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Abstract. We are interested in practical tools for the quantitative eval-
uation of self-organizing maps (SOMs). Recently it has been argued that
any quality measure for SOMs needs to evaluate the embedding or cov-
erage of a map as well as its topological quality. Over the years many
different quality measures for self-organizing maps have been proposed.
However, many of these only measure one aspect of a SOM or are com-
putationally very expensive or both. Here we present a novel, compu-
tationally efficient statistical approach to the evaluation of SOMs. Our
approach measures both the embedding and the topological quality of a
SOM.

1 Introduction

We are interested in practical tools for the quantitative evaluation of trained self-
organizing maps (SOM) [10]. Here we present an efficient statistical approach
to the evaluation of SOM quality. A nice overview of common SOM quality
measures appears in [14]. The measures described there report on either the
quality of map embedding in the data input space, sometimes called coverage,
(e.g. quantization error [10]) or on the topological quality of the map (e.g. topo-
graphic error [9]). Another measure not mentioned in the above overview is the
neighborhood preservation [3] which similarly to the topographic error strictly
measures the topological quality of a map.

More recently it has been argued that any SOM quality measure needs to
report on both the embedding of the map in the input data space as well as
the topological quality of a map [2]. To this we would like to add that any
practical SOM quality measure also has to be computationally efficient. Most
quality measures fail these requirements: they either only measure one aspect
of a SOM or they are computationally very expensive or both. Here we propose
a statistical approach that measures both the embedding and the topological
quality of a map and is computationally efficient even for large training data
sets and/or maps. Our proposed measure computes the quality of a SOM as
a pair of numbers: 1) the embedding accuracy, 2) the estimated topographic
accuracy. The embedding accuracy is a quality measure we first explored in [6]
as a convergence criterion and we reexamine it here in this new context. The



estimated topographic accuracy is a novel statistical approach to the topological
quality of a map. Besides developing our statistical approach here we also provide
a preliminary validation.

The remainder of this paper is structured as follows. Section 2 examines
our notion of embedding summarizing major results. We develop the estimated
topographic accuracy in Section 3. Our implementation is briefly discussed in
Section 4. We provide the results of our preliminary validation in Section 5.
Section 6 provides conclusions and points to further work.

2 Map Embedding Accuracy

Yin and Allinson have shown that under some mild assumptions the neurons of
a large enough self-organizing map will converge on the probability distribution
of the training data given infinite time [19]. This is the motivation for our map
embedding accuracy:

A SOM is completely embedded if its neurons appear to be drawn from
the same distribution as the training instances.

This was the basic insight of our original SOM convergence criterion [6]. Here
we briefly summarize and adjust our terminology with respect to embedding.

Our view of embedding naturally leads to a two-sample test [12]. Here we
view the training data as one sample from some probability space X having the
probability density function p(x) and we treat the neurons of the SOM as another
sample. We then test to see whether or not the two samples appear to be drawn
from the same probability space. If we operate under the simplifying assumption
that each of the d features of the input space X ⊂ R

d are normally distributed
and independent of each other, we can test each of the features separately. This
assumption leads to a fast algorithm for identifying SOM embedding: We define
a feature as embedded if the variance and the mean of that feature appear to be
drawn from the same distribution for both the training data and the neurons. If
all the features are embedded then we say that the map is completely embedded.

The following is the formula for the (1−α)∗100% confidence interval for the
ratio of the variances from two random samples [12],
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be the variance of a feature in the training data and we let s2
2 be the variance

of that feature in the neurons of the map. Furthermore, n1 is the number of
training samples and n2 is the number of neurons in the SOM. The variance
of a particular feature of both training data and neurons appears to be drawn
from the same probability space if 1 lies in the confidence interval denoted by



equation (1): the ratio of the underlying variance as modeled by input space and
the neuron space, respectively, is approximately equal to one, σ2

1/σ2
2 ≈ 1, up to

the confidence interval.
In the case where x̄1 and x̄2 are the values of the means from two random

samples of size n1 and n2, and the variances of these samples are σ2
1 and σ2

2

respectively, the following formula provides (1 − α) ∗ 100% confidence interval
for the difference between the means [12],
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The mean of a particular feature for both training data and neurons appears
to be drawn from the same probability space if 0 lies in the confidence interval
denoted by equations (2) and (3). Here z α

2
is the appropriate z score for the

chosen confidence interval.
We say that a feature is embedded if the above criteria for both the mean

and variance of that feature are fulfilled. We can now define the map embedding
accuracy for d features,

ea =
1
d

d∑
i=1

ρi, (4)

where

ρi =

{
1 if feature i is embedded,

0 otherwise.

The map embedding accuracy is the fraction of the number of features which are
actually embedded (i.e. those features whose mean and variance were adequately
modeled by the neurons in the SOM). With a map embedding accuracy of 1 a
map is fully embedded. In order to enhance the map embedding accuracy in our
implementation [7], we multiply each embedding term ρi by the significance of
the corresponding feature i which is a Bayesian estimate of that feature’s relative
importance [5].

The computational complexity of our map embedding accuracy is,

O((n + m) × d) (5)

with n the number of training examples, m the number of neurons, and d the
number of features. For most cases we have that d � n and d � m, therefore
we can say our algorithm is quasi-linear in the sum of the number of training ex-
amples and number of neurons. This means that computing the map embedding
accuracy is efficient for most cases.

In essence our map embedding accuracy measures the same thing as the quan-
tization error: the effective representation of the training data by the neurons of
a map. There is one big difference; our map embedding accuracy indicates when



a map is completely embedded, that is, it indicates when statistically there is
no difference between the population of training points and the population of
neurons. No such criterion exists for the quantization error. The ramification
is that the map embedding accuracy can be used as a measure across different
sized maps where the quantization error cannot [14]. A more in-depth statistical
analysis of our map embedding accuracy can be found in [13].

3 Estimated Topographic Accuracy

Many different approaches to measuring the topological quality of a map exist,
e.g. [11, 18]. But perhaps the simplest measure of the topological quality of a
map is the topographic error [9] defined as:

te =
1
n

n∑
i=1

err(xi) (6)

with

err(xi) =

{
1 if bmu(xi) and 2bmu(xi) are not neighbors,
0 otherwise.

for training data {x1, . . . , xn} where bmu(xi) and 2bmu(xi) are the best match-
ing unit and the second-best matching unit for training vector xi on the map,
respectively. We define the topographic accuracy of a map as,

ta = 1 − te. (7)

Computing the topographic accuracy can be very expensive, especially for large
training data sets and/or maps. If we let n be the size of the training data, m
the number of neurons of the map, and d the number of features of the training
data, then the complexity of computing the topographic accuracy is,

O(n × m × d). (8)

One way to ameliorate the situation is to sample the training data and use this
sample S to estimate the topographic accuracy. If we let s be the size of the
sample then the estimated topographic accuracy is,

ta′ = 1 − 1
s

s∑
i=1

err(xi) (9)

with xi ∈ S and complexity O(s × m × d). As we will see later in the paper we
can get accurate values for ta′ with very small samples. Therefore we can assume
s � m. Also, in most cases we have d � m. Therefore, the complexity of ta′

becomes quasi-linear in the number of neurons of the map which again represents
a very efficient algorithm to compute the estimated topographic accuracy.

In addition to computing the value for the estimated topographic accuracy
we use the bootstrap [4] to compute values for an appropriate confidence interval



in order to give us further insight into the estimated topographic accuracy in
relation to the actual value for the topographic accuracy whose value should fall
within the bootstrapped confidence interval.

It is easy to see from (9) that for topological faithful maps the estimated
topographic accuracy should be close to 1. We then say that the map is fully
organized.

4 Implementation

We maintain an R package called popsom [7] in the CRAN repository [15]. The
functionality discussed in this paper has been implemented in that package and
is available as of package version 3.0.1 Here is a sample session using our package:

1: > library(popsom)

2: > data(iris)

3: > df <- subset(iris,select=-Species)

4: > labels <- subset(iris,select=Species)

5: > m <- map.build(df, labels, xdim=15, ydim=10, train=1000)

6: > q <- map.quality(m)

7: > cat(sprintf("embedding: %3.2f\n",q$embedding))

8: embedding: 0.81

9: > acc <- q$accuracy$acc

10: > lo <- q$accuracy$lo

11: > hi <- q$accuracy$hi

12: > cat(sprintf("accuracy: %3.2f (%3.2f-%3.2f)\n",acc,lo,hi))

13: accuracy: 0.94 (0.86-1.00)

14: >

The first four lines deal with loading the package and the data and then preparing
the data for building maps. On the fifth line we build a map with dimensions 15×
10 using 1000 training iterations. On line six we compute the map quality. This
computes a value with multiple components which we print out separately on the
following lines. The embedding accuracy is 0.81 and the estimated topographic
accuracy is 0.94. The bootstrapped 95% confidence interval for the estimated
topographic accuracy is 0.86-1.00. One way to interpret this interval is that
there is a 95% probability that the topographic accuracy computed on the whole
training data lies within the interval 0.86-1.00.

5 Preliminary Validation

For our preliminary validation we use the same experiments as in [14]; namely
we use the Iris data set [1] (4 independent variables, 150 instances, 3 classes)
and the Epil data set [16] (8 independent variables, 236 instances, 2 classes). We
build SOMs with the following sizes for the Iris data set:

– small Iris map: 5 × 3 (15 nodes)
1 The 3.0 version should be available on CRAN by August 2015.



Table 1. Results for the Iris data set.

iter qerr ea ta ta′ (lo-hi)

*** 5 × 3 ***
1 43.95 0.81 0.69 0.74 (0.64-0.86)
10 16.10 0.13 0.83 0.82 (0.70-0.92)
100 5.14 0.68 0.91 0.92 (0.84-0.98)
1000 3.29 1.00 0.95 0.94 (0.88-1.00)
10000 3.36 1.00 1.00 1.00 (1.00-1.00)

*** 11 × 6 ***
1 28.36 0.96 0.09 0.06 (0.00-0.14)
10 20.01 0.28 0.47 0.44 (0.28-0.58)
100 4.10 0.00 0.95 0.88 (0.82-0.96)
1000 1.27 0.96 0.99 1.00 (1.00-1.00)
10000 1.24 1.00 0.99 1.00 (1.00-1.00)

*** 23 × 11 ***
1 36.67 0.81 0.00 0.00 (0.00-0.00)
10 18.12 0.81 0.17 0.14 (0.06-0.22)
100 3.29 0.00 0.82 0.76 (0.64-0.88)
1000 0.59 0.81 0.98 1.00 (1.00-1.00)
10000 0.46 1.00 1.00 1.00 (1.00-1.00)

– medium Iris map: 11 × 6 (66 nodes)
– large Iris map: 23 × 11 (253 nodes)

and SOMs of the following sizes for the Epil dataset:

– small Epil map: 5 × 4 (20 nodes)
– medium Epil map: 10 × 8 (80 nodes)
– large Epil map: 22 × 15 (330 nodes)

Map quality does depend largely on two factors: the map size and the number
of training iterations applied to a map. Therefore, the big difference between
our study and the original study is that we not only track map sizes but also
the number of training iterations applied to each map. This allows us to observe
the respective quality measures with regards to map sizes and training itera-
tions. Table 1 shows our results for the Iris data set. Here we have the following
abbreviations:

– iter: training iterations
– qerr: the quantization error defined as

qerr =
1
n

n∑
i=1

||bmu(xi) − xi||2, (10)

where ||bmu(xi) − xi|| represents the Euclidean distance between point xi

and its best matching unit bmu(xi) on the map



Table 2. Results for the Epil data set.

iter qerr ea ta ta′ (lo-hi)

*** 5 × 4 ***
1 21.06 0.91 0.37 0.34 (0.24-0.48)
10 12.08 0.30 0.54 0.50 (0.36-0.66)
100 5.50 0.23 0.92 0.90 (0.82-0.98)
1000 2.53 0.98 1.00 1.00 (1.00-1.00)
10000 2.01 0.91 1.00 1.00 (1.00-1.00)
100000 2.17 0.91 1.00 1.00 (1.00-1.00)

*** 10 × 8 ***
1 20.67 0.00 0.23 0.10 (0.02-0.18)
10 18.49 0.00 0.06 0.04 (0.00-0.10)
100 4.27 0.30 0.90 0.88 (0.78-0.96)
1000 1.02 0.91 0.98 1.00 (1.00-1.00)
10000 0.82 0.91 0.98 0.98 (0.92-1.00)
100000 0.93 0.91 0.97 0.98 (0.94-1.00)

*** 22 × 15 ***
1 17.76 0.00 0.00 0.00 (0.00-0.00)
10 16.99 0.30 0.06 0.02 (0.00-0.06)
100 8.52 0.30 0.62 0.62 (0.48-0.74)
1000 0.45 0.53 0.93 0.98 (0.94-1.00)
10000 0.27 0.68 1.00 1.00 (1.00-1.00)
100000 0.33 0.99 0.98 1.00 (1.00-1.00)

– ea: embedding accuracy as defined by (4)
– ta: topographic accuracy as defined by (7)
– ta′: estimated topographic accuracy as defined by (9)
– (lo-hi): bootstrap estimate of the 95% confidence interval of ta′

We can observe that the quantization error decreases for the most part for all
map sizes as the number of training iterations applied to the maps increases. One
of the big issues with the quantization error as a quality measure is to determine
when it is sufficiently small for the map to be considered to be a good map. That
is, with the quantization error there is no indication when a map is completely
embedded. Reducing the quantization error to zero is usually not the solution
as then the map will likely overfit the data as is usual with statistical models
whose training error was reduced to zero. Notice that the quantization error is
non-zero for fully embedded and fully organized maps.

Both the embedding accuracy (ea) and topographic accuracy (ta) increase
with the number of training iterations applied to a map until both reach 1 in-
dicating that the map is fully embedded and completely organized, respectively.
There is phenomenon where the random initialization of an untrained map can
look like a fully embedded map except that it is completely unorganized accord-
ing to the topographic accuracy.



We can observe that the estimated topographic accuracy (ta′) is a good
estimate for the topographic accuracy (ta) as it usually falls within a couple of
1/100’s of the actual value.

Finally, the topographic accuracy value ta falls within the bootstrap estimate
of the 95% interval except for the cases where the map is completely unorganized
or the map is fully organized. In these boundary cases the 95% confidence interval
does not fully predict the value of ta. In all the computations we use a sample size
of 50 to both compute the value of ta′ and to compute the bootstrap estimate
of the confidence interval. We take a look at the effects of the sample size on the
value of ta′ and the bootstrap estimate in the next section.

Table 2 shows the results of our experiments for the Epil data set. We can
make observations very similar to the observations we made on the Iris data set:
The quantization error decreases with training, both ea and ta increase with
training until they both reach 1, ta′ is a fairly accurate estimate of ta, and the
bootstrap estimate of the range of the actual value ta is correct except for the
boundary cases. However, the Epil data set seems to be inherently more com-
plex than the Iris data set because even with 100,000 iterations the embedding
accuracy never quite reaches 1 even for the small map.

It is interesting to see that in most cases the topographic accuracy converges
on 1 much faster than the embedding accuracy, that is, in those cases ta indicates
that a map is fully organized without being fully embedded. Also, as we observed
earlier, an untrained map can appear to be fully embedded without being fully
organized. Therefore, both quality measures are necessary to fully evaluate the
goodness of a map and of course we prefer maps where both indices are close to
1. In our implementation we could have created some sort of linear combination
of both indices in order to come up with a single quality index. However, we pre-
fer the additional information separate embedding and topographic accuracies
purvey.

5.1 Sample Size and Estimated Topographic Accuracy

In order to see the effect the sample size has on the estimated topographic
accuracy and the corresponding bootstrap estimate of the confidence interval
we trained the respective medium sized maps for both the Iris and the Epil
data set using 1000 iterations. We then computed the topographic accuracy ta
(7), the estimated topographic accuracy ta′ (9), and the bootstrap estimate of
the 95% confidence interval using sample sizes k that roughly corresponded to
10%, 30%, 60%, and 100% of the training data. Table 3 shows the results. What
is surprising that even with very small samples we obtain accurate estimates
of the topographic accuracy. On the other hand, the bootstrap estimate of the
confidence interval improves with larger sample sizes.

With a sample size that corresponds to 100% of the data the interpretation
of the confidence interval slightly shifts. Here we see that the precise value of
the topographic accuracy and in turn the value of the topographic error is data
depend. The confidence interval at 100% of the training data tells us that if
we were to select another set of data points from the same distribution as the



Table 3. Effects of the sample size on the estimated topographic accuracy.

k ta ta′ (lo-hi)

*** Iris ***
15 0.95 1.00 (1.00-1.00)
50 0.95 0.96 (0.90-1.00)
100 0.95 0.94 (0.89-0.98)
150 0.95 0.95 (0.91-0.98)

*** Epil ***
25 0.97 1.00 (1.00-1.00)
100 0.97 0.96 (0.92-0.99)
200 0.97 0.97 (0.94-0.99)
236 0.97 0.97 (0.94-0.99)

training data in order to compute the topographic accuracy we would expect a
value within the given interval.

6 Conclusions and Further Work

We are interested in practical tools for the quantitative evaluation of self-organi-
zing maps. Here we presented a novel statistical approach to the evaluation of
SOMs which directly measures the embedding accuracy or coverage of a map
and its topographic accuracy. Both quality indices can be computed in quasi-
linear time for most cases making them computationally very efficient. We have
provided an implementation of our quality measure in form of an R package.

Our preliminary validation seems to show that in essence our embedding
accuracy measures the same thing as the quantization error: the effective repre-
sentation of the training data by the neurons of a map. However, the embedding
accuracy has the advantage that it indicates when a map is fully embedded,
i.e., statistically there will be no improvement to the map with further training.
Our preliminary validation also seems to show that our estimated topographic
accuracy is very accurate with respect to the topographic accuracy computed
on the whole training data set even when using very small samples.

In terms of a more rigorous validation we would like to test our quality
measures against standard test suites such as FCPS [17] and on large real-world
data sets. Finally, in order to dispense with our normality and independence
assumptions of our data we consider switching to a multi-variate, non-parametric
Kolmogorov-Smirnov goodness of fit test [8]. Experiments with the univariate
Kolmogorov-Smirnov test seem promising.
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