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ABSTRACT Two algorithms of decomposition of composite protein tryptophan fluorescence spectra were developed
based on the possibility that the shape of elementary spectral component could be accurately described by a
uniparametric log-normal function. The need for several mathematically different algorithms is dictated by the fact that
decomposition of spectra into widely overlapping smooth components is a typical incorrect problem. Only the
coincidence of components obtained with various algorithms can guarantee correctness and reliability of results. In this
paper we propose the following algorithms of decomposition: (1) the SImple fitting procedure using the root-Mean-
Square criterion (SIMS) operating with either individual emission spectra or sets of spectra measured with various
quencher concentrations; and (2) the pseudo-graphic analytical procedure using a PHase plane in coordinates of
normalized emission intensities at various wavelengths (wavenumbers) and REsolving sets of spectra measured with
various Quencher concentrations (PHREQ). The actual experimental noise precludes decomposition of protein spectra
into more than three components.

INTRODUCTION

The fluorescence parameters of tryptophan residues are
sensitive to the microenvironment of fluorophore in protein
structure. For this reason, fluorescence characteristics are
widely used to study physico-chemical and dynamic prop-
erties of tryptophan microenvironment in proteins and the
structural transitions and behavior of protein molecules as a
whole (Lakowicz, 1983, 1999; Demchenko, 1986). The
overwhelming majority of proteins exhibit smooth, non-
structured spectra of tryptophan fluorescence, which often
contain more than one component. The multicomponent
nature of protein spectra makes the unequivocal interpreta-
tion of them difficult and poses a task of development of
methods for the decomposition of tryptophan fluorescence
spectra into elementary components (Burstein et al., 1973;
Burstein, 1977).

The problem of decomposition of multicomponent spec-
tra belongs to the class of typical, so-called reverse prob-
lems, because one must determine the parameters of spectral
components from the overall experimental spectrum, where
the components are indirectly manifested. Solutions of such
problems are, as a rule, unstable against slight variations in
the input data (noise). Because the real input data are known
approximately (i.e., with some experimental error), this
instability results in an inevitable ambiguity of the solution
within the given accuracy. In this respect Tikhonov and
Arsenin (1986) classified such a problem as an incorrect
one. To obtain a sufficiently stable solution, it is necessary
to formulate a principle of choosing among the possible

solutions, based on an additional information about the
system under study and the solution quality. The application
of additional information forms a basis for regularizing the
solving (Tikhonov and Arsenin, 1986). The regularizing
factors (functions, algorithms, or logical premises) allow
one to develop practical ways of solving incorrect problems.
To decompose the multicomponent protein tryptophan spec-
tra, we used the following regularizing factors (Abornev and
Burstein, 1992; Abornev, 1993):

1. The spectrum of an elementary component on the
frequency (wave number) scale is described by a bipa-
rametric (maximal amplitude and maximum position)
log-normal function(Burstein and Emelyanenko, 1996).
The quadriparametric (maximal amplitude,Im, spectral
maximum position,nm, and positions of half-maximal
amplitudes,n2 and n1; see Fig. 1) log-normal function
has been proposed by Siano and Metzler (1969) for
describing the absorption spectra of complex molecules
and was later successfully used to resolve multicompo-
nent absorption spectra, including those of biological
systems (Metzler et al., 1972, 1985, 1991; Morozov and
Bazhulina, 1989). The log-normal function used in its
mirror-symmetric form has been shown to accurately
describe fluorescence spectra as well (Burstein, 1976;
Burstein and Emelyanenko, 1996). The straight linear
relationships between positions of maximal (nm) and two
half-maximal amplitudes (n2 andn1) have been revealed
for a large series of monocomponent spectra of small
tryptophan derivatives in various solvents and allowed to
reduce the number of unknown parameters from four to
two (Burstein and Emelyanenko, 1996). Such a reduction
of number of parameters sought is known to make a
decomposition much more unambiguous (Antipova-Ko-
rotaeva and Kazanova, 1971). As a result, the biparamet-
ric log-normal function (uniparametric one for the spec-
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tral shape) for fluorescence spectra of tryptophan and its
residues in proteins appears as follows:

H I~n! 5 Im z expH2
ln2

ln2r
z ln2S a 2 n

a 2 nm
DJ ~at n , a!

I~n! 5 0 ~at n $ a!

(1)

where Im is the maximal intensity;n is the current wave-
number;r is the band asymmetry parameterr 5 (nm 2
n2)/(n1 2 nm); a is the function-limiting point positiona 5
nm 1 (r z (n1 2 n2))/(r2 2 1). Therewith,nm, n1, andn2

are related as (Burstein and Emelyanenko, 1996):

n1 5 0.831z nm 1 7070~cm21!

n2 5 1.177z nm 2 7780~cm21! (2)

2. The shape and position of tryptophan emission spectra
remain unchanged at fluorescence quenching with water-
soluble small quenchers(Burstein, 1968, 1977; Lehrer,
1971; Lehrer and Leavis, 1978). A series of spectra mea-
sured at various quencher concentrations represents a set of
data wherein the position and shape parameters of compo-
nents are constant and only their relative contributions are
variable. Such an expansion of the statistical mass of data,
compared with that of an individual spectrum, also aids the
rise of solution reliability.

3. The change of amplitudes of individual components
with quenching obeys the Stern-Volmer law(Burstein,
1977; Lehrer, 1971; Lehrer and Leavis, 1978).

4. An additional important factor, which results in rise
of reliability of the decomposition procedure, is the use

of statistically redundant information: practically all ex-
perimentally determined points in the input spectra are
used for the decomposition, i.e., the number of experi-
mental points under analysis far exceeds the number of
parameters sought. This approach attenuates the effect of
occasional noise and improves the accuracy of results
(Akseenko et al., 1989).

The above-mentioned factors allowed us to develop sev-
eral methods for sufficiently stable decomposition of com-
posite tryptophan fluorescence spectra of proteins without
exceeding the experimental error. The practical need in
more than one mathematically different algorithm is a con-
sequence of the fact that the individual component spectra
are wide (25–61 nm) compared with the spectral interval
within which their maxima may be positioned (307–355
nm). Thus, the coincidence of parameters of components
revealed with diverse methods can guarantee the reliability
of decomposition results for a given protein. Here we de-
scribe two methods, first of which is based on the fitting of
experimental spectra by a sum of log-normal components
using the root-mean-square criterion of fitting quality, and
the second algorithm uses an analytical pseudo-graphic
solving the task.

MATERIALS AND METHODS

Materials

The annexin VI was supplied by Dr. Andrzej Sobota, N. Nencki Institute
of Experimental Biology, Warsaw, Poland (Bandorowicz et al., 1992;
Sobota et al., 1993). KI, KC, and Na2S2O3 were commercial preparations
of ultra-high purity of Russian industry production.

Fluorescence spectra

The fluorescence spectra were measured using the lab-made spec-
trofluorimeter with registration from the front surface of the cell
(Bukolova-Orlova et al., 1974). The 296.7-nm mercury line from the
ultra-high-pressure mercury lamp SVD-120A (The Moscow Electro-
lamp Factory, Moscow) was used for excitation. The slit widths of the
excitation and output monochromators did not exceed 2 nm. After
correction for instrument spectral sensitivity, the intensities were pro-
portional to the number of photons emitted in the unit wavelength
interval. Under the measurements of fluorescence spectra with different
concentrations of KI the total ionic strength was kept constant (0.4 M)
by addition of KCI. The stock solution of KI contained Na2S2O3 to
prevent oxidation of I2. The decomposition algorithms were used as
Visual Basic programs in personal computers.

THE FITTING ALGORITHM WITH MINIMIZATION
OF ROOT-MEAN-SQUARE RESIDUES (SIMS)

Algorithm description

The below-described algorithm we called SIMS (SImple
fitting procedure using the root-Mean-Square criterion)
(Abornev and Burstein, 1992; Abornev, 1993).

FIGURE 1 The quadriparametric (maximal amplitude,Im, spectral max-
imum position,nm, and positions of half-maximal amplitudes,n2 andn1)
log-normal function.
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Because, under the different concentrations of external
fluorescence quenchers, the position and shape of spectral
components remain unchanged while the relative contribu-
tions of components to the overall spectrum are changed,
then the experimental spectra can generally be described as
follows:

F~i, j! 5 O
k51

L

I~k, i! z w~k, j! (3)

wherei 5 1, . . . ,N is the number of spectra correspond-
ing to theith quencher concentration,c(i); j 5 1, . . . ,M
is the number of current frequency (wave number),n(j);
k 5 1, . . . ,L is the number of components determined by
the position of its spectral maximum,nm(k); F(i, j) is the
experimental intensity of fluorescence on the wave num-
ber scale in theith spectrum at thejth current frequency
n(j); w(k, j) is the value of the log-normal function with
a maximum atnm(k) at current frequencyn(j) with unite
maximal amplitude (at givenk and j, this value is the
same for any of theN spectra); andI(k, i) is the maximal
amplitude of thekth component in theith spectrum.

The problem is to find the positionsnm(k) and the
maximal intensitiesI(k, i) of log-normal spectral compo-
nents from the set of experimental spectraF(i, j); Eq. 3,
however, cannot be solved analytically because the log-
normal functionw(k, j) is essentially transcendental with
respect to the unknownnm(k) (see Eq. 1). Hence, the
solution can be sought for by approximation, e.g., using
the fitting of nm(k) values by minimization of residuals.
At each step of this process, the transcendentalw(k, j)
terms are computed for a givennm(k) value, and then the
correspondingI(k, i) values are easily determined analyt-
ically, solving the set of linear equations.

The fact that individual components in protein fluores-
cence spectra are very broad and mutually overlapped
poses severe limitations on the procedure of searching for
a functional minimum. Attempts to use modern fast fit-
ting methods revealed a strong dependence of solutions
on the initial conditions. Only the exhaustive enumera-
tion of nm values (with successively diminishing steps
from ;8 nm down to 0.1 nm) avoided “trapping” in the
local minima of the functional (rms residuals) and, thus,
to find its global minimum. It is essentially important in
the presence of experimental noise. Moreover, it obviates
the need to set any arbitrary initial conditions, which
often leads to the erroneous result of solving an incorrect
reverse problem (Tikhonov and Arsenin, 1986). This
notwithstanding, the results of decomposition of experi-
mental and simulated multicomponent spectra showed
that the typical experimental noise of;0.5–1.5% does
not permit a sufficiently reliable decomposition for more
than three spectral components. Therefore, we shall con-
sider this limiting case withL # 3 in describing the
algorithm. Uni-, bi-, and tri-component solutions are

searched independently by turn for the set of experimen-
tal spectra. However, we shall consider below the tri-
component solution as a more general case.

With fixed nm(1), nm(2), andnm(3) values at current wave
numberj at each fitting step, the solution can be found on
the basis of the minimal least-square formalism, i.e., when
the S would be minimal:

S5 O
i51

N O
j51

M F O
k51

3

I~k, i! z w~k, j! 2 F~i, j!G2

The unknowns areI(k, i). Thew(k, j) values are calculated
from Eq. 1 at givennm(k) andn(j) values. The criterionS is
minimal when dS/dI(k, i) 5 0. These conditions allow
construction ofN sets of three equations in each:

dS

dI~k, i!
5 O

j51

M F O
k51

3

I~k, i! z w~k, j! 2 F~i, j!G z w~k, j! 5 0

(4)

or, after opening the brackets,

O
j51

M

w~k, j! z O
k51

3

I~k, i! z w~k, j! 5 O
j51

M

F~i, j! z w~k, j!

Transposing the summation overk andj in the left part, we
can write down the whole set of Eq. 4:

5 Ok51

3 FI~k, i! z O
j51

M

w~k, j! z w~1, j!G 5 O
j51

M

F~i, j! z w~1, j!

O
k51

3 FI~k, i! z O
j51

M

w~k, j! z w~2, j!G 5 O
j51

M

F~i, j! z w~2, j!

O
k51

3 FI~k, i! z O
j51

M

w~k, j! z w~3, j!G 5 O
j51

M

F~i, j! z w~3, j!

(4a)

Because all the sums overj are known, we obtainN
nonuniform sets (i 5 1, . . . , N) of linear equations,
where each setcontains three equations and can be solved
independently, the main determinant being the same for allN
sets. Thesecanonical sets of linear equations are then solved
(i.e., theI(k, i) amplitudes are evaluated) using the routine
Gaussmethod. An analogous algorithm was developed for the
decomposition of an individual emission spectrum (the pro-
gram SIMS-MONO). In this case, the set of equations is
constructed using an expanded set of points of a single spec-
trum.

Then, at each step we determine the sum of absolute
values (modules) of residualsS (differences between calcu-
lated and experimental intensities):

S5 O
i51

N O
j51

M O
k51

L

uI~k, i! z w~k, j! 2 F~i, j!u (5)
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and the parameterD, which characterizes the quality of
accordance of spectral components quenching with the
Stern-Volmer law, i.e.,

D 5
1

3
z O

k51

L

Rsd~k! (6)

Rsd 5
1

Y~k, N!
z FO

i51

N ~Y~k, i! 2 X~k, i!!2

N G1/2

(6a)

HereRsd is the relative root-mean-square residual between
the valuesX(k, i) 5 I(k, 1)/I(k, i) determined by solving Eq.
4a and theY(k, i) values calculated from the linear equation
of the Stern-Volmer law:

Y~k, i! 5 Ksn~k! z a~i! 1 B~k! (7)

wherea(i) is an activity of ionic quenchers that is calculated
using values of concentrationsc(i) (Hodgman et al., 1955).
In the programs, the relations betweenc(i) anda(i) values
were included analytically in the polynom forms.

The resulting combined minimization criterion (function-
al) is used in the form:

S1 5 S z ~1 1 D!

A set of components, i.e., the values of spectral maxima
positionsnm and maximal amplitudesIm, corresponding to
the global minimum ofS1 is considered as the solution of
Eq. 4a. The above-described algorithm of three-component
decomposition can be, in principle, expanded over an arbi-
trary number of components.

The procedure of searching for a sufficient number of
components describing a series of experimental spectra
of a protein is carried out as follows. The experimental
series of spectra is consecutively decomposed into one,
two, and three components. Because the experimental
spectra are measured with a constant wavelength incre-
ment, each value set (i.e.,nm(1), nm(2), andnm(3)) on the
frequency scale (nm(cm21) 5 107/lm(nm)) is determined
by exhaustion in the wavelength range from 300 to 370
nm with consecutive three-times shortening steps from
8.1 to 0.1 nm. The intensities on the frequency (Fn) and
the wavelength (Fl) scales are related asFn 5 Fl z l2;
hence the spectra of individual components are converted
onto the wavelength scale and the maximum position of
components (nm(k)) are presented on the wavelength
scale (lm(k)).

To estimate the quality of decomposition, the relative
rms residual of theoretical and experimental spectra is
expressed as a percentage of maximal amplitudeFm of
the spectrum, measured in the absence of quencher:

Ts5 T z ~1 1 D! (8)

WhereD is determined with Eq. 6 and

T 5
1

M
z O

j51

M

S2~ j! (9)

S~j! 5
1

N
z O

i51

N

s~i, j! (10)

s~i, j! 5

O
k51

L

I~k, i! z w~k, j! 2 F~i, j!

Fm~c 5 0!
(11)

To choose among the one-, two-, or three-component solu-
tions as being more reliable, we used the discriminantDs

values equal to the product of functionalTs by the number
of components searched for, i.e., the number of parameters
(L) varied under fitting:

Ds 5 L z Ts (12)

Before determining the final results, the same procedure is
used for the smoothing experimental spectra. As a rule, the
spectra contain some points distorted by Raman line, scat-
tered mercury lines from the light source, and/or by a
random noise. After each decomposition cycle, the intensity
values differing by.2% from the theoretical ones were
changed to be equal to the latter. The smoothing cycles are
repeated while such differences disappear, but their number
is not to exceed 10 to avoid an eventual distortion of the
spectral shape.

Properties of the algorithm

To test how various factors affect the accuracy of solu-
tion, a series of decompositions were carried out for
simulated spectra. The latter were sums of two or three
log-normal curves varying in the positions of maxima
and relative amplitudes. Because, above all, we were
interested in the quality of spectral resolution of compo-
nents, the precision was evaluated as a value ofDl,
which is a mean absolute difference between the posi-
tions of component maxima (in nanometers) that were
preset in simulation and those obtained after the decom-
position. Fig. 2 shows theDl value dependencies for
two- and three-component decompositions, crosses and
squares, respectively, of the amplitude of randomly in-
troduced noise,S% (panelA); the number of spectra (N)
with various “quencher concentrations” used (panelB);
the distance between the component spectral maxima,
Dlmax, nm (panelC); the ratio of Stern-Volmer constants
of quenching for the components,K2/K1 (panelD); the
number of registered points in each spectrum,M (panel
E); and the contribution of one component in the total
spectrum, as an intensity ratioI1/(I1 1 I2) (panelF). The
noise was introduced as random equally probable posi-
tive and negative deviations with amplitude from 0 to S%
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of the theoretical amplitude. The maximal “quencher
concentrations” were such that would reduce the ampli-
tude of a total spectrum approximately by half. Varying
one parameter, the others were held constant at the fol-
lowing standard values:S% 5 0.6%; N 5 5; M 5 15;
Dlmax 5 10 nm;K1 5 0.1 M21; K2 5 3.0 M21; I1 5 I2.
For three-component decomposition the standard values
of S%, N, M, andDlmax are the same as for two-compo-
nent ones, butK1 5 1 M21, K2 5 5 M21, K3 5 0 M21,
andI1 5 I2 5 I3. OnlyK1 andK2 change in panelD, and
I1 andI2 in panelF. As can be seen, the method provides
an acceptable accuracy (Dl , 1 nm in the two-compo-
nent and,1.5 nm in the three-component decomposi-
tion) in determining the true positions of component
maxima at values of initial parameters usually existing in
practice:S% 5 0.5–1.5;N 5 3–10;M 5 10 –20;Dlmax .
7 nm; contribution of an individual component of 10 –
90%. The accuracy of decomposition into three compo-
nents is somewhat worse than that into two components;
however, it is also quite satisfactory, taking into account
the large overlapping of the component spectra.

THE ANALYTICAL ALGORITHM BASED ON THE
PSEUDO-PHASE REPRESENTATION (PHREQ)

The algorithm PHREQ (thePHase-plot-basedREsolution
usingQuenchers) is an analytical realization of a graphical
way of two-component decomposition of a set of protein-
tryptophan fluorescence spectra measured at various con-
centrations of quencher (Abornev, 1993). The method uses
quasi-phase representation of parameters characterizing the
shape of fluorescence spectra (Burstein, 1976), which was
already successfully applied for analysis of protein structural
transitions (Kaplanas et al., 1975; Permyakov et al., 1980a,b).

In the most general case, to use any physical parameterP
either to characterize the shape of transition curve A3 B or
to estimate the proportion of components in the mixture of
A and B components, this parameter (P) should be linearly
related to either extent of transition completing (a) or con-
tribution of a mixture component into total concentration.

a 5
cB

cA 1 cB

FIGURE 2 The properties of the SIMS algorithm. The dependencies for two- and three- component decompositions, crosses and squares, respectively,
betweenDl values (mean absolute difference between positions of component maxima (in nanometers) that were preset in simulation and those obtained
after the decomposition) and the amplitude of randomly introduced noise,S% (A); the number of spectra (N) with various “quencher concentrations” used
(B); the distance between the component spectral maxima,Dlmax, nm (C); the ratio of Stern-Volmer constants of quenching for the components,K2/K1
(D); the number of registered points in each spectrum,M (E); and the contribution of one component in the total spectrum, as an intensity ratioI1/(I1 1
I2) (F).
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wherecA andcB are concentrations of A and B. Then, the
composite parameterP for the system can be expressed as:

P 5 b z PA 1 a z PB

5 ~1 2 a! z PA 1 a z PB

5 PA 1 a z ~PB 2 PA! (13)

Therefore,P is the weighted mean of valuesPA andPB, which
characterize the pure A and B components, respectively. The
weight factors areb 5 1 2 a anda, respectively.

A two-state transition or a mixture can be characterized
by two mutually independent physical parametersP1 andP2

linearly related toa:

P1 5 b z PA1 1 a z PB1

P2 5 b z PA2 1 a z PB2

It can be simply shown that parametersP1 andP2 are linear
functions of one another at the samea value, i.e.,

P1 5 k z P2 1 m (14)

Wherek andm are factors expressed through the values of
PA1, PA2, PB1, andPB2, and the plane with coordinates (P1,
P2) possesses a property of phase-plane. In such a plane the
states A and B are represented by points (PA1, PA2) and
(PB1, PB2), respectively. The transition between A and B is
reflected by the totality of phase-points, which should be
onto the straight line connecting points A and B. At any
intermediate point Z with coordinates (P1, P2) located on
this line (0, a , 1), a is proportional to the ratio of lengths
of segment between the points Z and A and segment be-
tween points A and B, i.e.,a 5 AZ/AB. These simple
relationships allow graphic determination of contributions
of components A and B at any step of transition or in
two-component mixtures.

By the way, in the case of transitions measured by kinet-
ics or equilibrium shift, the deviation from linearity of
trajectory AB suggests the existence of one or more inter-
mediate states in the process. In the simplest cases it could
be evaluatedP1 andP2 for the intermediate state by extrap-
olating the initial and last linear parts of the trajectory to
point of their intersection, assumedly representing the in-
termediate in the plane.

In case of decomposition of fluorescence spectra, the
“physical” state is a position and shape of a spectral com-
ponent, which remains unchanged under different concen-
trations of fluorescence quenchers. However, added
quenchers perturb the “spectral” state, i.e., change the ratios
of component contributions. The role of parametersP1 and
P2 for two-component fluorescence spectra plays the emis-
sion intensitiesF(n1) andF(n2) measured at different wave-
numbersn1 andn2. Such an approach demands the equality
of the number of photons absorbed by both components in
the unit time interval. The parametersF(n1) and F(n2)
reflect the contributions ofa andb of two components into

the total emission spectrum. To obtain the linear trajectory
on the quasi-phase plane [F(n1), F(n2)] it can change thea
value by measuring spectra at various concentrations of
fluorescence quenchers (Cs1, I2, acrylamide, etc.), which
change intensities of two components in different degrees
depending on solvent accessibility of fluorophore(s) from
which a component originates, but do not affect the shape
and maximum positions of spectral components (Burstein,
1968, 1976, 1977, Lehrer, 1971; Lehrer and Leavis, 1978).

In the ideal imaginary case, when the quenching does not
change summary emission quantum yield, on the quasi-
phase plane [F(n1), F(n2)] the points obtained at several
quencher concentrations lie on a straight line connecting the
points of “pure” spectral forms (“nm1” and “nm2” in Fig. 3),
of which the total spectra consist (a 5 0 anda 5 1). In
reality, to exclude the perverted effects of quenchers on total
quantum yield it is necessary to normalizeF(n1) andF(n2)
values by either total surface area under spectrum or by
emission intensity at any third, constant wave numbernn,
F(nn). Because the precise measurement of the area under
an experimental spectrum is almost impossible, we used
normalizing byF(nn):

Pn1 5
F~n1!

F~nn!

Pn2 5
F~n2!

F~nn!
(15)

The F(n1), F(n2), and F(nn) can be represented as the
combinations of normalized log-normal functions (w(nmi,
nj)) at wavenumbersn1, n2, andnn with maxima atnm1 and
nm2 according to Eq. 3, i.e.,

Pn1 5
I1 z w~nm1,n1! 1 I2 z w~nm2,n1!

I1 z w~nm1,nn! 1 I2 z w~nm2,nn!

Pn2 5
I1 z w~nm1,n2! 1 I2 z w~nm2,n2!

I1 z w~nm1,nn! 1 I2 z w~nm2,nn!

Thus,Pn1 andPn2 could be presented as:

Pn1 5 wr~nm1,n1! 1 a z @wr~nm2,n1! 2 wr~nm1,n1!#

Pn2 5 wr~nm1,n2! 1 a z @wr~nm2,n2! 2 wr~nm1,n2!# (16)

wherewr(nmi, nj) 5 w(nmi, nj)/w(nmi, nn) andw(nmi, nj) are
values of log-normal functions with maximal amplitudes
equal 1 (see Eqs. 1 and 2) and maximum positionsnmi at
current wavenumbernj. In such a representation,a means
the contribution of the component with the maximum posi-
tion atnm2(f(2)) in the normalizing fluorescence intensity at
nn, F(nn).

a ; f~2! 5
I2 z w~nm2,nn!

I1 z w~nm1,nn! 1 I2 z w~nm2,nn!
(17)
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As well as in the case ofP1 5 F(n1) andP2 5 F(n2), Pn1 and
Pn2 are mutually linearly related (the equation that is anal-
ogous to Eq. 14):

Pn1 5 k z Pn2 1 m

where:

k 5
wr~nm2,n1! 2 wr~nm1,n1!

wr~nm2,n2! 2 wr~nm1,n2!

m5
wr~nm1,n1! z wr~nm2,n2! 2 wr~nm2,n1! z wr~nm1,n2!

wr~nm2,n2! 2 wr~nm1,n2!

Therefore, the points obtained at various quencher concen-
trations form the linear track on the phase-plane (Pn1, Pn2)
(see Fig. 3). Thus, the phase-plot in coordinates (Pn1, Pn2)
(Fig. 3) can be used for estimating the main parameters of
the two-component spectrum, i.e.,nm1 and nm2 and their
relative contributionsa and (12 a). To estimate the com-
ponents’ maximal positionsnm1 and nm2 we used the ex-
trapolation of the linear track through the experimental
points, obtained with various quencher concentrations, up to

FIGURE 3 The representation of fluorescence spectra measured at dif-
ferent concentration of quenchers as points on the quasi-phase plane. The
curveS corresponds to the totality of all possible elementary log-normal
functions.

FIGURE 4 The properties of the PHREQ algorithm. The dependencies for two-component decompositions betweenDl values (mean absolute difference
between positions of component maxima (in nanometers) that were preset in simulation and those obtained after the decomposition) and the amplitude of
randomly introduced noise,S% (A); the number of spectra (N) with various “quencher concentrations” used (B); the distance between the component
spectral maxima,Dlmax, nm (C); the ratio of Stern-Volmer constants of quenching for the components,K2/K1 (D); the number of registered points in each
spectrum,M (E); and the contribution of one component in the total spectrum, as an intensity ratioI1/(I1 1 I2) (F).

Decomposition of Protein Fluorescence Spectra 1705

Biophysical Journal 81(3) 1699–1709



its intersection with the curveS, which corresponds to the
totality of all possible elementary log-normal functions nor-
malized by the sameF(nn) value as the coordinate values
Pn1 andPn2. From the distances between the experimental
point and the pointsnm1 andnm2, d2 andd1, respectively, the
contributions of components can be calculated:

a ; f~2! 5
d2

d1 1 d2

and

1 2 a ; f~1! 5
d1

d1 1 d2

Using the PHREQ algorithm all points of experimental
spectra are analyzed and the solutions obtained at any
different n1, n2, andnn are averaged.

Properties of the algorithm

Analogously to the testing of the various factors affecting
the accuracy of solution obtained by the SIMS algorithm,
we carried out a series of decompositions for simulated
spectra (the sums of two log-normal curves with various
positions of maxima and relative amplitudes) by the
PHREQ method. Fig. 4 shows the dependencies for two-
component decompositionDl values (mean absolute differ-

TABLE 1 The results of decomposition of tryptophan fluorescence spectra of annexin VI (50 mM cacodylate, pH 7.0) measured
at three different concentrations of KI (0.0, 0.2, and 0.4 M) into log-normal components by the SIMS and PHREQ methods

N lm (nm) nm (cm21) I i Ai Si (%) Ksn (M21) Ksn
rel (%) R B Rsd

SIMS, 1-component solution (Ds 5 3.222)
1 331.36 0.5 299496 45 10225 494795 100 1.056 0.17 7.26 1.2 0.986 1.01 0.015

8571 414728 100
7939 384178 100

SIMS, 2-component solution (Ds 5 0.757)
1 326.06 0.5 304606 46 8200 441495 74.0 0.826 0.08 5.66 0.5 0.995 1.01 0.008

7203 387793 77.6
6692 360302 77.9

2 347.76 0.5 284586 40 2875 154778 26.0 1.886 0.48 12.96 3.3 0.969 1.04 0.035
2075 111720 22.4
1897 102159 22.1

SIMS, 3-component solution (Ds 5 1.045)
1 317.26 0.5 313.486 49 1144 64681 10.3 0.066 0.39 0.46 2.7 0.159 1.31 0.042

1040 58768 11.2
1128 63779 13.9

2 329.46 0.5 301396 45 8422 478038 75.6 1.056 0.07 7.26 0.5 0.998 1.01 0.006
7210 407500 77.5
6528 369004 75.4

3 356.36 0.5 277246 38 1575 88995 14.1 2.096 0.79 14.36 5.4 0.936 1.06 0.054
1057 59734 11.4
1001 56595 11.6

PHREQ (Ds 5 0.527)
1 325.56 2.9 305146 270 7660 363370 67.7 0.756 0.02 5.16 0.1 1.0 1.00

6875 326121 72.8
6346 301067 72.7

2 346.56 3.1 285646 253 3586 173357 32.3 1.946 0.60 13.36 4.1 0.956 1.04
2522 121928 27.2
2343 113292 27.3

N 5 the number of log-normal components;
lm 5 the maximum position of log-normal components in wavelength scale;
nm 5 the maximum position of log-normal components in frequency scale;
I i 5 the maximal intensity of log-normal components atith concentration of KI, i.e., at 0, 0.2, and 0.4 M;

Ai 5 the area of log-normal component under the total spectrum atith concentration of KI;
Si 5 the contribution of log-normal component (in percent) into the area under the total spectrum atith concentration of KI;

Ksn 5 the Stern-Volmer quenching constant for each log-normal component;
Ksn

rel 5 the relative Stern-Volmer quenching constant, i.e., the ratio of theKsn for each log-normal component to theKsn for free aqueous tryptophan
emission quenching with KI, which was taken as 14.6 M21 (Burstein, 1977);

R 5 the coefficients of linear correlation of the parametersX(k, i) 5 I(k, 1)/I(k, i) andc(i) on the plots in Stern-Volmer coordinates;
B 5 the free parameter in Eq. 7;

Rsd 5 the relative root-mean-square residuals, see Eq. 6a.
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FIGURE 5 Decomposition of tryptophan fluorescence spectra of annexin VI measured at different concentrations of KI (0, 0.2, and 0.4 M) by one-, two-
and three-components by the SIMS algorithm. PanelsA represent the experimental spectra measured without fluorescence quencher (points) and calculated
theoretical spectra, which are the sum of log-normal components (curves), and root-mean-square deviations between two kinds of spectra. PanelsB
represent the experimental spectra at different concentrations of KI (points) and calculated theoretical spectra (curves), and root-mean-square deviations
between two kinds of spectra. PanelsC represent the Stern-Volmer plots for each calculated component.
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ence between positions of component maxima (in nanome-
ters) that were preset in simulation and those obtained after
the decomposition) and the amplitude of randomly intro-
duced noise,S% (panelA); the number of spectra (N) with
various “quencher concentrations” used (panelB); the dis-
tance between the component spectral maxima,Dlmax, nm
(panelC); the ratio of Stern-Volmer constants of quenching
for the components,K2/K1 (panelD); the number of regis-
tered points in each spectrum,M (panelE); and the relative
contribution of one component in the total spectrum, as an
maximal intensity ratioI1/(I1 1 I2) (panelF). The noise
was introduced as random equally probable positive and
negative deviations with amplitude from 0 to presetS% (in
percent to the maximal spectrum amplitude). The maximal
“quencher concentration” was chosen so that it would re-
duce the amplitude of a total spectrum approximately by
half. Varying one parameter, the others were held constant
at the following standard values:S% 5 0.6%;N 5 5; M 5
15; Dlmax 5 10 nm;K1 5 0.1 M21; K2 5 3.0 M21; I1 5
I2. As well as the SIMS algorithm, the PHREQ provides an
acceptable accuracy (Dl , 1 nm) of decomposition at real
conditions.

AN EXAMPLE OF DECOMPOSITION OF
EXPERIMENTAL SPECTRA BY SIMS AND
PHREQ ALGORITHMS

As an example, we present here results of decomposition of
tryptophan fluorescence spectra of annexin VI measured at
three different concentrations of quencher KI (0.0, 0.2, and
0.4 M) by SIMS and PHREQ algorithms (Table 1 and Figs.
5 and 6). From the mono-, bi-, and tri-component decom-
positions obtained by SIMS, the bi-component solution was
chosen as the most reliable because it has the least value of
discriminantDs (0.757), i.e., corresponding to the best fit of
experimental spectra by theoretical curves. Table 2 summa-
rizes the results of two-component decompositions obtained
using both SIMS and PHREQ methods. The fitting algo-
rithm SIMS and the analytical one PHREQ gave very sim-
ilar results: obtained maximum positionslm differ within
1.2 nm, the contributionsS of components differ within
6.3%, and the relative Stern-Volmer quenching constants
Ksn

rel within 0.5%. In the next papers of this series it will be
demonstrated that the same values of maximum positions of
two spectral components (;325 and 347 nm) will be pre-

FIGURE 6 Decomposition of tryptophan fluorescence spectra of annexin VI measured at different concentrations of KI (0, 0.2, and 0.4 M) by two
components by the PHREQ algorithm. PanelA represents the experimental spectra without quencher (points) and calculated theoretical spectra, which are
the sum of two log-normal components (curves), and root-mean-square deviations between two kinds of spectra. PanelB represents the experimental spectra
at different concentrations of KI (points) and calculated theoretical spectra (curves), and root-mean-square deviations between two kinds of spectra. Panel
C represents the Stern-Volmer plots for two calculated components.

TABLE 2 The summary of the decomposition of tryptophan fluorescence spectra of annexin VI into two log-normal
components by the SIMS and PHREQ methods

Comp.

SIMS PHREQ

lm (nm) S (%) Ksn
rel lm (nm) S (%) Ksn

rel

1 326.06 0.5 74.06 1.0 5.66 0.5 325.56 2.9 67.76 0.5 5.16 0.1
2 347.76 0.5 26.06 2.0 12.96 3.3 346.56 3.1 32.36 1.0 13.36 4.1
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dicted based on the analyses of the physical and structural
parameters of microenvironments of two tryptophan resi-
dues (W192 and W343) in the crystal structure of annexin
VI.

The authors are thankful to Dr. Andrzej Sobota for preparation of annexin
VI and to Drs. V. I. Emelyanenko and O. A. Andreev for fruitful discus-
sion. Moreover, we are indebted to Drs. D. B. Veprintsev and D. S.
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