Self Organizing Maps and Locally Linear Embedding for Dimensionality Reduction Vishakh Gopu and Lutz Hamel, Department of Computer Science and Statistics, University of Rhode Island

Introduction

 Can self organizing maps and locally linear embedding find similar lower dimensional structures in high dimensional spaces?

Interesting because the SOM is a conceptually simpler algorithm

•Convergence has always been an issue, we use a population based convergence method in this investigation and avoid comparisons involving nonconverged maps

Background

Self Organizing Maps or SOM :

1)Start with a grid of neurons with vectors of the same dimensions as the input data.

For every iteration with a decreasing neighborhood size: For every observation: 2)Find the neuron most similar to the data point

3) Make the neighborhood around that weighted vector more like the matched vector 4) Smooth neighborhood of neurons

Locally Linear Embedding or LLE :

1)Assign neighbors to each data point

2)Compute weights that best linearly reconstruct each point from its neighbors

3) Compute the low dimensional embedding vectors best reconstructed by the weights

Population based convergence criterion for SOMs

- A way of evaluating convergence
- Data set as one population, SOM as another
- Two sample test to see if they come from the same distribution
- 0-1 rating of convergence

Fundamental Clustering Problem Suite

 Datasets to test clustering and dimensionality reduction

 Each contain a different characteristics to test specific qualities in an algorithm

The Swiss Roll Data Set

- A 2-D manifold hidden in a 3-d structure.
- A good test case for dimensionality reduction
- Comes with approximate 2-d positions on manifold

The Color Map shows local ordering preservation in the LLE, because the projection is a set of 2-D points.

SOM on Swiss Roll

- The striping of the labels is indicative of columns close together in the 3-D data being

is preserved

Methods

•Running the LLE on the Swiss Roll creates 2-D points, so it is easy to check whether the 2-d manifold was found in the 3-d space

- •The color map then shows whether local ordering is preserved
- •To simulate the same idea on the SOM, we create 5 labels based on each 3-D point's approximate position on the 2-D manifold
- •This comes from the accompanying approximate position dataset

- They do similarly well on the 3-D FCPS
- Both miss and find the same aspects of the 3-D examples
- It is interesting to see how the visualizations provide different versions of similar information

A Population Based Convergence Criterion for Self-Organizing Maps, Lutz Hamel and Benjamin Ott. Proceeding of the 2012 International Conference on Data Mining (DMIN'12), pp98-104, July 16-19,2012

Kohonen, Teuvo. Self-organizing Maps. Berlin: Springer, 2001. Print.

Roweis, S.T. "Nonlinear Dimensionality Reduction by Locally Linear Embedding." Science 290.5500 (2000): 2323-326. Web.

Tenenbaum, J. B., J. C. Langford, and V. De Silva. Swiss Roll Dataset- A Global Geometric Framework for Nonlinear Dimensionality Reduction. N.d. Raw data. Science, n.p.

Ultsch, A.: Clustering with SOM: U*C, In Proc. Workshop on Self-Organizing Maps, Paris, France, (2005), pp. 75-82

Discussion

- LLE and SOM both find the 2-D manifold in the swiss roll
- LLE and SOM both do similarly when faced with the 3-D clustering problems from the FCPS
- SOMs are conceptually simpler but appear to miss some aspects of Swiss Roll
- The results were only clear with a convergence score of 1.