
Formal Methods: A First Introduction using Prolog to specify
Programming Language Semantics

Lutz Hamel
Department of Computer Science and Statistics

University of Rhode Island
Kingston, Rhode Island, USA

hamel@cs.uri.edu

Abstract
An important fundamental idea in formal methods is that pro-
grams are mathematical objects one can reason about. Here
we introduce students and developers to these ideas in the
context of formal programming language semantics. We use
first-order Horn clause logic as implemented by Prolog both
as a specification and a proof scripting language. A mod-
ule we have written facilitates using Prolog as a proof assis-
tant and insures that Prolog implements a sound logic. In
order to illustrate our approach we specify the semantics of a
small functional language and demonstrate various proof ap-
proaches and styles.

1 Introduction
An important fundamental idea in formal methods is that pro-
grams are mathematical objects one can reason about [1].
This fundamental idea appears in many areas of software
development including algorithm correctness, programming
language semantics, compiler correctness, system validation,
and system security. For instance, in security sensitive sys-
tems one could look at a program as a mathematical object
and then formally reason about the safety of that program
with respect to some metric. Given the importance of this
topic every software developer should be exposed to at least
the fundamental concepts and ideas of formal methods [2, 3].
In our curriculum we expose students to ideas in formal meth-
ods in the context of formal programming language seman-
tics. Here, programs are structures with corresponding mod-
els and the idea is to be able to formally reason about the
behavior of programs. The advantage of using programming
language semantics as a tool for teaching formal methods is
that students have an intuition of what the behavior of a pro-
gram is and can bring that intuition to the construction of
proofs.

After experimenting with many different formalisms in-
cluding denotational semantics, algebraic semantics, and
structural operational semantics we settled on using first-

order logic as the formalism for specifying programming lan-
guage semantics and the corresponding proofs in the context
of operational semantic specifications. There are a number of
advantages to using first-order logic:

1. It is a formalism most students (and developers) are already
familiar with and therefore can concentrate on semantic prob-
lems rather than notational issues.

2. It can serve both as a specification language and as a language
for constructing proofs.

3. It (or at least the Horn clause subset) is machine executable
giving rise to executable specifications and the notion of auto-
matic proof assistants.

We consider the last point extremely important in that stu-
dents and software developers need to be exposed to auto-
matic theorem proving ideas in the context of formal meth-
ods. There exist many first- and higher-order proof assistant
systems [4, 5]. However, most of them have difficult notations
and concepts of proof construction making them inaccessible
for a one or two semester course in formal methods. It turns
out that Prolog [6] together with a proof-module that we have
developed is more than adequate for an introduction to for-
mal specification of programming language semantics and the
construction of the corresponding proofs. Here we describe
the proof-module we have developed for Prolog and then we
briefly step through an exercise defining the semantics of a
small functional programming language together with corre-
sponding proofs.

Using Prolog for the specification of programming lan-
guage semantics is not new, e.g., [7]. In particular, the work
by Christiansen [8] and Mosses [9] stands out because it
shares our goal of using Prolog to teach programming lan-
guage semantics and uses a style of semantic specification
similar to the natural semantics style we use in our approach
[10]. However, none of the above works takes advantage of
Prolog as a theorem prover. The work by Gupta and Pon-
telli [11] shares our approach by integrating language specifi-
cation and the corresponding proofs all under the umbrella
of logic programming. However, their approach is based
on constraint logic programming as opposed to first-order

Horn clause logic [12]. Furthermore, their view of a proof
is a single query showing that a particular property holds in
their specification. This is very different from our view of a
proof as a program over the meta-language of Prolog includ-
ing queries, assertions, and retractions. It was paramount for
us to stay in the confines of first-order Horn clause logic in or-
der to satisfy our teaching goal. As far as we are aware using
Prolog as a proof assistant in the context formal specifications
is novel.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses Prolog as a theorem prover or more precisely
as an automatic proof assistant. In Section 3 we discuss our
approach to the semantic specification of programming lan-
guages using Prolog. Section 4 discusses proofs. As men-
tioned above, we view proofs as programs over the meta lan-
guage of Prolog and here we showcase a number of different
proof techniques applicable to semantic specifications. Fi-
nally, in Section 5 we present conclusions and further work.

2 Prolog as a Theorem Prover

2.1 The Logic
The first-order Horn clause logic Prolog implements is per-
haps one of the simplest machine executable, Turing com-
plete logics. This makes Prolog attractive as a specification
language since its learning curve is not as steep as other logic
implementations. Under the following considerations Prolog
implements a sound but incomplete logic [13, 14]:

1. The unification algorithm implements the occurrence-check
– Most Prologs omit the required occurrence-check for effi-
ciency reasons. However, some Prolog systems such as SWI-
Prolog [6] make the occurrence-check user selectable.

2. The proof search strategy is a depth-first search of the refu-
tation proof tree – This is the standard implementation of the
search strategy for Prolog due to efficiency reasons.

3. Only ground terms are negated in rule bodies and proof goals.

Our Prolog proof-module for SWI Prolog insures that the
three conditions above are met.

For the last condition above it can be shown that under cer-
tain circumstances deduction will flounder when negation of
non-ground terms is involved [13, 14]. Our module circum-
vents this problem by introducing a new negation predicate
neg/1 which checks whether the negated term is ground or
not:

neg(G) :- ground(G),!,call(not(G)).
neg(_) :- throw(’term is not ground’).

Note that it is necessary to abort deduction if a non-ground
term is found since simple failure is interpreted as a negation
result. The following is a classic example where deduction
flounders under negation [14],

on_top(X) :- not(blocked(X)).
blocked(X) :- on(Y,X).
on(a,b).

Now given the query of ‘do there exist any objects Q on top?’
Prolog returns the incorrect answer ‘false’,

?- on_top(Q).
false
?-

However, it does produce the correct result given the query,

?- on_top(a).
true
?-

Now, replacing the first line in the program above with the
line which includes our new negation predicate,

on_top(X) :- neg(blocked(X)).

prevents Prolog from performing unsound deductions and
will abort the computation.

?- on_top(Q).
ERROR: Unhandled exception: term is not ground
?-

And it still does produce the correct result given the query,

?- on_top(a).
true
?-

Even though the incompleteness of the logic is disconcert-
ing it does not have as much an impact on our proofs as one
might think due to the fact that we use Prolog as a proof assis-
tant along the lines of Coq [4] and Isabelle [5]1 where proofs
are composed of many small steps each verified by Prolog
rather than a fully automatic theorem prover where the sys-
tem is tasked with also finding the proof steps. That is, we
view proofs as programs over the meta-language of Prolog in-
cluding queries, assertions, and retractions. We refer to these
programs as proof scores. It is our experience that it is highly
unlikely to encounter problems with incompleteness of the
logic in this approach. Even if one did, the problems are eas-
ily remedied by either reordering the predicates in a proof
step (in the case of an infinite search) or including additional
lemmas in the proof to work around incompleteness problems
due to the restriction of negation to ground terms only.

2.2 Notation
Our style of specification of programming language seman-
tics was inspired by the natural semantics of Kahn [10]. The
overall structure of a semantic rule is as follows,

<context>:: <syntax> -» <value> :- <conditions>

The intended interpretation of these rules is: given a context,
a piece of abstract syntax is mapped into a semantic value if
the conditions hold. In Prolog the symbol :- represents the
keyword if. The rules can be abbreviated to,

<syntax> -» <value> :- <conditions>

if no context is required by the rule. Our module defines this
notation to make specifications and proofs more readable.

1Neither Coq nor Isabelle is complete due to their use of higher order
logics.

2.3 Universally Quantified Queries
Queries in Prolog allow only for existentially quantified vari-
ables. However, when constructing proofs it is often neces-
sary to have queries over universally quantified variables. We
can simulate universally quantified variables in queries using
the following rule from quantification theory [15]:

q ∈ U
P (q)
∴ ∀x ∈ U [P (x)]

If a predicate P is true for an arbitrary object q in some do-
main U it follows that the predicate is true for all objects in
that domain. We can use this to pose universally quantified
queries in our semantics such as,

?- s:: plus(1,1) -->> 2.

where we can interpret s as a constant representing some state
and the query poses the question whether in some state s the
operation plus(1,1) evaluates to the value 2. If the query
is successful then we can use the above quantification rule to
conclude that the query holds for all possible states. Since
this kind of reasoning is always possible we abuse notation
slightly and interpret symbolic constants in queries as uni-
versally quantified variables unless it is obvious from context
that a particular constant is meant, for example, s0 for the
initial state.

2.4 The xis/2 Predicate
Prolog implements a machine executable logic. Given this we
are interested in using programming language specifications
both as executable prototypes as well as for proving proper-
ties of the specified language. When we use a specification as
a prototype we want to appeal to Prolog’s efficiency as a pro-
gramming language which includes the efficient evaluation
of arithmetic expressions. When we want to perform proofs
we appeal to the declarative side of Prolog [14]. It turns out
that these two notions clash in the evaluation of arithmetic ex-
pressions using the is/2 predicate. The is predicate is very
efficient for evaluating arithmetic expressions,

?- X is 1 + 1.
X = 2.

However, when performing proofs it is often necessary to
write arithmetic expressions involving universally quantified
variables,

X is k + 1.

and this leads to problems because is does not know how to
handle these quantities,

?- X is k + 1.
ERROR: is/2: Arithmetic: ‘k/0’ is not a function

In order to accommodate proofs involving universally quan-
tified variables our module implements the xis/2 predicate
(eXtended is) which behaves just like is but allows univer-
sally quantified variables,

?- X xis k + 1.
X = k+1.

It does perform partial evaluation of the expressions where
possible,

?- X xis 0, Y xis k + 3 * cos(X).
X = 0,
Y = k+3.0.

2.5 Additional Predicates
In order to make proofs more readable and easier to follow
at runtime our module defines some additional predicates.
These predicates do not add new meta-language functionality
to Prolog but rather act as wrappers for existing functionality
that provide better self-documentation of proofs and a better
runtime trace. Among the newly defined predicates are:

assume/1 – this is the same as asserta/1.

remove/1 – this is the same as retract/1.

show/1 – this is the same as a Prolog query.

Each of these predicates preserves the original functionality
but outputs additional information when executed. Here is an
example of a very simple (and perhaps silly) proof score:

:- consult(’preamble.pl’).
:- >>> ’assume the commutative property’.
:- >>> ’of integer addition’.
:- assume equiv(A+B,B+A).

:- >>> ’show that expressions X and Y’.
:- >>> ’are related by commutativity’.
:- show

X xis a + b,
Y xis b + a,
equiv(X,Y).

Here is the runtime trace of this proof score,

% xis.pl compiled 0.00 sec, 33 clauses
% preamble.pl compiled 0.00 sec, 45 clauses
>>> assume the commutative property
>>> of integer addition

Assuming: equiv(_G1202+_G1203,_G1203+_G1202)
>>> show that expressions X and Y
>>> are related by commutativity

Showing:
_G1214 xis a+b,
_G1262 xis b+a,
equiv(_G1214,_G1262)

% proof-simple.pl compiled 0.03 sec, 1,343 clauses

Note that in queries Prolog replaces variable names with inter-
nally generated unique names. In the case above, for example,
the variable A is replaced by _G1202. Also, the consult
predicate at the beginning of the proof score loads our module
preamble.pl. Also note the “executable” comments.

3 Semantic Specifications
In order to illustrate the use of our semantic rules we will
specify the semantics of a small functional language inspired
by Winskel’s REC language [16]. The abstract syntax for this
language is shown in Figure 1 with the concrete syntax shown
in brackets.

E ::= X
| I
| mult(E,E) [E * E]
| plus(E,E) [E + E]
| minus(E,E) [E - E]
| if(B,E,E) [if B then E else E end]
| let(X,E,E) [let X = E in E end]
| letrec(F,X,E,E) [let rec F X => E in E end]
| fn(X,E) [fn X => E]
| apply(E,E) [E E]

B ::= true
| false
| le(E,E) [E <= E]
| eq(E,E) [E == E]
| not(E) [not E]

I ::= <any integer digit>
X ::= <any variable name>
F ::= <any function name>

Figure 1: The abstract syntax of a small functional language.

As usual, we have to give at least one semantic rule for each
syntactic unit in the grammar. The distinguishing feature of
the semantics for this language is that it has a declaration en-
vironment for functions we call D and a binding environment
for variables we call S. Therefore, a state in our semantics is
a pair consisting of a declaration environment and a binding
environment, e.g. (D,S). We start our discussion by giving
the rule for the arithmetic operator mult,
(D,S):: mult(E1,E2) -->> V :-

(D,S):: E1 -->> V1,
(D,S):: E2 -->> V2,
V xis V1 * V2,!.

This rule can be paraphrased as follows:

In the context of state (D,S), the operator
mult(E1,E2) with subexpressions E1 and E2

evaluates to the value V if under state (D,S) the
subexpressions E1 and E2 evaluate to the values V1 and
V2, respectively, and the integer multiplication of V1
and V2 is the value V.

In Prolog commas represent the boolean connective and.
Also, in Prolog variables start with a capital letter, that means
E1, E2, S, etc. are all variables or more precisely meta-
variables, i.e., variables of the specification language. Also
noteworthy is the cut (!) at the end of the rule. We can in-
terpret this cut in one of two ways. First, from a procedural
point of view each semantic rule constitutes a state transition
and once a state transition was made it is not allowed to be
reversed. Second, from a declarative point of view the set of
semantic rules constitute an inductively defined set of rules.
Therefore, once it has been shown that a rule has been suc-
cessfully applied to a piece of syntax all other branches of the
proof tree can be safely pruned because they will not contain
another success. This holds even if there are multiple rules
for a particular syntactic unit because those rules will be mu-
tually exclusive (e.g., see the if-then-else rules).

The rules for plus and minus are analogous to the rule
for mult. Next we look at integer constants and variables.
The rule,

I -->> I :- is_int(I),!.

states that integer constants are treated as integer values re-
gardless of state. The following rules interpret variables in
expressions. The first rule gives an interpretation to function
variables and the second rule to variables that range over in-
teger values,
(D,_):: F -->> [[X,E,S]] :-

is_var(F),
lookup(F,D,[[X,E,S]]),!.

(_,S):: X -->> V :-
is_var(X),
lookup(X,S,V),!.

The first rule looks up the name F in the function declaration
environment D and returns the closure of a function which in-
corporates the formal parameter, the function body, and the
binding environment in which the function was defined. We
denote closures with a double bracket notation, [[]]. The
second rule looks up the variable X in the binding environ-
ment S and returns the bound integer value. The predicate
is_var insures that the variable names conform to the lexi-
cal rules. This predicate is not strictly necessary but here we
are dealing with abstract syntax and we do not have a parser
enforcing lexical rules. The lookup predicate is an auxiliary
predicate defined as part of our semantics. The underscore in
the rules represents an anonymous variable meaning that the
corresponding structure is matched but ignored by the rule.
Next, the if expression has its usual interpretation,
(D,S):: if(B,E,_) -->> V :-

(D,S):: B -->> true,
(D,S):: E -->> V,!.

(D,S):: if(B,_,E) -->> V :-
(D,S):: B -->> false,
(D,S):: E -->> V,!.

Here the first rule states that if the boolean expression evalu-
ates to the value true within the context of state (D,S) then
the first expression is evaluated. The second rule states that
otherwise the second expression is evaluated. Let expressions
allow us to bind values to variables,
(D,S):: let(X,E1,E2) -->> V :-

is_var(X),
(D,S):: E1 -->> V1,

(D,[(X,V1)|S]):: E2 -->> V,!.

Here we first evaluate expression E1 under the original state
(D,S). Once we have the corresponding value V1 we ex-
tend the original binding environment Swith the binding term
(X,V1) making use of Prolog’s list manipulation abilities
and evaluate the expression E2 under this new extended state.
The resulting value V is the return value of the overall let ex-
pression. A special case of the let expression is the let-rec
expression which allows us to define recursive functions,
(D,S):: letrec(F,X,E1,E2) -->> V :-

is_var(F),
is_var(X),

([(F,[[X,E1,S]])|D],S):: E2 -->> V,!.

The let-rec expression computes the function closure and as-
sociates the closure with the function name F in the function
declaration environment D. The expression E2 is then evalu-
ated in this extended state.

Our programming language also supports anonymous
functions envisioned in the style of ML [17]. In the abstract
syntax this is denoted by the operator fn. As before, the
semantic value of a function definition is the closure of the
function,

(_,S):: fn(X,E) -->> [[X,E,S]] :- is_var(X),!.

Finally, we define function application as follows,
(D,S):: apply(E1,E2) -->> V :-

(D,S):: E1 -->> [[X,E,Sfn]],
(D,S):: E2 -->> V2,

(D,[(X,V2)|Sfn]):: E -->> V,!.

Here we see that in order for function applications to make
sense the first expression E1 has to evaluate to a function clo-
sure. We then evaluate the second expression E2 and its value
V2 is used to create a binding term (X,V2) where X is the
formal parameter of the function. This binding term is used
to extend the function binding environment Sfn and the body
of the function E is evaluated under this extended state.

The semantics of boolean expressions can be specified
analogously to the arithmetic expression with the big differ-
ence of course that we only have two constant values: true
and false. A complete listing of all the semantic specifica-
tion rules is available from the authors website.

4 Proofs
Everything in Prolog is a proof – in particular, running a logic
program in Prolog is a proof. However, here we are interested
in Prolog as a proof assistant in order to prove characteristics
of our language specifications. Our view of proofs as pro-
grams over the meta language of Prolog seems to be novel
and we explore this here. We explore three types of proofs:

• Tests - which are proofs over a particular input-output
pair of a program.

• Proofs of language properties - these proofs examine
features of the language such as program equivalence.

• Program correctness proofs - proofs whether a program
conforms to a given requirement or not.

Here we take a look at each of these proof categories.

4.1 Tests
In testing we are interested in the behavior of language fea-
tures and want to show that a certain feature behaves as ex-
pected given some particular input value. In Prolog we ac-
complish this by setting up a proof that relates an input to
a program to its expected outcome. The following is a sim-
ple proof for integer multiplication in our functional program-
ming language assuming that the language definition has been
loaded,
?- show (d,[(x,10)|s]):: mult(x,10) -->> 100.

Showing: (d,[(x,10)|s])::mult(x,10)-->>100
true.

We can paraphrase this proof as follows,

Show that for all declaration environments d and all
binding environments s that contain the binding term
(x,10) the code snippet mult(x,10) evaluates to the
value 100.

In order to illustrate how these tests can be used to explore
features let us take a look at function calls. Here is a more
ambitious test proof regarding function calls,
:- consult(’functional-rec-sem.pl’).
:- assume program

let(inc,
fn(x,plus(x,1)),
apply(inc,1)).

:- >>> ’we have for all states (d,s), (d,s):: P -->> 2’.
:- show

program P,
(d,s):: P -->> 2.

The above program can be rewritten in concrete syntax as fol-
lows,
let inc = (fn x => x + 1) in inc 1 end

The actual test checks whether for all possible states the pro-
gram evaluates to the value 2. Here is the corresponding run-
time trace of the proof score assuming that the proof score is
called ‘proof-inc.pl’,
?- consult(’proof-inc.pl’).
% xis.pl compiled 0.00 sec, 33 clauses
% preamble.pl compiled 0.00 sec, 45 clauses
% functional-rec-sem.pl compiled 0.01 sec, 68 clauses

Assuming: program let(inc,fn(x,plus(x,1)),apply(inc,1))
>>> we have for all states (d,s), (d,s):: P -->> 2

Showing: program _G117, (d,s)::_G117-->>2
% proof-inc.pl compiled 0.01 sec, 72 clauses
true.

We can also experiment with the higher-order nature of our
functional programming language using currying,
:- >>> ’Higher order functions: curried plus’.
:- assume program

let(add,
fn(x,

fn(y,plus(x,y))),
apply(apply(add,1),1)).

:- >>> ’we have for all states (d,s), (d,s):: P -->> 2’.
:- show

program P,
(d,s):: P -->> 2.

In terms of concrete syntax the above program is written as:
let add = (fn x => (fn y => x + y)) in add 1 1 end

4.2 Proofs of Language Properties
In order to prove properties of a programming language it is
convenient to define the notion of program equivalence,

p1 ∼ p2 iff ∀s, ∃v1, v2[s :: p1 → v1 ∧ s :: p2 → v2 ∧ v1 = v2]

That is, two programs p1 and p2 are equivalent if and only
if under all states s they produce the same semantic value.
We can use this to prove that the multiplication operator in
our language is commutative. Looking at the semantic rule
for multiplication defined above it is clear that commutativity
follows directly from the commutativity of integer multipli-
cation but it is still nice to actually prove that this is so,
:- >>> ’Assume that we have expressions a and b’.
:- assume (d,s):: a -->> va.
:- assume (d,s):: b -->> vb.

:- >>> ’Integer multiplication is commutative’.
:- assume equiv(A*B,B*A).

:- show
(d,s):: mult(a,b) -->> V1,
(d,s):: mult(b,a) -->> V2,
equiv(V1,V2).

Next we prove that our functional language implements by-
value parameter passing. We show this by proving that func-
tion application is equivalent to an appropriate let-expression,

:- >>> ’By-value parameter passing’.

:- assume (d,s):: a -->> va.
:- assume (d,[(x,va)|s]):: e(x) -->> ve.

:- show
(d,s):: let(x,a,e(x)) -->> V1,
(d,s):: apply(fn(x,e(x)),a) -->> V2,
V1=V2.

The proof itself is straightforward with perhaps the exception
of the second assumption which states that any expression e
parameterized over the variable x evaluates to the value ve
under some state whose binding environment s contains the
variable binding (x,va).

The following is a proof that in our functional language
without function application all programs terminate, i.e., al-
ways produce a value. The proof is by structural induction
over the expressions,

:- >>> ’Base cases:’.

:- >>> ’Variables’.
:- >>> ’Assume that states are finite’.
:- assume lookup(x,s,vx).
:- show (d,s):: x -->> vx.
:- remove lookup(x,s,vx).

:- >>> ’Constants’.
:- assume is_int(n).
:- show (d,s):: n -->> n.
:- remove is_int(n).

:- >>> ’anonymous function definitions’.
:- assume is_var(x).
:- show (d,s):: fn(x,e) -->> [[x,e,s]].
:- remove is_var(x).

:- >>> ’Inductive cases’.

:- >>> ’Operators’.
:- >>> ’mult’.
:- assume (d,s):: a -->> va.
:- assume (d,s):: b -->> vb.
:- show (d,s):: mult(a,b) -->> va*vb.
:- remove (d,s):: a -->> va.
:- remove (d,s):: b -->> vb.

:- >>> ’the remaining operators and boolean’.
:- >>> ’expressions can be proved similarly’.

:- >>> ’programming constructs’.
:- >>> ’let-expression’.
:- assume (d,s):: a -->> va.
:- assume (d,[(x,va)|s]):: e(x) -->> ve.
:- show (d,s):: let(x,a,e(x)) -->> ve.
:- remove (d,s):: a -->> va.
:- remove (d,[(x,va)|s]):: e(x) -->> ve.

:- >>> ’similarly for the let-rec expression’.

:- >>> ’if-expression with case analysis’.
:- assume (d,s):: e1 -->> v1.
:- assume (d,s):: e2 -->> v2.

:- assume (d,s):: b -->> true.
:- show (d,s):: if(b,e1,e2) -->> v1.
:- remove (d,s):: b -->> true.

:- assume (d,s):: b -->> false.
:- show (d,s):: if(b,e1,e2) -->> v2.
:- remove (d,s):: b -->> false.

:- remove (d,s):: e1 -->> v1.
:- remove (d,s):: e2 -->> v2.

The structural induction argument as encoded by this proof
score is pretty straight forward. Perhaps the only surprising
aspects are the ‘remove’ statements which remove assump-
tions from the Prolog database. They are necessary in order
to prevent assumptions from one step of the proof to “bleed”
into another step of the proof.

4.3 Program Correctness Proofs
Program correctness proofs are very similar to testing as dis-
cussed above with the exception that we want to show that
the program behaves as expected for all inputs. Here we use
techniques described in [18] and [19].

We start with the correctness proof a program that com-
putes the maximum of two values. The proof makes use of
the Prolog built-in predicate max/2 as a model for the com-
putation of our program.

:- >>> ’show that program’.
:- >>> ’ P = "let(z,if(le(n,m),m,n),z)"’.
:- >>> ’computes the maximum of’.
:- >>> ’the values assigned to m and n’.

:- assume program let(z,if(le(n,m),m,n),z).

:- >>> ’assume values for m and n’.
:- assume (d,s):: m -->> vm.
:- assume (d,s):: n -->> vn.

:- >>> ’case analysis on values vm and vn’.
:- >>> ’case vm = max(vm,vn)’.
:- assume vm xis max(vm,vn).
:- >>> ’this implies that’.
:- assume true xis (vn =< vm).
:- show

program P,
(d,s):: P -->> vm.

:- remove vm xis max(vm,vn).
:- remove true xis (vn =< vm).

:- >>> ’case vn = max(vm,vn)’.
:- assume vn xis max(vm,vn).
:- >>> ’this implies that’.
:- assume false xis (vn =< vm).
:- show

program P,
(d,s):: P -->> vn.

:- remove vn xis max(vm,vn).
:- remove false xis (vn =< vm).

The proof performs a case analysis on the values of m and
n and shows that in each case our program evaluates to the
correct value for all possible states s.

Our next proof is the correctness proof of the factorial func-
tion,

let
rec fact x => if x == 1 then 1 else x * fact(x-1) end

in
fact(1)

end

Here is the proof,

:- >>> ’Factorial: show that program P:’.
:- assume program

letrec(fact,

x,
if(eq(x,1),

1,
mult(x,

apply(fact,
minus(x,1)))),

apply(fact,i)).
:- >>> ’is correct for all inputs i > 0’.

:- >>> ’proof by induction on i’.

:- >>> ’base case: i=1’.
:- assume i -->> 1.
:- show

program P,
(d,s):: P -->> 1.

:- >>> ’inductive step: i=n’.
:- assume i -->> n.
:- assume false xis n==1.
:- >>> ’inductive hypothesis:’.
:- assume

apply(fact,minus(x,1)) -->> factorial(n-1).

:- show
program P,
(d,s):: P -->> n*factorial(n-1).

The proof is by induction over the input to the fact function.
As a model for the computation we use the factorial operator
defined in the standard recursive way for k > 0,

factorial(k) =

1 if k = 1
k ∗ factorial(k − 1) otherwise

5 Conclusions

Every software developer should be exposed to the fundamen-
tal idea in formal methods that programs are mathematical
objects one can reason about. We introduce this idea in the
context of formal programming language semantics. Here,
programs are structures with corresponding models and the
idea is to be able to formally reason about the behavior of
programs. We have shown that the first-order Horn clause
logic as implemented by Prolog is a suitable framework to
introduce these ideas. Using the specification of a small func-
tional language we have shown that a variety of proof types
and styles can be implemented using Prolog as a proof assis-
tant, from simple implication based proofs to induction based
arguments. In our view proofs are programs over the meta-
language of Prolog and our custom module assists in writing
these proofs. Our module also insures that Prolog deduction
is sound and allows the use of universally quantified vari-
ables in proofs. The advantages of using Prolog is that it is
a straightforward language to learn and the underlying logic
is likely a formalism most students and software developers
have already encountered.

In the future we interested in developing bisimulation and
co-inductive techniques using Prolog which would prove use-
ful when proving compilers and translators correct.

This paper is dedicated to Angel.

References
[1] E. M. Clarke and J. M. Wing, “Formal methods: State of the

art and future directions,” ACM Computing Surveys (CSUR),
vol. 28, no. 4, pp. 626–643, 1996.

[2] S. Skevoulis and V. Makarov, “Integrating formal methods
tools into undergraduate computer science curriculum,” in
Frontiers in Education Conference, 36th Annual, pp. 1–6,
IEEE, 2006.

[3] A. Zamansky and E. Farchi, “Exploring the role of logic and
formal methods in information systems education,” in Software
Engineering and Formal Methods, pp. 68–74, Springer, 2015.

[4] Y. Bertot and P. Castéran, Interactive theorem proving and pro-
gram development: Coq’Art: the calculus of inductive con-
structions. springer, 2004.

[5] L. C. Paulson, Isabelle: A generic theorem prover, vol. 828.
Springer, 1994.

[6] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager, “SWI-
Prolog,” Theory and Practice of Logic Programming, vol. 12,
no. 1-2, pp. 67–96, 2012.

[7] B. R. Bryant and A. Pan, “Rapid prototyping of programming
language semantics using prolog,” in Computer Software and
Applications Conference, 1989. COMPSAC 89., Proceedings
of the 13th Annual International, pp. 439–446, IEEE, 1989.

[8] H. Christiansen, “Using prolog as metalanguage for teaching
programming language concepts,” Issues in Information Tech-
nology, EXIT, Warszawa, pp. 59–82, 2000.

[9] P. D. Mosses, “Modular structural operational semantics,”
The Journal of Logic and Algebraic Programming, vol. 60,
pp. 195–228, 2004.

[10] G. Kahn, “Natural semantics,” in 4th Annual Symposium on
Theoretical Aspects of Computer Science (STACS 87), pp. 22–
39, Springer-Verlag, 1987.

[11] G. Gupta and E. Pontelli, “Specification, implementation,
and verification of domain specific languages: a logic
programming-based approach,” in Computational Logic:
Logic Programming and Beyond, pp. 211–239, Springer, 2002.

[12] T. Swift and D. S. Warren, “Xsb: Extending prolog with tabled
logic programming,” Theory and Practice of Logic Program-
ming, vol. 12, no. 1-2, pp. 157–187, 2012.

[13] J. Lloyd, Foundations of Logic Programming. Berlin:
Springer-Verlag, 1987.

[14] U. Nilsson and J. Małuszyński, Logic, programming and Pro-
log. Wiley Chichester, 1990.

[15] I. Copi, “Introduction to logic (6th ed),” 1982.
[16] G. Winskel, The formal semantics of programming languages:

an introduction. MIT press, 1993.
[17] R. Milner, M. Tofte, R. Harper, and D. B. MacQueen, The Def-

inition of Standard ML (Revised). MIT Press, 1997.
[18] R. Bird et al., Introduction to functional programming using

Haskell, vol. 2. Prentice Hall Europe London, 1998.
[19] J. A. Goguen and G. Malcolm, Algebraic Semantics of Imper-

ative Programs. MIT Press, 1996.

