
Experience Report: Erlang in Acoustic Ray Tracing

Christian Convey Andrew Fredricks
Christopher Gagner Douglas Maxwell

Naval Undersea Warfare Centers, RI, USA
{conveycj, fredricksaj, gagnercw,
maxwelldb}@npt.nuwc.navy.mil

Lutz Hamel
Dept. of Computer Science and Statistics

University of Rhode Island
hamel@cs.uri.edu

Abstract
We investigated the relative merits of C++ and Erlang in the imple-
mentation of a parallel acoustic ray tracing algorithm for the U.S.
Navy. We found a much smaller learning curve and better debug-
ging environment for parallel Erlang than for pthreads-based C++
programming. Our C++ implementation outperformed the Erlang
program by at least 12x. Attempts to use Erlang on the IBM Cell
BE microprocessor were frustrated by Erlang’s memory footprint.

Categories and Subject Descriptors D.3.2 [PROGRAMMING
LANGUAGES]: Language Classifications—Applicative (functional)
languages; D.3.2 [PROGRAMMING LANGUAGES]: Language
Classifications—Concurrent, distributed, and parallel languages

General Terms Design, Performance

Keywords acoustic ray tracing, C++, Erlang

1. Introduction
The U.S. Navy uses a variety of computationally intensive algo-
rithms for research, for system testing and evaluation, andin sub-
marines’ and warships’ weapons and sensors systems. The Navy
constantly seeks computing platforms and programming languages
that permit these algorithms to run ever faster. This endeavor is ex-
pensive. Evaluating a new computing platform’s potential can en-
tail large labor costs as software engineers learn how to optimize
software for that particular platform and then must reimplement
various algorithms on that platform so they can be benchmarked.

Our project involves identifying a programming language that
permits algorithms of Navy interest both to be expressed concisely
and to run fast on a variety of hardware, including standard x86
shared-memory systems, distributed message-passing systems, and
on-chip message-passing systems such as those based on IBM’s
Cell Broadband Engine (Cell BE) microprocessor.

We’ve developed a simpleacoustic ray tracingalgorithm (see
section 4.3) as the test-case with which to compare various com-
binations of programming languages and computing platforms.
Acoustic ray tracing has several desirable qualities as a test-case: it
is highly parallel, conceptually simple, and is widely enough used
within the Navy that our results will have broad relevance. We’ve
implemented that algorithm in C++ and Erlang and attempted to

Copyright 2008 Association for Computing Machinery. ACM acknowledges that this
contribution was authored or co-authored by a contractor oraffiliate of the U.S.
Government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

ICFP’08, September 22–24, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-59593-919-7/08/09. . . $5.00

run it on several platforms, comparing the performance and ease of
programming.

2. General Approach
For each of our two initial platforms of interest (a quad-core Intel
workstation and a Sony PlayStation 3) we produced a C/C++ ref-
erence implementation of the acoustic ray tracing algorithm whose
performance we treat as a baseline measure of that platform’s per-
formance potential. The widespread use of C++ and its reputa-
tion for supporting fast computations makes it the standardagainst
which other language’s performance potentials are likely to be
compared. We selected Erlang because of its reputation for easy
parallelization and for functional languages’ reputationfor legible
code.

We intended to evaluate Erlang’s speed potential on our quad-
core Intel workstation and on the Sony PlayStation 3. We were
only able to properly evaluate Erlang on the Intel workstation, as
explained in subsection 5.3.

3. Limitations
Our goal is to make inferences regarding a particular programming-
language / computing-platform combination’s utility in high-
performance Navy computing. Though this work is important,two
factors demand a measure of humility regarding general inferences
that may be drawn from the work.

The first is that we cannot practically know if we’ve given a
programming language / computing platform an opportunity to
demonstrate either its potential runtime speed or expressiveness.
There may always have been a better-written program that imple-
mented our algorithms with greater performance or clarity.Addi-
tionally, using just one particular algorithm to representmany algo-
rithms of Navy interest may be misleading, because perhaps adif-
ferent algorithm could have been equally representative but better
suited to a particular programming language / computing platform.

The second, related factor is that time and monetary constraints
prevent our team from becoming truly expert at developing and tun-
ing software for each language / platform of interest, and our team
members have significantly more experience in some languages
(C/C++ in this case) than others. This introduces a potential bias
in results that must not be ignored. Despite these limitations we
feel our approach provides some useful data points regarding these
languages and platforms.

4. Acoustic Ray Tracing
4.1 Overview

Developing weapons for submarine warfare requires the accurate
modelling of underwater sound propagation. The particulardetails

range

ocean surfacesound source

z

one acoustic ray

maximum rangeocean floor

Figure 1. Two-dimensional acoustic ray trace example.

of how sound moves, attenuates, and bounces in a given environ-
ment can decide whether or not one’s own submarine is detected
by an enemy, whether or not a torpedo finds its target, etc.

Acoustic ray tracingis one technique for analyzing the propaga-
tion of sound in some particular ocean environment. When sound
is emitted into a body of water, the leading edge of the propagating
pressure (sound) wave is a surface called awavefront. Researchers
are interested in various details about the collisions of a wavefront
with objects in the water, such as ships or the ocean floor. Typically
a pressure wave is modelled as a set of advancing acoustic rays, in
which the head of each ray represents the current location and di-
rection of motion of a point on the pressure wave’s surface. Acous-
tic ray tracing is the process of calculating how a set of acoustic rays
advances in a particular ocean environment, noting detailssuch as
each ray’s location, direction, and intensity at various stages of its
propagation. Minimizing computation time is a key requirement for
many acoustic ray tracing applications.

4.2 Tracing an Acoustic Ray

4.2.1 Non-linear Paths

Several details differentiate standard acoustic ray tracing from light
ray tracing used in computer graphics. Most importantly, acoustic
rays don’t travel in straight lines (see Figure 1) because the speed
of sound varies throughout the ocean. Sound speed is generally
a function of the water’s temperature, salinity, and (most signifi-
cantly) depth. Acoustic ray tracers commonly describe the speed
of sound using asound speed profile(SSP), a function that maps
ocean depth to sound speed (see Figure 2). In our algorithm the SSP
is a piecewise-linear function and is specified in a user-supplied text
file. Each linear piece in the SSP function is called adepth band.

When the speed of sound varies with depth, an acoustic ray will
follow a curved path, always bending towards the direction of lower
sound speed. The path is an arc whose radius is inversely propor-
tional to thesound speed gradient, g. The sound speed gradient is
the rate at which the speed of sound changes with depth:

g =
dc

dz
(1)

wheredc is the change in sound speed anddz is the change in
depth. See (Kinsler, Frey, Coppens and Sanders 2000, pp. 138–139)
for additional information.

4.2.2 Two-dimensional Tracing

Another difference from light ray tracing is that acoustic ray trac-
ing is most commonly treated as a two-dimensional problem (See
Figure 1). The plane in which ray are traced is defined by az axis
and arange axis. z is the inverse of depth: it is zero at the ocean
floor and increases upward.Rangeis the horizontal distance from
the sound source.

one depth

band

1460 1490 1520

sound speed

at ocean’s

surface

z
(m

et
er

s)

sound speed (meters/second)

3000

0

Figure 2. Representative sound speed profile (SSP), drawn from
(Kinsler, Frey, Coppens and Sanders 2000, p. 436).

4.3 Top-level Algorithm

Our overall algorithm is summarized in Figure 3. Acoustic rays
originate from the same point and begin propagation at the same
time. What initially differentiates the rays is the depth/elevation
(D/E) angle at which each initially propagates. A D/E of0

◦ indi-
cates horizontal propagation; a positive D/E indicates propagation
towards the ocean surface; a negative D/E indicates propagation to-
wards the ocean floor. The user provides a minimum D/E angle, a
maximum D/E angle, the number of rays to be traced (num_rays),
the number of worker threads/processes (num_threads), and the
height (z0) of the sound source.

Our algorithm1 evenly distributes the rays’ initial D/E angles
within the range[min_de_angle, max_de_angle]. Rays are as-
signed to worker threads using a simple modulo division scheme
(see variablei in Figure 3). This approach minimizes the com-
munication needed to distribute the workload, and in practice

1 Implementations available. Please e-mail conveycj@npt.nuwc.navy.mil

sub main(min_DE_angle, max_DE_angle, num_rays,
num_threads, z0) {

delta_DE = (max_DE_angle - min_DE_angle) /
(num_rays - 1);

SSP = load_ssp_from_disk();
for i in 0...(num_threads-1) {

spawn(thread_function,
(min_DE_angle, max_DE_angle, delta_DE,
SSP, i, z0));

}

wait_until_threads_done();
}

sub thread_function(min_DE_angle, max_DE_angle,
delta_DE, SSP, i, z0, max_range) {

de = min_DE_angle + (i * delta_DE);
while de <= max_DE_angle {

trace_one_ray(SSP, z0, de);
de += i * delta_DE;

}
}

Figure 3. Pseudocode for top-level acoustic ray tracing algorithm.

sub trace_one_ray(SSP, z0, de) {
range = 0; z = z0; bounces = 0;
depthband = get_depthband(SSP, z0);
progress = [(range, z)];
while (range <= MAX_RANGE) and

(bounces <= MAX_BOUNCES) {
(range2, z2, de2, dband2, bounced) =

adv_thru_dband(dband, range, z, de);
if bounced { bounces++; }
range=range2;z=z2;de=de2;dband=dband2;
progress.append((range, z));

}
}

Figure 4. Pseudocode for single ray tracing algorithm.

seems to balance the workload fairly evenly amongst the worker
threads/processes.

4.4 Tracing a Ray

Figure 4 summarizes the algorithm for tracing an individualacous-
tic ray. Tracing an individual ray requires calculating itsprogres-
sion through a series of depth bands until a stopping condition oc-
curs: either the ray has been traced to range ofMAX_RANGE, or it
has bouncedMAX_BOUNCES times. A bounce occurs when the ray
encounters the ocean’s surface or floor.

Within a depth band theadv_thru_dband function determines
details about the ray’s exit from the depth band including: its
new position (range2, z2), propagation angle (de2), the depth
band into which it will next enter (dband2), and whether or not
it has just encountered the ocean’s surface or floor (bounced).
The function compares the geometric intersection of that band’s
curvature circle with the rectangle bounding the depth band. The
intersection point with the lowest range greater thanrange is the
point at which the ray exits the depth band.adv_thru_dband
makes several trigonometry function invocations but contains a
significant amount of branching.

Figure 5. Speed scaling of ray tracer Erlang implementations.

5. Runtime Performance: C++ vs. Erlang
5.1 Methodology

On our x86 SMP system we implemented the ray tracing algorithm
in C++ and Erlang. Neither implementation used platform-specific
coding styles, libraries, or pragmas. 100,000 rays were traced in
each benchmark run.

Our reported program runtimes give the time duration from
just before the work is distributed to the worker threads until after
all worker threads complete their work. To measure performance
scalability with respect to the number of CPU cores, we used two
approaches. For our C++ program we varied the number of worker
threads from one to four. For Erlang we varied both the number
of scheduler threads (viaerl’s +S n command-line parameter)
and the number of worker processes. Our Erlang results show the
runtime from the best-performing number of worker processes for
a given number of scheduler threads. Each reported runtime is the
mean of three runs’ times; variance was negligible.

Our benchmark computer contained a single Intel Core2 Quad
microprocessor clocked at 2.4 GHz, running Ubuntu Linux 7.04.
C++ code was compiled with the Gnu g++ compiler version 4.1.2
and O3-level optimization. Erlang code was compiled with the
HiPE native compiler from the OTP R12B-1 release of Erlang.

After prototyping the ray tracing algorithm in Python, our initial
C++ implementation required an estimated 30 hours of labor.The
port from C++ to Erlang (of which we had no former knowledge)
required an estimated 20 hours of reading (Armstrong. 2000)and
30 hours of porting, debugging, profiling, and tuning. Performance
of the untuned (v.1) and tuned (v.2) versions of the Erlang program
are shown in Figure 5. Tuning efforts were stopped when they
appeared to stop yielding runtime improvements. The performance
of the equivalent C++ program is shown in Figure 6.

5.2 Performance Results

Figures 5 and 6 show that in general both the C++ and Erlang im-
plementations benefitted from multiple cores. However, comparing
the two figures shows that not only did the C++ implementationsig-
nificantly outperform the Erlang implementation, but it also scaled
better than the Erlang implementation as the number of threads /
worker processes was increased to take advantage of the CPU’s
four cores.

5.3 Inability to run Erlang on Cell

The IBM Cell BE microprocessor (Chen, Raghavan, Dale, Iwata
2005) is an appealing platform for acoustic ray tracing. TheCell
processor found in Sony PlayStation 3 game consoles is inexpen-

Figure 6. Speed scaling of ray tracer C++ implementation.

sive and offers six Synergistic Processor Element (SPE) cores, po-
tentially providing a good price to performance ratio for acous-
tic ray tracing. Implementing our acoustic ray tracing algorithm
in C/C++ on the Cell processor showed approximate performance
parity on a per-core basis with an Intel Core2 4400 2.0 GHz micro-
processor. Cell-specific tuning yielded about a 10% improvement
in runtime compared to our initial naive porting.

Cell programming requires a significant learning curve due to
unusual compilation/linkage requirements, restricted support for
C++, the small working memory on each SPE core, and lack of
shared memory between processor cores. We investigated using Er-
lang to hide these barriers from application programmers byhav-
ing one Erlang process run on each SPE core. Erlang’s parallelism
via message passing maps cleanly onto the Cell processor’s use of
message passing for inter-SPE communication. We abandonedthis
effort when it appeared that Erlang runtime memory requirements
exceeded an SPE core’s 256KB working memory by an order of
magnitude.

6. Programmer Productivity
Erlang significantly outperformed C++ in the duration of itslearn-
ing curve, program conciseness, and debugging time.

6.1 Learning Curve

Considering the countless hours we required to become competent
C++ and pthreads programmers, the short time required for our
initial port to Erlang is remarkable.

The design of our C++ code may have helped to keep the
porting time to a functional language low. The C++ implementation
contains a function to trace a single acoustic ray, without any
needed communication or cross-thread coordination duringthat
ray’s tracing. All required details for tracing a ray are provided as
explicit parameters and the results are returned as a C++ vector;
the function does not read or modify any mutable, shared data
structure. This design was intended to make parallel execution
simpler and more efficient, but we found that it played well into
the functional programming paradigm as well, likely reducing our
porting time.

6.2 Conciseness

The Erlang implementation was more concise, requiring 591 non-
comment lines of code compared to the C++ implementation’s 966
lines. This size difference may be partially attributable to a ten-
dency to write unnecessarily verbose C++ code, including the def-
inition of classes when mere functions would have sufficed. One

might also consider the C++ code more engineered with careful
error checking. For example, the C++ implementation gives mean-
ingful error messages when parsing an ill-formed Sound Speed Pro-
file (SSP) input file. The Erlang code is more in the style of a re-
search prototype with less rigorous error handling, and onewould
therefore expect fewer lines of code. It’s unclear if this entirely ex-
plains the large discrepancy in line counts.

6.3 Debugging

Single-assignment variables and Erlang’s standard graphical de-
bugger significantly helped our debugging efforts. In the C++ im-
plementation, a set of working variables records a ray’s current
status as tracing progresses. Sometimes when a ray was foundto
have reached an obviously invalid state, the information describ-
ing where things had first gone wrong in the ray’s progression
had already been overwritten. This led to protracted and frustrating
debugging efforts. With Erlang’s single-assignment variables and
well-implemented graphical debugging tool, a ray’s tracing history
was easy to examine whenever an error was discovered.

6.4 Memory Use

One weakness we did encounter with Erlang was memory use.
When an Erlang-based benchmarking program repeatedly ran our
ray-tracing function the Erlang shell would crash without report-
ing the cause of the crash. We eventually noticed that the Er-
lang shell’s memory usage grew monotonically as the benchmark-
ing function repeatedly invoked our ray tracing function. With a
lucky guess we were able to fix the problem by explicitly invoking
Erlang’s garbage collector between timed invocations of the ray
tracing function. (Tuning Erlang’s generational garbage collection
policy viaerlang:system_flag(fullsleep_after, ...) did
not solve the problem.) We believe that Erlang would be improved
by addressing this issue.

7. Conclusions and Future Work
We investigated the relative suitability of C++ and Erlang for im-
plementing mathematically intensive algorithms of interest to the
U.S. Navy on a several computing platforms. On an industry-
standard Intel x86 SMP system, Erlang proved easier to debugand
may have permitted more compact programs. However C++’s 12+
times performance advantage and better scalability seem tobe an
insurmountable barrier to using current implementations of Erlang
for these performance-critical Navy applications.

Despite Erlang’s poor speed we feel that functional program-
ming shows considerable promise for our domain. One candidate
for future examination is concurrent ML (Reppy 2007).

Acknowledgments
Funding was made possible by the Office of Naval Research under
a Naval Undersea Warfare In-house Laboratory Independent Re-
search Project. The ONR Sponsor for this work is Kirk Jenne.

References
Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, and James V.

Sanders.Fundamentals of Acoustics, 4th Ed.Danvers, MA, USA: John
Wiley & Sons, Inc., 2000. ISBN 0-471-84789-5

Joe Armstrong.Programming ErlangRaleigh, NC, USA: The Pragmatic
Bookshelf, 2007. ISBN-13: 978-1-934356-00-5

Thomas Chen, Ram Raghavan, Jason Dale, Eiji Iwata.Cell
Broadband Engine Architecture and its first implementation
http://www.ibm.com/developerworks/power/library/pa-cellperf/

J.H. Reppy.Concurrent Programming in MLCambridge University Press,
2007. ISBN-13: 978-0521714723

