
Evolutionary Search in Inductive Equational Logic Programming
Lutz H Hamel

Department of Computer Science and Statistics,
University of Rhode Island,

Kingston, Rhode Island 02881, USA
hamel@cs.uri.edu

Abstract- Concept learning is the induction of a descrip-
tion from a set of examples. Inductive logic program-
ming can be considered a special case of the general
notion of concept learning specifically referring to the
induction of first-order theories. Both concept learn-
ing and inductive logic programming can be seen as a
search over all possible sentences in some representa-
tion language for sentences that correctly explain the ex-
amples and also generalize to other sentences that are
part of that concept. In this paper we explore inductive
logic programming with equational logic as the repre-
sentation language. We present a high-level overview of
the implementation of inductive equational logic using
genetic programming and discuss encouraging results
based on experiments that are intended to emulate real
world scenarios.

1 Introduction

Concept learning is the induction of a description of a phe-
nomenon from a set of examples [18]. Inductive logic pro-
gramming can be considered a special case of the general
notion of concept learning specifically referring to the in-
duction of first-order logic theories from a set of ground
clauses as examples [21]. Here we explore inductive logic
programming with first-order equational logic as the repre-
sentation language. We refer to this as inductive equational
logic programming. Both concept learning and inductive
logic programming can be seen as a search over all pos-
sible sentences in a particular representation language for
sentences that correctly explain the examples and also gen-
eralize to other sentences that are part of that concept [17].
It is natural to ask whether this search can be accomplished
by evolutionary means. Here we present some evidence that
seems to answer this question in the affirmative. In fact, the
evidence presented suggests that the evolutionary approach
is more robust compared to established search heuristics
when considering errors or multiple generalization goals in
the examples

Equational logic is the logic of substituting equals for
equals with algebras as models and term rewriting as op-
erational semantics [16, 24]. Equational logic is interest-
ing because due to its well developed type and module sys-
tems it lends itself to software specification and modeling
[1, 2, 3, 6, 25]. Also, equational logic can be considered a

programming language in its own right due to its efficient
operational semantics [8, 22, 23]. However, so far the work
in these fields has relied solely on the deductive machinery
of equational logic.

Here we consider equational theory induction. We con-
struct a set of equational ground identities as examples of
a particular phenomenon and then use inductive equational
logic programming to induce an equational theory that de-
scribes this phenomenon or concept in as general terms as
possible. We see interesting applications of inductive equa-
tional logic programming in the area of software testing
[10] where the equational ground identities can be consid-
ered test cases for a particular software module and the-
ory induction can be seen as the verification step. Another
area is software specification. Here, rather than attempt-
ing to specify functionality in terms of a general theory one
might consider only the specification of specific examples
of functionality for the piece of software under considera-
tion. We then can use inductive equational logic program-
ming to construct a general theory from these specific ex-
amples. We also see applicability in scientific discovery
[20] in areas such as molecular biology as well as pharma-
ceutical data analysis where observations are recorded as
equational identities in a database and equational theory in-
duction is used to find generalizations of these observations.
One advantage of using inductive equational logic is the no-
tion of closed term representation [5]. That is, in inductive
equational logic programming each observation coded as an
equational identity contains all the information that pertains
to that observation.

We have built a prototype system that implements induc-
tive equational logic programming based on the algebraic
specification language OBJ3 [7]. The underlying equa-
tional induction engine was implemented using evolution-
ary search techniques based on genetic programming [9].
Informally, the system operates by maintaining a population
of candidate theories that are evaluated against the examples
using OBJ3’s deductive machinery. Theories of above av-
erage fitness relative to the remainder of the population are
allowed to reproduce in accordance to standard genetic pro-
gramming practices [12, 14, 15, 19].

The main result of this paper is the discussion of two
experiments that were designed to emulate real world sce-
narios and highlight the strength and robustness of our ap-
proach. The first experiment illustrates that the system con-

verges on an ideal theory even in the presence of competing
generalization goals. The second experiment shows that the
system is robust in the sense that it is able to extract use-
ful generalizations in presence of noise. We compare our
results to results obtained with the FLIP system [11] which
was designed with a similar goal in mind: namely the induc-
tion of first-order equational theories from examples. How-
ever, the implementation approach is based on a covering
algorithm using inverse narrowing rather than an evolution-
ary algorithm as in our case.

The rest of this paper is organized as follows. Section 2
provides a very brief, informal introduction to many-sorted
equational logic. In Section 3 we discuss the difference be-
tween deductive and inductive logic. Section 4 discusses in-
ductive equational logic specifically. Our system implemen-
tation is sketched in Section 5. In Section 6 and Section 7
we discuss the experiments. We discuss our conclusions in
Section 8. A more formal introduction to equational logic
is given in Appendix A. Appendix B discusses an algebraic
semantics for inductive equational logic.

2 First-Order Equational Logic

Equational logic is the logic of substituting equals for equals
with algebras as models and term rewriting as the opera-
tional semantics [16, 24]. An equational theory consists of
a signature (sort, operation, and variable declarations) and
a set of equations. The following can be considered a pro-
totypical equational logic program. The notation is given in
OBJ3 syntax.
obj LIST is

sort List .
protecting INT .

op cons : Int List -> List .
op nil : List .
op length : List -> Int .

var I : Int .
var L : List .

eq length(nil) = 0 .
eq length(cons(I,L)) = 1 + length(L) .

endo

Most of the above notation should be fairly straight for-
ward. However, a couple of comments are warranted. The
keyword obj introduces an equational theory which only
considers the initial semantics1 of the theory. In equational
logic types are called sorts for historical reasons and here
the keyword sort introduces the new type List. Fi-
nally, the keyword protecting includes another equa-

1The initial semantics of an equational theory restricts the class of al-
gebras that can be considered as models for the theory to the algebras that
are isomorphic to the term algebra of the theory.

tional theory INT defining the integers with their associated
arithmetic operations. We say protecting rather than includ-
ing due to the fact that our LIST theory can use the func-
tionality of the integers but is not allowed to change their
semantics.

This very simple theory defines a function length over
lists. Lists can be constructed using the constructors cons
and nil. Consider the following: in order to compute the
term length(cons(3,cons(2,nil))) the equations
of the above theory can be applied repeatedly to compute
the value 2. Another way of viewing this is that using equa-
tional deduction we can prove that the length of the list rep-
resented by cons(3,cons(2,nil)) is 2. The follow-
ing is an outline of this computation or proof:

length(cons(3,cons(2,nil)))�
equation 2: I � 3, L � cons(2,nil) �� 1 + length(cons(2,nil))�

equation 2: I � 2, L � nil �� 1 + 1 + length(nil)�
equation 1 �� 1 + 1 + 0�

INT module: basic arithmetic �� 2
Many of the above notions are presented more formally

in Appendix A.

3 Deductive vs. Inductive Logic

In customary deductive logic we are given a theory which is
assumed to describe some phenomenon fully. We then use
the deductive machinery of this logic to prove that certain
statements hold within the given theory, that is, we deduce
some facts. In inductive logic the converse happens. We
are given a set of observations or facts in some problem do-
main and we induce the most general theory that explains
these facts. The relationship between deductive and induc-
tive logic can be summarized with the following diagram:

Theories

Deduction
//

Facts
Induction

oo

It is interesting to note that although deduction is truth pre-
serving, induction is in general considered not to be truth
conserving. This is due to the fact that only a finite set of
facts can be considered during induction possibly exclud-
ing observations which might lead to the falsification of the
induced theory.

4 Inductive Equational Logic

Concept learning or inductive learning is the induction of a
description from a set of examples. In inductive equational

logic we are interested in inducing an equational theory
from a set of ground equations (equations with no variables)
representing the examples or facts. Although learning from
positive examples only is possible it is common to also pro-
vide negative examples to prevent over-generalization. To
describe the phenomenon of interest more naturally we also
admit domain or background knowledge. We can summa-
rize this setting as follows (adapted from [4]).
Definition 1 (equational induction) Given an equational
fact theory ���������
	 , where � is an equational ground
theory representing the positive examples and 	 is an equa-
tional ground theory representing the negative examples,
and given a background theory � , find an hypothesis � that
explains all the facts using the background theory, formally

�
�������������������
Another way of looking at this is that we are searching for
an hypothesis � such that all the observed facts of the prob-
lem domain are deducible from ����� . Usually, the fact
theory � is composed of positive and negative facts. Here,
the negative facts 	 are recoded as facts �
	 that can be
deduced from the hypothesis. A more formal treatment of
this appears in Appendix B.

In our approach we use genetic programming to search
through the space of all possible hypotheses for a hypothesis
� that satisfies the relation ����� �!� for all �"�#�
and is as general as possible. The generality constraint is
expressed as a parsimony constraint in the sense that we
consider the shortest hypothesis that explains all the facts to
be the most general theory.

5 Implementation

We have implemented our prototype system [9] within the
OBJ3 algebraic specification system [7]. OBJ3 implements
many-sorted equational logic2 with algebras as its denota-
tional semantics and many-sorted term rewriting as its op-
erational semantics.

The current prototype incorporates a genetic program-
ming engine based on Koza’s canonical LISP implementa-
tion [14] into the OBJ3 system. The engine performs the
following steps given a (possibly empty) background the-
ory and the facts:
$ Compute initial (random) population of candidate

theories;
$ Evaluate each candidate theory’s fitness using the

OBJ3 rewrite engine;
$ Perform candidate theory reproduction according to

the genetic programming paradigm;

2Actually, OBJ3 implements order-sorted equational logic, which
means that the sorts are related to each other through a type lattice. In
our current implementation we do not support this type ordering.

Th

Eq

=

L R

Th

Eq

=

L R
Eq

=

L R

Th

Eq

=

L R
Eq

=

L R

Th

Eq

=

L Rt1

type(t1)= a

t2

type(t2) = a

Th

Eq

=

L R
Eq

=

L R

Th

Eq

=

L Rt1 t2

swap

(b)

(c)

(a)

Figure 1: Crossover in strongly typed equational theories.
(a) Crossover parent theories with two and one equations,
respectively. (b) Subterm selection with proper typing. (c)
Crossover is performed by swapping subterms.

$ Compute new population of candidate theories;
$ Goto step 2 or stop if target criteria have been met.

This series of steps does not significantly differ from the
standard genetic programming paradigm. Assuming that
the evolutionary computation converges on a solution then
the fittest individual of the final population is considered to
be a hypothesis (sometimes we refer to the union �%�&� as a
hypothesis) according to our notion of inductive equational
logic programming.

The genetic programming engine itself is implemented
as a strongly typed genetic programming system [5, 19] in
the sense that it knows about the syntactic structure of the-
ories and equations and does not have to rediscover these
notions with every run. The crossover and mutation oper-
ators are implemented in the same straight forward manner
as in Koza’s system [14] with the only exception that they
respect the type structure on the terms.

Th

Eq

=

L R
Eq

=

L R

t1

type(t1)= a

Th

Eq

=

L R
Eq

=

L R

t1 t2

replace

(b)

t2

type(t2) = a

Generate new tree:

(a)

Figure 2: Mutation in strongly typed equational theories.
(a) Selection of a subterm in parent and generation of a re-
placement term. (b) Replacing the term in the parent.

Figure 1 displays a prototypical scenario for crossover
in strongly typed equational theories. Part (a) shows two
parent theories for the crossover operation. In our system
the strongly typed equational theories are constructed us-
ing typed abstract syntax trees. The left and right terms of
individual equations are sketched here as triangles. Their
precise content and structure depends on the operations and
types in the corresponding fact and background theories. In
part (b), we nondeterministically select a subterm in one of
the parents for crossover. In this case we select t1 of type
a in the left parent as the candidate for crossover. We say
that a term t is of type � if the codomain of the operation
representing the the root node of the term t is � . We then
nondeterministically select an appropriately typed subterm
in the other parent. In this case we select term t2 of type a
in the right parent. Since both terms are typed appropriately
we can now swap the terms producing the offspring. This
is shown in part (c). The left and right terms of equations
are not the only terms eligible for crossover, but we can also
select = and Eq terms allowing us to compute crossovers on
whole equations and parts of theories.

During mutation we randomly pick some subterm in a
given equational theory. We then compute a replacement

term of the same type as the selected term. Finally, we re-
place the selected term with the newly generated subterm.
Figure 2 displays a typical mutation scenario. In part (a) we
pick a random subterm of an equational theory. In this case
we pick term t1 of type a. We compute a new subterm, t2,
of the same type, a. Finally, we replace t1 with t2. This
is shown in part (b). As in the case of crossover, the = and
Eq terms are also candidates for mutation.

The system uses the OBJ3 rewrite engine to evaluate
candidate theories against the facts, that is, the system uses
the rewrite engine to show that the facts are deducible from
the candidate theories. Given a fact equation and a can-
didate theory, derivability is tested by rewriting the left and
right sides of a fact equation to their unique canonical forms
using the equations of the candidate theory as rewrite rules.
If the unique canonical forms of the left and right sides are
equal then the fact equation is said to be deducible [13].
Since the equations in the candidate theories are generated
at random, there is no guarantee that the theories do not
contain circularities throwing the rewriting engine into an
infinite rewriting loop when evaluating the facts. To guard
against this situation we allow the user to set a parameter
that limits the number of rewrites the engine is allowed
to perform per fact evaluation. This pragmatic approach
proved very effective. The alternative would have been an
in-depth analysis of the equations in each candidate theory
adding significant overhead to the execution time of the evo-
lutionary algorithm.

The fitness function used by the system to evaluate each
candidate theory is

fitness
�������

facts � ���	��
 �
length

���	��

where � denotes a candidate theory, facts ����� is the num-

ber of facts or fitness cases entailed by the candidate the-
ory, and length ����� is the number of equations in the can-
didate theory. The fitness function is designed to primarily
exert evolutionary pressure towards finding candidate theo-
ries that explain all the facts (the first term of the function).
In addition, in the tradition of Occam’s Razor, the function
also exerts pressure towards finding the shortest theory that
explains all the facts (second term), i.e., the most general
theory. The system attempts to maximize this function in
each generation of candidate theories.

6 Experiment I

In this first experiment we are interested in inferring the
canonical specification of a stack or its equivalent from the
following set of examples:
obj STACK-FACTS is
sorts Stack Element .
ops a b c d: -> Element .
op v : -> Stack .

op top : Stack -> Element .
op pop : Stack -> Stack .
op push : Stack Element -> Stack .
eq top(push(v,a)) = a .
eq top(push(push(v,a),b)) = b .
eq top(push(push(v,b),a)) = a .
eq top(push(push(v,d),c)) = c .
eq pop(push(v,a))= v .
eq pop(push(push(v,a),b)) = push(v,a) .
eq pop(push(push(v,b),a)) = push(v,b) .
eq pop(push(push(v,d),c)) = push(v,d) .

endo
Please note that here we are inferring only from positive

examples without any background knowledge. This set of
examples is interesting in the sense that it embodies two
competing goals: the generalization of the top operation
exemplified by the first four equations in the above theory as
well as the generalization of the pop operation exemplified
by the last four equations. An acceptable hypothesis and
also considered the canonical specification of a stack is:
obj STACK is

sorts Stack Element .
ops a b c d: -> Element .
op v : -> Stack .
op top : Stack -> Element .
op pop : Stack -> Stack .
op push : Stack Element -> Stack .
var S : Stack .
var E : Element .
eq top(push(S,E)) = E .
eq pop(push(S,E)) = S .

endo

Here, the first equation is a generalization of the first four
examples in the fact theory and the second equation is a
generalization of the last four examples in the fact theory.

In the tradition of evolutionary systems, our set up for
this experiment consisted of running our prototype many
times against the above fact theory. More precisely, we ran
our prototype 150 times against the facts where each run
consisted of a population of 150 individuals evolving over a
maximum of 50 generations. With this setup we obtained a
convergence rate of about 15%. That is, our prototype found
the above canonical stack specification in roughly 20 of the
150 runs. In the remaining runs the evolutionary search con-
verged on one of the local minima, that is, it either general-
ized the top or the pop operation but not both.

We consider this an encouraging result in the light of
the limitations of our prototype: limited population size
and limited number of generations. We expect that with
a more robust implementation that allows for larger popu-
lation sizes the convergence rate will improve. The above
is also encouraging when considering that the FLIP system
[11] did not produce a solution at all using a covering al-
gorithm. Since covering algorithms are hill climbers that
rely on the examples to guide the search, we postulate that

the search failed due to the competing generalization goals
embodied in the examples. It seems that the advantage our
approach has over covering algorithms is that we do not rely
on the given examples to guide the search. In the evolution-
ary paradigm the examples are strictly used for the evalu-
ation of candidate solutions but do not guide the direction
of the search per se. Instead, an evolutionary algorithm re-
lies on its genetic machinery to drive the search towards a
solution.

7 Experiment II

In this next experiment we wanted to test the robustness of
our evolutionary induction engine in the presence of noise.
Here we define noise as some inconsistency in the given
examples and robustness as the ability of the induction al-
gorithm to generalize the examples in the presence of noise.
From a theoretical point of view this is not very interesting,
since only the most degenerate of models will satisfy a the-
ory with inconsistencies. However, from practical point of
view it is highly likely that inconsistencies will be present in
a set of non-trivial examples and robustness is an important
attribute of an induction engine to make it useful in practical
settings.

For this experiment we chose the induction of a recursive
definition of the predicate even. This predicate returns true
if its argument is even and false if it is not. The following is
the canonical equational definition of this predicate:
obj EVEN is
sort Int .
op 0 : -> Int .
op s : Int -> Int .
op even : Int -> Bool .
var X : Int .
eq even(s(s(X))) = even(X) .
eq even(0) = true .

endo
Please note that here we give the naturals in Peano nota-

tion where � � � ������ , � ��� � � � ����
	 , etc. Our aim is to have
our evolutionary system induce the above theory from a set
of noisy facts. The facts theory for this problem looks like
this.
obj EVEN-FACTS is
sort Int .
op 0 : -> Int .
op s : Int -> Int .
op even : Int -> Bool .
eq even(0) = true .
eq even(s(s(0))) = true .
eq even(s(s(s(s(0))))) = true .
eq (even(s(0)) =/= true) = true .
eq (even(s(s(0))) =/= true) = true .
eq (even(s(s(s(0)))) =/= true) = true .
eq (even(s(s(s(s(s(0)))))) =/= true) = true .

endo

Note that the negative facts are coded as inequality rela-
tions that need to hold in the hypothesis. A closer look re-
veals that this fact theory contains an inconsistency, namely,
the natural 	 is specified as both even and not even.

We ran our prototype 50 times against the above facts
theory and we obtained a convergence rate of about 80%;
our prototype induced the canonical specification of the
even predicate in 41 of the 50 runs. Similar to the first exper-
iment, each run consisted of a population of 150 individuals
evolving over a maximum of 50 generations. Again we note
that the FLIP system [11] fails to produce a result here and
instead returns the incorrect theory:

even(s(s(s(s(X))) = even(0)
even(0) = true

We postulate that the evolutionary approach is robust due
to the fact that the genetic machinery simply ignores the in-
consistencies in the examples and attempts to evolve theo-
ries that explain as much as possible of the remaining facts.
This is very different in the setting of covering algorithms
where inconsistencies in the examples lead the search for a
theory astray.

8 Conclusions

Inductive equational logic programming is concept learn-
ing based on equational logic as the representation lan-
guage. We have developed an inductive equational logic
programming system based on evolutionary search tech-
niques. Here, we presented the results of two experiments
that were designed to emulate real world scenarios and high-
light the capabilities of our system. The first experiment il-
lustrated that the system converged on an ideal theory even
in the presence of competing generalization goals. The sec-
ond experiment showed that the system is robust in the sense
that it is able to extract useful generalizations even in the
presence of noise in the facts theory. We also noted that es-
tablished covering algorithms did not perform well on the
same problem set.

We view these encouraging results as a step toward re-
alistic inductive equational logic programming. Realistic in
the sense that real world facts theories will contain compet-
ing generalization goals as well as inconsistencies due to
measurement or human errors. We also hope that a more
efficient implementation will allow us to tackle larger prob-
lems than the problems shown here.

A Equational Logic

Equational logic is the logic of substituting equals for equals
with algebras as models and term rewriting as the opera-
tional semantics [1, 16, 24]. The following formalizes these
notions.

An equational signature defines a set of sort symbols and
a set of operator or function symbols.

Definition 2 An equational signature is a pair ��� ���	� ,
where � is a set of sorts and � is an ��������� � -sorted set
of operation names. The operator 	 �
����
 � is said to have
arity ������� and sort � ��� . Usually we abbreviate ��� ���	�
to � . 3

We define � -algebras as models for these signatures as fol-
lows:
Definition 3 Given a many sorted signature � , a � -
algebra � consists of the following:
$ an � -sorted set, usually denoted � , called the car-
rier of the algebra,
$ a constant ��� ����� for each � ��� and 	������ �
 � ,
$ an operation ��������� ����� , for each non-empty
list � � � � � � � ������� � , and each � ��� and 	��
� ��
 � , where � � �!� �#" � � � �$�%� �'& .

Mappings between signatures map sorts to sorts and opera-
tor symbols to operator symbols.
Definition 4 An equational signature morphism is a pair
of mappings (� � ���*) �+� ���
�,�	� � �-�/. �,��. � , we write
(0� � �1��. .
A theory is an equational signature with a collection of
equations.
Definition 5 A � -theory is a pair �2� �#3 � where � is an
equational signature and 3 is a set of � -equations. Each
equation in 3 has the form

� �54 �'6 �87 �
where 4 is a set of variables distinct from the equational
signature � and 6 �#7 � �:9 �;4 � are terms over the set � and
4 . If 4��=< , that is, 6 and 7 contain no variables, then we
say the equation is ground. When there is no confusion � -
theories are referred to as theories and are denoted by their
collection of equations, in this case 3 .
The above can easily be extended to conditional equations4.
However, without loss of generality we continue the discus-
sion here based on unconditional equations only. Also, our
current prototype solely considers the evolution of theories
with unconditional equations.

The models of a theory are the � -algebras that satisfy
the equations. Intuitively, an algebra satisfies an equation if
and only if the left and right sides of the equation are equal
under all assignments of the variables. More formally:
Definition 6 A � -algebra � satisfies a � -equation
� �54 �'6 � 7 iff > �?6 � � > �?7 � for all assignments

3Notation: Let @ be a set, then @BA denotes the set of all finite lists of
elements from @ , including the empty list denoted by C D . Given an operationE

from @ into a set F ,
E/G @IHJF , the operation

E A denotes the extension
of
E

from a single input value to a list of input values,
E A G @BA0HKF ,

and is defined as follows:
E AMLON*PRQ5S E LONTQ E AMLUPVQ and

E AWL C D QBS C D , where
NRX @ and PYX @ A .

4Consider the conditional equation, L[Z]\^Q;_`Sba if c , which is inter-
preted as meaning the equality holds if the condition c is true.

>����+9 �?4 ��� � . We write � � ��� to indicate that � satis-
fies the equation � .

We define satisfaction for theories as follows:
Definition 7 Given a theory � � �2� �#3 � , a � -algebra �
is a � -model if � satisfies each equation ��� 3 . We write
� � � � or � � � 3 .
In general there are many algebras that satisfy a particular
theory. We also say that the class of algebras that satisfy
a particular equational theory represent the denotational se-
mantics of that theory.

Semantic entailment of an equation from a theory is de-
fined as follows.
Definition 8 An equation � is semantically entailed by a
theory �2� �#3 � , write 3 � ��� , iff � � � 3 implies � � ��� for
all � -algebras � .

Mappings between theories are defined as theory mor-
phisms.
Definition 9 Given two theories � � �2� �#3 � and ��.��
�-��. �#30.�� , then a theory morphism (0� � � ��. is a sig-
nature morphism (��� � �`. such that 3 . � � (��� � , for all� �%3 .
In other words, the signature morphism (is a theory mor-
phism if the translated equations of the source theory � are
semantically entailed by the target theory ��. .

Goguen and Burstall have shown within the framework
of institutions [1] that the following holds for many sorted
algebra5:
Theorem 10 Given the theories � � �2� �#3 � and ��. �
�-� . �#3 . � , the theory morphism (0� � � � . , and the � . -
algebra ��. , then ��. � � 9�� (�	� � � (��. � � 9 � , for all � �%3 .
In other words, if we can show that a given model of the
target theory satisfies the translated equations of the source
theory, it follows that the reduct of this model, (B� . , also
satisfies the source theory, thus, the models behave as ex-
pected.

Given a theory �-� �T3 � , we say that an equation � �B4 ��

�
 . is deducible from 3 if there is a deduction from 3 whose
last equation is � �B4 ��
���
'. [24]. We write: 3 � � �54 ��
 �
'. .

The model theoretic and the proof theoretic approaches
to equational logic are related by the notion of soundness
and completeness.
Theorem 11 (Soundness and Completeness of Equa-
tional Logic) Given an equational theory �2� �#3 � , an ar-
bitrary equation � �54 ��
 �

 . is semantically entailed iff
� �B4 ��

��
'. is deducible from 3 . Formally,

3 � � � �54 ��
 ��
 . iff 3 � � �B4 ��

��
 . �
where
 ��
'.�� �+9 �;4 � .

5Actually, Goguen and Burstall have shown the much more powerful
result that the implication holds as an equivalence relation. However, for
our purposes here we only need the implication.

This theorem is very convenient, since it lets us use equa-
tional deduction to check the theory morphism conditions
above which plays an important part in our system imple-
mentation.

B An Algebraic Semantics

Inductive logic programming concerns itself with the in-
duction of first-order theories from facts and background
knowledge [21]. Although it is possible to induce theories
from positive facts only, that is from facts that are to be
entailed by the induced theory, having negative facts, that
is facts that are not to be entailed by the induced theory,
helps to limit the domain. Therefore, both positive as well
as negative facts are typically given. Before we develop our
semantics we have to define what we mean by background
knowledge and facts.
Definition 12 A theory �2� �#3 � is called a � -facts theory if
each � ��3 is a ground equation. A theory �2� � � � is called
a background theory if it defines auxiliary concepts that
are appropriate for the domain to be learned. The equations
in � do not necessarily have to be ground equations.
In the inductive logic programming literature induced the-
ories are usually referred to as hypotheses [21]. We adopt
this terminology here. We define our algebraic notion of
hypothesis as follows,
Definition 13 Given a background theory � � �-��� �#3���� ,
positive facts � � �-��� �#3�� � (facts to be entailed), and
negative facts 	 � �2��� �#3�� � (facts not to be entailed),
then an hypothesis ��� �2��� �T3�� � , is a theory with a pair
of mappings (�� and (�� �

�
� � >>~~~~~~~~ !

�#"``@@@@@@@

where
$ (���� � � � is a theory morphism,
$ (� � � � � is a theory morphism,
$ and � � �2� � �#3 � � ���	�2��� �T3�� � is a � -facts the-
ory.

Here, �	�-� � �#3 � � denotes the representation of the nega-
tive facts as positive facts by coding them as inequality re-
lations that have to hold in the hypothesis. More precisely,
�	�-� � �#3 � � � �2� � � �R3 � � and �R3 � is a set of equations
such that each � �+< �'6 �!7 ��3$� corresponds to an equation
� �:< � ��6�%�J7 �&�'&)()*,+ � �R3$� . The above union operator is
a component-wise, sort-indexed operation.

Taking a closer look at (� , from the definition we have
(� � � � � is a theory morphism if � � ��(� ��� � , for each��� 3�� . This is equivalent of saying that in order for this
mapping to be valid the hypothesis must semantically entail
the given background knowledge.

Similarly, (�� maps the facts into the hypothesis. Again
from the definition, (�%� � � � is a theory morphism if
� � ��(� ��� � , for each � �%3 � . Please note, by replacing the
semantic entailment with proof theoretic deduction which
follows from the soundness and completeness of equational
logic we obtain a computable relation.

It is interesting to point out that by letting (� be a theory
inclusion morphism and also letting the signature morphism
underlying (�� be an inclusion we obtain a structure which
closely resembles the normal semantics given for inductive
first-order logic programming [21].

Acknowledgments

The author would like to thank the anonymous reviewers
for their comments. The author would also like to thank
Prof. Joseph Goguen whose ground breaking work on the
OBJ family of languages and deep insights into equational
logic made this work possible.

Bibliography

[1] R. Burstall and J. Goguen. Institutions: abstract model the-
ory for specification and programming. Journal of the Asso-
ciation for Computing Machinery, 39(1):95–146, 1992.

[2] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specifi-
cation 1: Equations and Initial Semantics. Springer, 1985.
EATCS Monographs on Theoretical Computer Science, Vol-
ume 6.

[3] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specifi-
cation 2: Module Specifications and Constraints. Springer,
1990. EATCS Monographs on Theoretical Computer Sci-
ence, Volume 21.

[4] P. A. Flach. The logic of learning: a brief intro-
duction to inductive logic programming. In Proceed-
ings of the CompulogNet Area Meeting on Computa-
tional Logic and Machine Learning, pages 1–17, 1998.
http://citeseer.nj.nec.com/flach98logic.html.

[5] P. A. Flach, C. Giraud-Carrier, and J. W. Lloyd. Strongly
typed inductive concept learning. In D. Page, editor, Pro-
ceedings of the 8th International Conference on Induc-
tive Logic Programming, volume 1446, pages 185–194.
Springer-Verlag, 1998.

[6] J. Goguen and G. Malcolm, editors. Software Engineering
with OBJ: algebraic specification in action. Kluwer, 2000.

[7] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and
J. Jouannaud. Software Engineering with OBJ: algebraic
specification in action, chapter Introducing OBJ. Kluwer,
2000.

[8] L. Hamel. UCG-E: An equational logic programming sys-
tem. In Proceedings of the Programming Language Imple-
mentation and Logic Programming Symposium 1992, Lec-
ture Notes in Computer Science 631. Springer-Verlag, 1992.

[9] L. Hamel. Breeding algebraic structures—an evolutionary
approach to inductive equational logic programming. In
W. B. Langdon et al., editor, GECCO 2002: Proceedings
of the Genetic and Evolutionary Computation Conference.
Morgan Kaufmann Publishers, 2002.

[10] L. Hamel. On the use of machine learning in formal soft-
ware verification. Technical Report TR03-294, University
of Rhode Island, Dept. of Computer Science and Statistics,
2003.

[11] J. Hernández-Orallo and M. J. Ramı́rez-Quintana. A strong
complete schema for inductive functional logic program-
ming. In S. Džeroski and P. Flach, editors, Proceedings of
the 9th International Workshop on Inductive Logic Program-
ming, volume 1634, pages 116–127. Springer-Verlag, 1999.

[12] C. J. Kennedy and C. Giraud-Carrier. An evolutionary ap-
proach to concept learning with structured data. In Proceed-
ings of the fourth International Conference on Artificial Neu-
ral Networks and Genetic Algorithms, pages 1–6. Springer
Verlag, 1999.

[13] J. W. Klop. Term rewriting systems. In S. Abramsky, D. Gab-
bay, and T. Maibaum, editors, Handbook of Logic in Com-
puter Science, volume 2, pages 1–116. Oxford University
Press, 1992.

[14] J. R. Koza. Genetic Programming: On the Programming
of Computers by Natural Selection. MIT Press, Cambridge,
MA, 1992.

[15] W. B. Langdon and R. Poli. Foundations of Genetic Pro-
gramming. Springer-Verlag, 2002.

[16] J. Meseguer and J. Goguen. Initiality, induction and com-
putability. In M. Nivat and J. Reynolds, editors, Algebraic
Methods in Semantics, pages 459–541. Cambridge, 1985.

[17] T. M. Mitchell. Generalization as search. Artificial Intelli-
gence, 18(2):203–226, 1982.

[18] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[19] D. J. Montana. Strongly typed genetic programming. Evolu-
tionary Computation, 3(2):199–230, 1995.

[20] S. Muggleton. Scientific knowledge discovery using In-
ductive Logic Programming. Communications of the ACM,
42(11):42–46, November 1999.

[21] S. Muggleton and L. De Raedt. Inductive logic program-
ming: Theory and methods. Journal of Logic Programming,
19/20:629–679, 1994.

[22] M. O’Donnell. Equational Logic as a Programming Lan-
guage. MIT Press, 1985.

[23] M. O’Donnell. Equational logic programming. In D. Gabbay,
editor, Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 5. Oxford, 1998.

[24] W. Wechler. Universal Algebra for Computer Scientists.
Springer-Verlag, 1992. EATCS Monographs on Theoretical
Computer Science, Volume 25.

[25] M. Wirsing. Algebraic specication. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume 2,
pages 675–788. Elsevier Science, 1990.

