviation σ.

! 

Notation :  N(µ," 2
),#x

Image source: www.wikipedia.com



Insight: SOMs Sample the
Data Space

 Given some distribution in the data
space, SOM will try to construct a
sample that looks like it was drawn
from the same distribution.

 It will construct the sample using
interpolation (neighborhood function)
and constraints (the map grid).

 We can then measure the quality of
the map using a statistical two sample
approach.

Algorithm:

Repeat until Done
  For each row in Data Table Do
    Find the neuron that best describes the row.
    Make that neuron look more like the row.
    Smooth the immediate neighborhood of that neuron.
  End For
End Repeat

Image source: www.peltarion.com



SOM as a Non-parametric
Generative Model

! 

Let D be our training set drawn from a distribution N(µ," 2),  then 

N(µ
D
,"

D

2 ) is a good approximation to the original distribution 

if D is large enough,

             N(µ," 2) # N(µ
D
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Now, let M be the set of samples SOM constructs at its map grid

nodes, then we say that SOM is converged if the mean µ
M

 and the

variance "
M

2  of the model samples appear to be drawn from the same

underlying distribution N(µ,") as the training data,

            N(µ," 2) # N(µ
M

,"
M

2 )



SOM as a Non-parametric
Generative Model

! 

Now, the distribution N(µ," 2) is unknown, but we have a good

approximation to it as our training set D,  N(µ
D
,"

D

2 ).

Therefore, in order to test for convergence we have to show that,

                      N(µ
M
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M

2 ) # N(µ
D
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2 ),

or "we test that the model samples and training samples were drawn 

from the same distribution".

This is an application of the classical statistical two sample test; we

use the student - t test to test that the means µ
M

 and µ
D
 are due to

 the same distribution and we use the F - test to show that the

variances "
M

2  and "
D

2  are due to the same distribution.



SOM as a Non-parametric
Generative Model
 Observations:

 The SOM model is non-parametric (or
distribution free) since there are no
distribution parameters to fit.

 We can sample from a SOM model using
linear interpolation on the node grid.

 A converged model is a good fitting model, it
models the underlying distribution very well.



Conclusions

 SOMs have a wide range of applications.
 We have developed two statistical tools that

allow us to evaluate SOMs very effectively:
 Probabilistic feature selection
 Goodness of fit.

 In the future we need to address the
reliance on normal distributions in our
tests…resampling techniques (e.g.
bootstrap)


