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Yana K. Reshetnyak,* Yuly Koshevnik,™ and Edward A. Burstein*

*Institute of Theoretical and Experimental Biophysics, Russia Academy of Sciences, Pushchino, Moscow Region, Russia 142290; and
TMCI WorldCom, Inc., Richardson, Texas 75081 USA

ABSTRACT In our previous paper (Reshetnyak, Ya. K., and E. A. Burstein. 2001. Biophys. J. 81:1710-1734) we confirmed
the existence of five statistically discrete classes of emitting tryptophan fluorophores in proteins. The differences in
fluorescence properties of tryptophan residues of these five classes reflect differences in interactions of excited states of
tryptophan fluorophores with their microenvironment in proteins. Here we present a system of describing physical and
structural parameters of microenvironments of tryptophan residues based on analysis of atomic crystal structures of proteins.
The application of multidimensional statistical methods of cluster and discriminant analyses for the set of microenvironment
parameters of 137 tryptophan residues of 48 proteins with known three-dimensional structures allowed us to 1) demonstrate
the discrete nature of ensembles of structural parameters of tryptophan residues in proteins; 2) assign spectral components
obtained after decomposition of tryptophan fluorescence spectra to individual tryptophan residues; 3) find a correlation
between spectroscopic and physico-structural features of the microenvironment; and 4) reveal differences in structural and
physical parameters of the microenvironment of tryptophan residues belonging to various spectral classes.

INTRODUCTION

In the two previous articles of this series we have presentedopy of molecular interactions and relaxation in solutions
algorithms of decomposition composite fluorescence specand the level at which they are applied in the interpretation
tra of tryptophan residues in proteins into log-normal com-of protein emission spectroscopy data.
ponents (Burstein et al., 2001) and results of such decom- The wide variation in the fluorescence properties of tryp-
position of spectra of~100 various proteins and their tophan residues in proteins reflects differences in processes
conformers induced by denaturants, complexing with ionsn their excited state, which have to depend on features of
or organic ligands, varying pH, etc. (Reshetnyak and Bur{fluorophore microenvironments in macromolecules. That is
stein, 2001). An obtained database of spectral maximumvhy one can observe the rousing interest in analyzing
positions and external quencher accessibilities #3800  tryptophan location and its surrounding in proteins revealed
components supposedly belonging to individual tryptopharby x-ray crystallography. More than 20 years ago the first
residues allowed us to hope that statistical analysis of thattempts were done to reveal a correlation between emission
database may improve our understanding of the nature afpectral parameters and structural characteristics of trypto-
wide variation of fluorescence properties of tryptophan resphan fluorophore environment based on atomic structures of
idues in proteins. several proteins (Pelley and Horowitz, 1976; Brown et al.,
Studies on intrinsic protein fluorescence began in the lated 977; Rousslang et al., 1979). The rapid progress in x-ray
1950s (Shore and Pardee, 1956; Duggan and Udenfriendrystallography and NMR methods led to an increase in the
1956; Vladimirov and Konev, 1957; Konev, 1957, 1959; amount of work on analyzing the measured fluorescence
Steel and Szent Gygyi, 1958; Teale and Weber, 1958; properties of individual proteins in relation to the structural
Vladimirov, 1959; Teale, 1960; Vladimirov and Burstein, features (for example, Turoverov et al., 1984, 1985; Desie et
1960; Weber, 1960; Burstein, 1961). Over the past 40 yearal., 1986; Dolashka et al., 1992; Bhaskaran et al., 1996;
significant progress in the development of spectroscopitely et al., 1997; Reshetnyak and Burstein, 1997a, b;
technique has been achieved and a great amount of expe{uznetsova and Turoverov, 1998; Kuznetsova et al., 1999;
imental and theoretical work on model compounds andOrlov et al., 1999; Turoverov, 1999). The number of data-
proteins has been carried out. However, there remains a gafses and algorithms were proposed for calculating differ-
between the knowledge of physical principles of spectrosent structural and physical characteristics of individual res-
idues in proteins (Gray et al., 1996; Hogue et al., 1996;
Islamov et al., 1997; Laskowski et al., 1997). However, still
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FIGURE 1 Spherical systems of coordinatps distance;p, azimuth; and, elevation) centered at each of nine atoms of indole moiety by turns.

containing proteins. To extend the possibility of such anal-and discriminant analyses; and 3) reveal differences in

ysis on multi-tryptophan-containing proteins we have de-structural and physical parameters of microenvironments of

veloped algorithms of stable decomposition of compositaryptophan residues belonging to various spectral classes.

steady-state tryptophan fluorescence spectra of proteins into

log-normal components (Abornev and Burstein, 1992; Bur-

stein and Emelyanenko, 1996; Burstein et al., 2001). TherSTRUCTURAL AND PHYSICAL PARAMETERS OF

we decomposed tryptophan fluorescence spectra@@0  MICROENVIRONMENTS OF TRYPTOPHAN

proteins, some in various structural states, and created ttfLUOROPHORES IN PROTEINS

database of obtained steady-state log-normal components ?Ee set of structural and phvsical . -
. physical parameters of microenvi

protein spectra of tryptophan fluorescence (Reshetnyak anr%nments of individual tryptophan residues was estimated

Burstein, 2001). The statistical analysis of the distributions’

. i ) or 48 well-resolved structures of proteins with known
spectral maximum positions of the components confirme o :
- . . ; cfharacterlsncs of log-normal components of their fluores-
the statistical discreteness of at least five main classes o

emitting tryptophan fluorophores in proteins, first proposed_. ¢ spectra (Table 2, "Mean Best Fit" in Reshetnyak and
g tryptop b P ! prop Burstein, 2001). The parameters were calculated from

earlier (Burstein et al., 1973; Burstein, 1977a, 1983). It was tomic coordinates of proteins from the Protein Data Bank

natural to assume that such a situation might be a resulto( DB: Bemnstein et al., 1977) using the original algorithm
the existence of a limited number of combinations of spe- ’ ¥

o . . . L realized in Visual Basic. In cases when there are several
cific and/or universal interactions of individual fluorophores . ;

. : . . . e structural PDB entries for a protein or the PDB entry for a
with their environment, mainly during the lifetime of the

) . rotein contains atomi rdinates for several pol ti
fluorescent excited state. It means that tryptophan re5|dué:) otein contains atomic coordinates for several polypeptide

. . . %ains, the estimated microenvironment parameters were
from different spectroscopic classes have to have differen . .
. . : -~ averaged for every equivalent tryptophan residue.

features of fluorophore microenvironments in proteins.
However, the large increase in the number of proteins with
knqwn hlghly resolved x-ray structures gave us .an.o.ppor'Spherical coordinate systems for indole
tunity to assign the log-normal components to |nd|V|duaIring atoms
fluorophores and, then, carry out a detailed analysis of the
environments of tryptophan residues. In the present worlBecause each atom of indole fluorophore may contribute
we succeeded in performing such an assignment for 13differently in specific interactions with the environment, we
tryptophan residues of a representative set b0 proteins. estimated environmental characteristics for every indolic

The goals of the present investigation were to 1) assig@tom. The parameters of nine indole atoms of tryptophan
spectral fluorescence components to individual tryptophamesidues were then averaged or summed to characterize the
residues of proteins with known atomic structure; 2) analyzesnvironment of the given fluorophore as a whole. To de-
physical and structural characteristics of microenvironmentscribe the surrounding of each of nine atoms of an indole
of individual indole fluorophores in proteins and search forring independently, we introduced spherical systems of co-
the correlation between fluorescent and environment paranerdinates (see Fig. 1, where is the distancegp is the
eters using multidimensional statistical methods of clusteazimuth, and is the elevation) centered at each atom. In the
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microenvironment of fluorophores we included all neigh- 'L, state (Callis, 1997). Therefore, the emission band of
boring atoms of protein and structure-defined solvent lotryptophan fluorophores that are accessible to bulk water,
cated in near and far layers from 0 to 5.5 A and from 5.5 topossessing the high density of large and fast-relaxing di-
7.5 A from indole atoms, respectively. The program outputpoles, is expected to be shifted maximally to longer wave-
the complete lists of distances) @nd orientationsg and 6) lengths (Burstein, 1976). We estimated relative accessibility
of “polar” (nitrogen, oxygen, and sulfur) and carbon atomsof each atom of indole moieties (especiallgINAccl) and
located in each layer. Then, the numbers of “polar” andC{2 (Acc?) atoms) and accessibility of the indole ring as a
carbon atoms in two layers were estimated separately for @hole (Acg using an algorithm based on the Lee and
fluorophore as a whole. Richards approach (1971). The relative accessibility was
expressed as the percent ratio of the accessible area of an
atom in a protein for the 1.4 A spherical probe to that in free
Eventual hydrogen-bonding partners tryptophan. The solvent environment surrounding a protein

. . . _is generally divided into two types: bulk (free) water that is
The most probable mechanism of the exciplex formatio luid and not bound to the protein, and water that is either

between excited fluorophore and surrounding atoms is hy- _ ; .
drogen-bonding (Lumry and Hershberger, 1978: Hersh_partlally or strongly bound (Edsall and McKenzie, 1983;

berger et al., 1981). We revealed eventual hydrogen bong‘ttlng etal, 1991; Levitt and Park, 1993). Our program,

donors and acceptors from neighboring polar groups aroun erefore, presented the accessibility of the indole ring to the
. ) olvent in absenc Accl, Acc?) and presenceAcc
indole atoms. It is now generally accepted that hydroge eALG l K P eACCw

rb\ccw Accw? of bound water molecules, which are in-
bonds are strictly directional in nature (Legon and Millen, 2 L '

1987). According to the geometric criteria of hydrogen cluded in atomic coordinates in PDB files.

bond, cosf) must be near 1 for possible donors (main-chain

nitrogen atoms; $of Cys; Ne2 and N51 of His; N¢Z of Lys;

N&2 of Asn; Ne2 of GIn; Ne, Nn1, and Ny2 of Arg; Oy of  The packing density

Ser; Oyl ofthhr; On ofOTyr,dSX of Cys);t_anld c;)sﬁ() and_bl The packing density, i.e., the number of neighbor atoms
cosfp) must be n(ra]ar_ anb y respec 'Vf)y’ doéﬁgosf' Swithin the layers up to 5.5 Adjen1) or up to 7.5 A Den?)
iccept%rsA (n?aln-;:cam. g’; Ongégy%e(;ﬁ ag Gin- Nsol around indole ring, reflects the degree of burying of fluoro-
OfS'?_”aSr? 88ng SI(/IZt; (y}sy of Saenr; oy (g)f Thli;agn ofn’Tyr) phore into protein matrix and/or the presence of hollow

. crevices in the structure. In compact structure the packing
(McDonaId and Throntpn, 1994). We considered all a_tom_ ensity may serve as an inverse measure of the accessibility.
listed above as potential partners for hydrogen bonding i

h located withi it les differing b An example of a hollow cavity that surrounds the com-
ey were located within a cone with angles diftering ypletely buried Trp-48 in azurin was proposed by Turoverov

<~20° from the ideal geometry of H-bonds, i.e., st (1984, 1985). The : . .

. : . , . packing density of Trp-48 is rather
0.9 for possible donors in neaN@onl) and far Ndon2 | d with other buried trvotoph id
layers, and co#j < 0.35 and cosf) > 0.9 for possible oW compared with ofher buried fryptophan residues.

acceptors in neaMNacl and far Nac? layers.

The measure of relative polarity of

Solvent accessibility and environment the microenvironment

packing density The relative polarity of the fluorophore microenvironment

It is well known that the dipole reorientational relaxation in in two surrounding layers we expressed as:

polar environment during excitation lifetime (the universal

interactions) may play an essential role in the shift of Al=[S1-(100+ Acg]/100= S1+ (Acc-S1)/100
fluorescence spectra to longer wavelengths (Mataga et al.,

1955, 1956; Lippert, 1957; Bilot and Kawski, 1962; Liptay, A2 =[S2-(100+ Ac0]/100= S2+ (Acc-S2/100

1965; Bakhshiev, 1972; Vincent et al., 1995, 1997; Topty-

gin and Brand, 2000). Such a relaxation-induced spectravhere S1 and S2 are percent portions of atoms of polar
shift may be effective for tryptophan fluorescence due to egroups among all atoms in near and far layers, respectively.
large increase in indole dipole moment in excitég com- For buried tryptophan residues, when accessibility is about
pared with the ground state (by uptdl0 D) (Konev, 1967; zero, the parametessl andA2 become equal t&1landS2
Burstein, 1976; Lakowicz, 1983; Muinand Callis, 1994; respectively; e.g., the relative polarity of the environment is
Pierce and Boxer, 1995; Callis, 1997). Recent quantumeetermined by only the “polar” atoms. However, in cases of
mechanical studies showed that much electron density ipartially or completely accessible fluorophores, the values
lost from Nel and Cy atoms and deposited at& C{2, C62  of parameteré\1 andA2 increase and reflect the quantity of
atoms of indole ring during excitation in main fluorescenthighly polar water nearby them.
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Temperature factor and “dynamic energy homo-transfer to other indole fluorophore(s)
accessibility” measure (Konev, 1967; Burstein, 1976). A detailed analysis of the
distance and orientation of potentially quenching groups
féystein SH and S-S groups, histidine imidazole or imida-
zolium, arginine guanidinium, hydrated amides, etc.) near

tric (Mataga et al., 1955, 1956; Lippert, 1957; Bilot and indole moiety allowed us to predict eventual quenchers of
Kawski, 1962; Liptay, 1965; Bakhshiev, 1972) critically tryptophan fI)l/Jorescence P q

depends on the ratio of the medium relaxation time to the "1 o probability of excitation energy homo-transfer was

fluorophore fluorescence lifetime (Mazurenko, 1973; Ma'estimated using the Fster equation with parameters taken

égrelnko a:cng %Jkdaltsov, ,1978)' Tfhe rela>;at|or;] ofdthed Iargfefrom Dale and Eisinger (1974) and orientation factors cal-
ipoles of bulk water is very fast (a few hundreds o culated from mutual orientation of transition moments of

femtoseconds), while the relaxation time of dipoles of Pro-4onors in thell.. state and of acceptors in eithir, or 1L,
H a a
tein groups and bound water can be much longer and M3 ates from atomic structure in cases when the centers of

reach many nanoseconds (Callis, 1997). Therefore, it Wag i indolic fings in proteins were separated g2 A.
important to estimate parameters that could reflect a relative

mobility of polar groups around fluorophores. Protein crys-

tallography provides such a parameter as a CryStallographiRSSIGNMENT OF SPECTRAL COMPONENTS TO
temperature factor for individual atoms (Debye-Waller faC'INDIVIDUAL TRYPTOPHAN RESIDUES

tor or B-factor). Although temperature B-factors in princi-
ple measure static or dynamic disorders of atomic positionAmong the ~100 proteins and their 60 conformers with
they are often indistinguishable from a measure of genuineneasured fluorescence spectra decomposed into log-normal
vibration of the atom around its mean position (Frauenfeldecomponents (Reshetnyak and Burstein, 2001), we have
et al., 1979; Giacovazzo, 1992; Glusker et al., 1994; Carugfound 48 proteins with well-resolved atomic structures in-
and Argos, 1997). Usually, temperature factors are consideluded in the PDB. They contain in sum 137 tryptophan
ered in relative or normalized form (Carugo and Argos,residues. These proteins are listed in Table 1. The prelimi-
1997, 1998). We used the temperature B-factors of “polarhary assignments of log-normal spectral components to
atoms as normalized to the mean B-factor value of all C individual tryptophan residues in a protein were carried out
atoms in crystal structure within both ne&1j and far 82) according to the findings that tryptophan residues that are
layers around indole atoms. more accessible to solvent emit at longer wavelengths (Bur-
stein et al., 1973; Burstein, 1976, 1977a; Reshetnyak and
Burstein, 1997a). The calculated inter-tryptophan energy
Parameters R1 and R2 transfer efficiencies were taken into account for such an

To account for a common effect of both mobility of neigh- @ssignment to fluorophores in multitryptophan proteins.
bor polar atoms of protein and free water around indolgigh homo-transfer efficiency revealed the existence of
rings we introduced parameteRd and R2, which may be  tryptophan clusters of two or more fluorophores with highly

considered as a measure of “dynamic accessibility” for theéffective internal energy migration in many cases (Reshet-
bulk water: nyak and Burstein, 1997b). In such cases we assumed that

the most accessible fluorophore in a cluster serves as an
R1= Acc-B1 emitting acceptor. The final assignment was carried out
later, based on the iterative refinements in the procedure of
discriminant analysis of microenvironment parameters of all

All parameters calculated from atomic structures are statid@YPtophan fluorophores.
ones, and only B-factor8(, B2) and “dynamic accessibil-

ity” (R1, R2) are kinds of dynamic characteristics of micro-
environment. THE CHOICE OF MICROENVIRONMENT

PARAMETERS FOR STATISTICAL ANALYSES

The occurrence of the above-mentioned fluorescence spe
tral shift due to dipole relaxation in the surrounding dielec-

R2= Acc-B2

EVENTUAL INTRAMOLECULAR FLUORESCENGE 1202 onah 18 skl ard sl paaners o
QUENCHING AND ENERGY yptop .

HOMO-TRANSFER EFFICIENCY each of 18 paramgters and their various combinations by
cluster and discriminant analyses and revealed that all these
Fluorescence of individual tryptophan residues might becharacteristics have a tendency to correlate with emission
partially or totally quenched by some protein groupsfeatures of fluorophores. However, we later excluded from
(Cowgill, 1970; Bushueva et al., 1974, 1975; Burstein,calculation their accessibility in the presence of water mol-
1977a, 1983; Willaert and Engelborghs, 1991; Chen anecules Accwl Accw? Accw) because these parameters
Barkley, 1998; Yuan et al., 1998) or due to resonancewnere not uniformly determined for various proteins due to
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different numbers of the bound water molecules containe®ierarchical tree for the set of tryptophan
in their structures. The number of water molecules includedesidues of single-, two-, and three-tryptophan-
in crystallographic models depended mainly on the resolucontaining proteins

tion at which the structure has been solved. On average, at h ) ; | individual
2.0 A resolution one water molecule per residue is includeg>ecause the assignment of spectral components to individua

while at 1.0 A resolution this number reaches values Oifluorophores ip proteinslwith a.few tryptophan resi(jues is

~1.6-1.7 (Carugo and Bordo, 1999). Aside from that, tomuch more evident, we f|rs'F applied Fh_e cluster analysis to the
avoid an extra redundancy in the set of excluded severajet of fluorophores of_protelns containing nqt more th_an t_hree
parameters of similar physical meaning. As a result, in théryp_tophans (36 proteins; 60 tryptophan_ residues). Six micro-
final step of statistical analyses, we used only six parametef@1vironment parameters (marked bold in Table 2) were nor-
of tryptophan microenvironmenficcl—7 Acc, Den2 B, malized (m|n|ma_l and maximal vaIues_of each parameter being
R, Ay, The last three parameters are averaged values Gand 1, respectively) to get_ equal weights for egch paramete.r.
normalized temperature factor, dynamic accessibility, and "€ result of cluster analysis as a dendrogram is presented in
relative polarity of environment in the layer 0 to 7.5 A from Fig. 2. Here, the ordinate represents the relative (percent)

a fluorophoreAcc1-7is a mean accessibility ofél (Accl) linkage distance of the maximal distance, and the abscissa
and @2 (Acc?) atoms. presents all objects (tryptophan residues) under analysis. The

algorithm starts with selection of each tryptophan residue into

a cluster by itself. Step by step, more and more tryptophans

become linked together and aggregated (amalgamated) into
CLUSTER ANALYSIS AND DISCRETE NATURE progressively larger clusters of increasingly dissimilar objects
OF STRUCTURAL PARAMETERS according to rise in distances between lesser clusters. Finally,

| . Resh K and B in. 2001 all residues become linked. The presented dendrogram pos-
h our previous paper (Reshetnyak and Burstein, )Wgesses a clear “structure” in terms of clusters (branches) of

confirmed existence of several states of emitting trypmpha'?ryptophan residues that are more similar to each other. The

flyor_o ph_ores In proteins by. analyzmg_ .the histograms Ofdendrogram reveals three large clusters marked “Classes A and
distribution of spectral maximum position 0300 log-

| " ; tein 1 ¢ S,” “Classes | and Il,” and “Class lll.” The most distant is
normal components of ~protein TUOrescence  Spectra.q,qq [1,” the distance between the first two clusters being

To check Whe.ther thgre IS any analogqus discreteness 2459 of the maximal distance (100%), separating them from
fluorophore microenvironment, we applied cluster anaIy—,‘Class .

sis (STATISTICA for Windows 5.0, StatSoft, Inc., 1984 — - .
The preliminary assignment of spectral components to

1995) to the above-described set of the physical and struc: . .
. . uorophores of proteins with one, two, or three tryptophan
tural environment parameters. We chose this method )
sidues (Table 1, columns 5 and 6) was more obvious.

. . . : r
because it does not require any a priori assumption abowfowever for several single-tryptophan-containing proteins
data distribution and allows us to reveal naturally existingt ' gle-tryptop gp

classes and quantitatively estimate degrees of their distinqih e number of spectral components exceeded the number of

tions. The purpose of the joining (or tree-clustering) algo_.ryptophan residues. Such cases are reflected and sometimes

rithm applied here is to join objects (i.e., tryptophan resi_mterpreted in the last _cplumn of Table 1. For example, the
IPg-normaI decomposition of tryptophan fluorescence spec-

dues) into clusters by using an appropriate measure Q ) 7
distance between objects in the multi-dimensional space otfa of single-tryptophan-containing staphylococcal nuclease

analyzed parameters, and then applying an amalgamatiosﬁapl_y gave two compgnents, Wh'Ch_m'ght be a result of the

(inkage) rue. As & measure of the distant, between by 120 SRS S8 TR SRS L et

objects we selected the power distance form, i.e.: al., 1986; Evans et al., 1987; lkura et al., 1997; Veeraragha-
D(x,y) = (S|x — yi|P)M", van et al., 1997; Maki et al., 1999).

The assignment of spectral components to tryptophan
with p = 1 andr = 4. The power distance can be viewed asresidues allowed us to estimate mean values of emission
a generalized Euclidean distance with weights. In the casgaximum positions\,, for fluorophores in each large clus
whenp < 2 andr > 2, the distance between nearestter (see Fig. 2). The\, values for classes A, S, and Ill
neighbors tends to increase compared to the Euclideaalmost coincide with those seen in the histogram of occur-
distance, while the highly differed objects tend to be lesgence of maximum positions of log-normal components in
distanced with respect to a modified distance function. Assmission spectra 0f>160 proteins {326 and 350 nm,
an amalgamation rule we implemented Ward's methodespectively; Reshetnyak and Burstein, 2001). This means
based on an analysis of variance approach to evaluate thibat the ensemble of microenvironment parameters rather
distances between clusters (Ward, 1963). The results daftrongly correlate with discretely distributed fluorescence
cluster analysis are most obviously presentable in the fornproperties of tryptophan residues in native proteins. How-
of hierarchical trees (dendrograms). ever, the fluorophores of classes | and Il, best separated in
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FIGURE 2 A dendrogram constructed based on six normalized structural parameters of 60 tryptophan residues of 36 1-2-3-tryptophan-containing

proteins.

the histograms (Reshetnyak and Burstein, 2001), here am@nalysis is rather widely used to detect the variables that
amalgamated as one mixed cluster. provide the most efficient discrimination between esti-
mated numbers of classes (in our case it would be five
classes), and to classify objects by assigning them to
different classes based on “training” data sets of param-
eters (Burgess, 1995; Zhang, 1997; Andrade et al., 1998;
The result of cluster analysis of microenvironment parameterghou and Elrod, 1998). The procedure of discriminant
of the whole set of 137 fluorophores in 48 proteins is presentegnawsis develops similarly to multivariate analysis of
in Fig. 3. The distance between “Classes A and S” and “Classyariance, when a set of variables are included in the study
es|and II" increased up to 62% in this dendrogram, comparegy see which one(s) contribute to the discrimination be-
with ~45% in Fig. 2. However, tryptophan residues of classegween classes. A total variance-covariance matrix and a
I 'and Il also remain inseparable and form a single mixedyooled-within-group variance-covariance matrix is com-
cluster. This fact may mean that the striking discrimination Ofputed. Those two matrices are compared via multivariate
classes | and Il in the fluorescence-maximum-position histor_tests to determine whether there is any significant differ-
grams is scarcely reflected by static features of fluorophor@nce petween classes. Discriminant analysis searches for the
microenvironment, and the cause of their emission distinctiongest discriminant functions (also called canonical variates,
may lie rather in qualitative differences of kinetics of excited ;g onical coordinates, or roots), which are independent
fluorophore interactions with dielectric medium. However, we mutually non-correlated) optimal combinations of investi-
made an attempt to discriminate all five discrete classes O(gjated parameters that provide the highest overall resolution
tryptophan residues by their microenvironment parameters Ugsetween classes. Discrimination is carried out in the space

ing a more refined multidimensional statistical method of dis-ot canonical coordinates using, for example, Euclidean or
criminant analysis (STATISTICA for Windows 5.0, StatSoft, \jahalanobis distances between class means for an alloca-

Inc., 1984-1995), although this analysis requires constructingg, ryle (Gnanadesikan, 1977).

Hierarchical tree for the set of tryptophan
residues of all proteins under study

a preliminary “teaching” classification. We performed a stepwise discriminant analysis (the for-
ward mode). At each step the program reviewed all six

DISCRIMINANT FUNCTION ANALYSIS AND microenvironment parameters and evaluated which one

CANONICAL VARIATES would contribute most to the discrimination among five

classes. The selected parameter then would be included in
the model, and the program would proceed. The stepwise
The main idea of discriminant analysis is similar to the procedure was “guided” by the respective F-test-to-enter
analysis of variance (Gnanadesikan, 1977). Discriminantvalue. Such a value for a parameter indicates its statistical

Main concepts of discriminant analysis

Biophysical Journal 81(3) 1735-1758
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FIGURE 3 A dendrogram constructed based on six normalized structural parameters of 137 tryptophan residues of 48 proteins.

significance for the discrimination; therefore it is an appro-of cluster class Ill in the dendrogram. For the “training” data
priate measure of the impact brought by a parameter intget we chose tryptophan residues with values of six environ-
classification. The program continues to choose parametersent parameters maximally similar to their mean values for a
to be included in the model, as long as the respective [lass, differing from the mean by less than two root-mean-
values for those parameters ard. square deviations. Then, in a cycle of several iterations of
discriminant analysis, the “training” dataset was refined by
changes in assignment and classification of some tryptophan
residues. Later, the dataset was extended by including micro-
environment parameters of fluorophores of proteins containing
To obtain the “training” dataset we used the preliminaryup to eight tryptophan residues. According to results of pro-
assignment of tryptophan residues of proteins containingeeding iteration, we obtained the final classification with a
fewer than three tryptophan residues to five classes accordery low number of residues, which hawg, values incorm

ing to the model of discrete states (Burstein et al., 1973patible to the expected belonging to corresponding class.
Burstein, 1977a, 1983) using 1) the histograms of occur- The final results of discriminant analysis are presented in
rence of protein fluorophores with various fluorescenceTables 3 and 4. All six chosen structural parameters were
maximum positions (Reshetnyak and Burstein, 2001), anéhcluded in the model. The column “F to enter” in Table 3
2) the classification reached in cluster analysis of microenpresents the values of F statistics for each parameter. The
vironment parameters of tryptophan fluorophores (Fig. 2)higher these values are, the stronger the discriminating
Class A contained only Trp-48 of azurin. Class S consistegpower of the parameter. Wilks’ lambda values associated
of all residues of clusters A and S from the dendrogram inwith the unique contribution of the respective parameter to
Fig. 2, excluding the Trp-48 of azurin. Class | contained thethe discriminatory power of the model, and it may vary in
tryptophan residues of clusters | and Il with, < 337 nm, the range from 0 (perfect discrimination) to 1 (no discrim-
i.e., less than the deep minimum position in the histograménation) (Rao, 1951).

(Reshetnyak and Burstein, 2001), and class Il contained The results of discriminant analysis allow us to conclude
those withi,,, > 337 nm. Class Il consisted of all residues that the best discriminating parametebisn2(F to enter is

Classification of tryptophan residues using
discriminant analysis

Biophysical Journal 81(3) 1735-1758
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TABLE 3 Summary of stepwise discriminant analysis

Reshetnyak et al.

Canonical variates

Parameters F to Enter Wilks’ Lambda _ P-Level  npysceriminant analysis searches for the best discriminant
Den2 194.98 0.146 0.0000  functions (canonical variates or roots) that possess the max-
Ace 26.15 0.081 0.0000  img] discriminatory power. The discriminant analysis com-
%V 13:?; 8:832 8:8888 puted four canonical variates for five classes, which are the
Accl-7 286 0.041 0.0000 independent linear combinations of investigated parameters.
Ay 3.07 0.037 0.0000 Table 6 presents the results of the step-down test (a sequen-

tial testing procedure) for the significance of the canonical
roots (Mendoza et al., 1978). The first row contains the test
parameters of significance for all four roots combined; the
maximal). The other five parameters also possess discrimsecond row contains the significance of the remaining roots,
inatory power because the values of Wilks’ lambda succesafter removing the first one (Root 1), and so on. The data
sively decreased from 0.146, when only param@&en2  collected in Table 6 allowed us to conclude that only Root
was included into the model, to 0.037, when all six param-1 is a statistically significant canonical variate, e.g., the best
eters were included. Table 4 brings up the squared Mahaliscriminant function, and all further discussion would be
anobis distances between the classes’ centroids. The Mairected to analyze the structure of Root 1. Table 7 presents
halanobis distance extends the common Euclidean distangge factor loading matrix, whose elements reflect the corre-
taking into account the correlations between parameters. lations of each parameter with the best canonical variate
parameters are not correlated, the Mahalanobis distanqgenerated by Root 1). They could be thought of as linear
coincides with the simple Euclidian measure. Howeverregression coefficients of the parameters on the canonical
when parameters are correlated, the axes would becomgiriate, which are interpreted in the same manner as factor
non-orthogonal. Thus, the Mahalanobis distance would adeoefficients in the principal component analysis. The factor
equately take correlations into account. The larger the disstructure coefficients have produced the conclusion that
tances, the farther the respective classes are apart from eapen2 Accand, to a lesser degre®,, and Accl-7defined
other, and the more discriminatory power the current modeRoot 1 and, as a result, were mostly included in discrimi-
possesses between tespective two classes. The most dis- nation among the five classes. FigAds an illustration of
tant from the others is class Ill (distance of 40.39); the disthe discrimination by the best canonical variate (Root 1) of
tances between other neighboring classes are smaller and7 tryptophan residues of 48 proteins among five classes in
rather similar (see Table 4). canonical coordinates (Root 3 vs. Root 1). This figure
The most important result of discriminant analysis is thedemonstrates rather well separated clouds of the tryptophan
derived classification of tryptophan residues. First the classesidues belonging to different classes. Despite the fact that
centroids were found, and then the program calculated thelouds are partly overlapped, the centers of each class are
Mahalanobis paired distances from each tryptophan residugell distant (see Fig. 8 and Table 8). Analogous discrim-
to every other class centroid. A fluorophore was assigned tgation of five discrete classes of tryptophan residues was
that class to which centroid it was closest in terms ofobtained in discriminant analysis applied to all 18 microen-
Mahalanobis distance. Then, the program derived probabilironment parameters listed in Table 5.
ities of classification of tryptophan residues, which are
proportional to the distances. The classification and corre-
sponding probabilities (column “Clas®,(%)") for all in-  Pairwise discriminant analyses for “neighbor”
dividual tryptophan residues obtained at the last iteration arluorophore classes
listed in Table 1. The mean values and the standard devia- i L )
tions of the microenvironment parameters for every class © 'efiné the classification obtained on the full set of
based on final classification of tryptophan residues ardluorophores and to find out which of the structural param-

presented in Table 5. Boldface type indicates six parametef&e’s determine the discrimination between neighbor
used in discriminant analysis. classes, we applied discriminant analysis for the trypto-

phan residues belonging to pairs of neighboring classes
by turn. Discriminant analyses performed for the pairs of
neighbor classes confirmed the classification obtained on

TABLE 4 Squared Mahalanobis distances among classes the full set of tryptophan residues (data not shown). The

ClassA ClassS Classl  Classll  Class Il most significant factor-loading coefficients are presented
Class A _ 500 14.30 3127 11161 In Table 9 for each model separately. The tryptophan
Class S 5.00 — 6.29 21.58 97.89 residues of class A are separated from other classes
Class | 14.30 6.29 — 4.88 65.36  mainly by polarity,A,,, and flexibility, B,,, of microen
Class Ii 31.27 21.58 4.88 — 4039 yironment. The discrimination between classes S and |
Class Il 111.61 97.89 65.36 40.39 —

occurs mainly due to the surrounding packing density,

Biophysical Journal 81(3) 1735-1758
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TABLE 5 Mean values and standard deviations of the structural parameters

1751

Parameters Class A Class S Class | Class Il Class Il
Number of Trp in Classes 1 41 32 41 22
1 Accwl 0 0.2+ 1.0 8.7+ 11.9 17.62+ 22.01 57.70+ 28.58
2 Accl 0 1.0+ 24 14.9+ 14.2 28.5+ 23.9 69.2+ 21.8
3 Accw7 0 05+21 4.1t 6.4 18.2+ 19.9 64.9+ 27.9
4 Acc7 0 1.1+32 7.4+ 10.1 25.0+ 214 73.0+ 20.6
5 Accw 1.9 0.2+ 0.5 3.5+3.1 10.2+ 7.6 50.6+ 18.5
6 Acc 1.9 0.8+ 1.4 6.0+ 3.6 148+ 7.5 55.3% 15.9
7 Denl 58.3 67.1+ 6.7 61.7+ 4.8 523+ 7.6 28.5+ 11.0
8 Den2 138.3 148.3+ 8.5 129.3£ 9.1 109.3+ 12.6 62.7+ 18.8
9 B1 0.54 0.85+ 0.18 1.21+ 0.24 1.29+ 0.34 1.46* 0.52
10 B2 0.68 0.92+ 0.17 1.10+ 0.20 1.18+ 0.33 1.61+ 0.65
11 R1 0.1 0.7 1.2 7.2+ 4.2 19.0+ 10.3 80.7* 26.6
12 R2 0.1 0.7+ 1.3 6.6+ 3.8 17.5+ 10.5 89.0* 40.5
13 A1 19.6 31.9+ 6.1 36.1+ 7.4 41.6+ 9.5 58.7+12.9
14 A2 27.3 37.0= 6.1 42,5+ 4.8 48.5* 6.8 72.3+ 18.9
15 Nacl 1 4.4 2.6 3.5+ 1.6 3.0+ 15 1.2+ 0.9
16 Nac2 2.3 5.8+ 2.4 5.0+ 2.1 43+ 2.3 1.9+ 15
17 Ndonl 2 1.6+1.3 22+ 1.4 1.8+1.2 1.2+ 0.9
18 Ndon2 6.4 3.0+ 14 3.0+ 1.2 2.6+ 1.4 1.1+ 1.0

Accl-7 0.0 1.0 2.2 11.2+ 8.5 26.7+ 19.1 71.1+ 195
B.v 0.61 0.89%= 0.17 1.11% 0.20 1.23+ 0.32 1.54+ 0.55
Ray 0.9 0.7 1.2 6.7+ 4.0 18.2+ 10.3 85.2+ 30.9
AL 23.5 345+ 58 39.3x55 451+ 7.4 65.5+ 13.9

Six parameters used in discriminant and cluster analyses are shown in bold.

Den2 and, to a lesser degree, the solvent accessibility ofiot be identified as an individual cluster. The most distant is
hypothetical hydrogen-bonding atoméccl-7 In the class Ill (100% of linkage distance). Class S is distanced
case of classes | and I, all six parameters were includeffom classes | and Il by-85%. Classes | and II, which were
in the model; however, packing densitiden2 total mixed before, now form separate clusters with a relative
solvent accessibilityAcc, and “dynamic accessibility” distance between them ef47%. The optimal combination
parameterR,, define the discriminant function to the of microenvironment parameters (discriminant function
highest degree. The tot#lcc and its relatedDen2evi- Root 1) obtained in discriminant analysis allowed us to
dently separate the most distant class IlI. separate all five classes.

RELATIONSHIP BETWEEN FLUORESCENCE AND
MICROENVIRONMENT PARAMETERS

The application of cluster analysis to six normalized param-As described above, statistical methods allowed us to reveal
eters of tryptophan residues (Figs. 2 and 3) proved théhe existence of discreteness in the set of physical and
discrete nature of microenvironment parameters, althoughtructural parameters of the microenvironment of trypto-
classes | and Il were mixed. Discriminant analysis yieldedphan residues in proteins in parallel with discreteness of
the classification of tryptophan residues and provided artheir fluorescence spectral properties. Moreover, these
optimal combination of microenvironment parameters viamethods provided the classification of the tryptophan resi-
the best canonical variate (Root 1). After that, it was im-
portant to apply the cluster analysis for this canonical vari-
ate. Such cluster analysis revealed four separate clusters

Cluster analysis applied to the best
canonical variate

TABLE 7 Factor structure coefficients of

(Fig. 5). Class A consists of one object, and therefore could Root 1
Factor Structure
Parameters Coefficients
TABLE 6 2 test for the canonical variates
. . S Den2 0.73
Eigenvalue Canonical R Wilks’ Lambda x? P-Level Acc 072
1 10.92 0.957 0.037 433.3  0.0000 B -0.22
2 1.10 0.724 0.442 107.4 0.0000 R —-0.61
3 0.07 0.254 0.929 9.7 0.2891 Accl-7 —0.53
4 0.01 0.082 0.993 0.9 0.8282 A —0.40

Biophysical Journal 81(3) 1735-1758
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TABLE 9 Factor structure coefficients of the parameters
included in the models based on discriminant analyses
performed for neighbor classes

Classes Classes Classes Classes
A&S S&l 1 &1l 11 & Il

Accl-7 — —0.46 —-0.41 —
Acc — — —0.58 0.82
Den2 — 0.58 0.72 -0.71
B., —0.69 -0.33 -0.18 -0.17
R. — — -0.57 —
AL -0.78 -0.23 -0.35 —

shows that fluorophores belonging to various structural
classes revealed by statistical methods have different values
of spectral maximum positions. Although the clouds of
various classes are partly overlapped, the centers of each
class are well distant, as is seen in FigBgwhere the
averaged maximum positions are shown versus classes re-
vealed using parameters of microenvironment. Calculated
mean values of spectral maximum positions, and rela

tive accessibility to quencherk,,,, for tryptophan residues

of different classes are collected in Table 10.

»  Median value!
Then, we constructed five histograms reflecting distribu-
tions of maximum positions of spectral components as-
signed to tryptophan residues from each structure-based
class (Fig. 7). The “Total” histogram is a sum of those five.
Each histogram was constructed as a sum of individual
FIGURE 4 ) Discrimination of 137 tryptophan residues of 48 proteins Gauss distributions (for the details of the constructing of
presented in canonical coordinates (Root 3 vs. RootB))BOx plot-style  histograms see Reshetnyak and Burstein, 2001) with mode
picture of the central tendency (median) and range (quartiles) of Root 1 irbf each individual Gauss curve coinciding with the maxi-
five classes. L

mum position of spectral components (see Tabler],

(nm)). Dispersions and maximal amplitudes were taken as
dues based on their microenvironment properties, whici.0 and 1.0 nm, respectively. The “Total” histogram is
practically coincided with the classification made usingrather similar to that constructed in our previous paper for
their emission features. The goal of our investigation was t¢>300 spectral components (Figs. 3-5 in Reshetnyak and
see how the structural parameters correlate with speddurstein, 2001). The global minimum is at 332-336 nm and
trofluorescent ones. Fig. A illustrates the correlation be- five maxima at~308, 317, 327, 340, and 346 and two
tween values of Root 1, which is a combination of six shoulders at 338-339 and 350—-353 nm are seen here. The
microenvironment parameters, and emission spectral maxgurves representing the spectral maximum position distri-
mum positions taken from the results of assignments obutions in each class are partly overlapped (especially, those
log-normal components to individual protein fluorophoresfor classes S and I, and classes Il and Ill). Unexpectedly, the
(Table 1, column %, (hm)”; values in parentheses in the distributions for all classes (except class A) have polymodal
body of the table were excluded from consideration becauseharacter, which has to be investigated in further work.
they belong to tryptophan residues partially quenched by We have to note also that tryptophan residues of five
neighbor groups or due to energy homo-transfer). The plobighly homologous proteins (trypsin, trypsinogen, chymo-
trypsin, chymotrypsinogen, and elastase) have maximum
positions of one of spectral components at 327-329 nm. In
chymotrypsin and chymotrypsinogen the fluorophores with

A S | Il n

Classes

TABLE 8 Mean values for Root 1

Biophysical Journal 81(3) 1735-1758

Classes Means of Root 1 such spectral maximum positions are parts of large “clus-

Class A 3.62 ters” of fluorophores with highly efficient energy mig.ration

Class S 3.17 inside them (see Fucaloro and Forster, 1985; Desie et al.,

Class | 1.22 1986; Reshetnyak and Burstein, 1997b). Therefore, the

g:ass ::I —g-gg emission of these tryptophan residues might be quenched;
ass —b.

however, we did not exclude them because it is not evident
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FIGURE 5 A dendrogram constructed based on canonical variate (Root 1).

which of the fluorophores could be emitting energy transfer In the model of discrete states (Burstein et al., 1973;

acceptors in the cluster. Burstein, 1977a, 1983) it was assumed that the well-struc-
tured spectra with main peak at 307-308 nm of class A
fluorophores (Trp-48 of azurin (Burstein et al., 1977; Bur-

DISCUSSION stein, 1977b)) and some tryptophan residue(s) of bacterio-

In our previous paper (Reshetnyak and Burstein, 2001), wghodopsin (Permyakov and Shnyrov, 1983) are emitted
succeeded in confirming the assumed (1973-1977; Bursteffom the excited state, which has no hydrogen bond with
et al., 1973; Burstein, 1977a) discreteness of spectral pa(1e|ghbors Analysis of vibrational structure of azurin emis-
rameters by analyzing the distribution of maximum posi-Sion spectrum revealed that emission occurs from'the
tions of log-normal components obtained by decompositiorfinglet excited state (Callis, 1997). Our analysis shows that
of tryptophan fluorescence spectra ©fL00 proteins and the single Trp-48 of azurin is located in a rather hydropho-
some of their conformers. Because the variety of fluoresbic environment. Several atoms surrounding its indole ring,
cence properties of tryptophan residues in proteins has to b&hich might eventually form hydrogen bonds (see Table 2),
a result of combinations of various excited-state interactiong@re involved into stabilization of thg-barrel secondary
of individual fluorophores with their environment, we in- structure of azurin and, indeed, cannot interact with excited
vestigated some physical and structural characteristics dfuorophore without breakings-sheets. The fluorescence
microenvironment of 137 individual fluorophores in 48 study performed on two azurin mutants (I7S and F110S) in
proteins with known atomic structure and compared thenholoform showed the red shift up to 312-313 nm of spectral
with spectral parameters of log-normal components asmaximum position (Gilardi et al., 1994). Analysis of x-ray
signed to individual fluorophores. Now we can considerstructures of these mutants revealed that thea@®m of
features of photophysical interactions inherent in fluoro-Ser-7 located at 4.3 A from thedd atom of Trp-48 pro-
phores of various classes, based on newly identified microvides a possibility of hydrogen bond formation. However,
environment parameters, which define the discriminatiormutation F110S creates an additional cavity near Trp-48
between classes. with several water molecules included inside (Hammann et

Biophysical Journal 81(3) 1735-1758
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N at excitation and no dipole relaxation of dielectric medium
Eﬁ@ can be observed (Burstein, 1977a, 1983). In the present
& work, the mean value of the maximum positions of spectral
PQ&A components of fluorophores of structure-based class S are
olass A s shown to be at 322.5 4.6 which is, however, longer than
class S AL, 317 nm. Approximation of structured spectra with central
class 1 © (8& peaks at 316—317 nm using smooth log-normal function
class IT S o® usually revealed effective maximum positions of spectra at
o 320-326 nm. However, it seems that tryptophan residues
assigned to the structure-based class S may emit at 320—-325
300 310 320 330 340 350 360 nm as well. Class S is best discriminated from class A by
Wavelength, nm higher relative polarity4,,) and flexibility (B,,) of micro-
environment (see Tables 5 and 9). Also, there are evident
free partners for hydrogen bond formation near the fluoro-
T Min-Max B phores of class S. _
3501 | [ 25%.-75% The model of discrete states assumed that tryptophan

*  Median valu @ il residues possessing emission spectra with maxima at wave-

]
o

Root 1
O » 4+ 0 e

class II1 ° g

360

340 lengths~330 nm and longer (classes I-) form H-bonded

exciplexes with stoichiometry not less than 2:1 (Burstein,
1977a, b, 1983). This assumption was also based on the
320 experiments with 3-methyl-indole in cycloheptane at vary-
—L ing concentrations of alcohol (Walker et al., 1967; Lumry
—— and Hershberger, 1978; Hershberger et al., 1981). The max-
300 imum position of the exciplex 2:1 spectrum was red-shifted
A S ! i n upon increasing alcohol concentration, which reflected the
Classes rise of a Stokes shift induced by the universal solvent dipole
relaxation in response to a large change of fluorophore
calculated based on structural parameters of the microenvironment o(r"POIe moment in ItS_ eXCIteq state,_accordlng to _the Bakh-
tryptophan residues versus spectral maximum positions of log-normaphiev’s theory of universal interactions (Bakhshiev, 1972;
components assigned to individual protein fluorophor@sBox plot-style ~ Mazurenko, 1973; Mazurenko and Udaltsov, 1978).
picture of the central tendency (median) and range (quartiles) of spectral |n this study we found that fluorophores of class | have
maximum positions in five structure-based classes. averaged maximum position of fluorescence at 331.9.8
nm, which excellently coincides with that in the model of

al., 1996). Such changes around Trp-48 in two mutatedliscrete states. The parameters, mostly discriminating class
proteins might increase in probability of hydrogen-bondedS and I, are packing densitp¢n2 and averaged accessi-
exciplex formation and, as a result, induce the lead to shifPility (Acc1-7 of Nel and G2 atoms (Tables 5 and 9). It
in tryptophan emission to longer wavelengths. is known that in most cases the indole ring of tryptophan
Based on the data of spectrofluorometric titration ofresidues in proteins are oriented toward polar environment
3-methyl-indole in apolar solvent with alcohols and other(water molecules) by their &, Cn2, C/2, and G2 atoms.
polar co-solvents (Walker et al., 1967; Lumry and Hersh-Our investigation of the accessibility of individual atoms of
berger, 1978; Hershberger et al., 1981), fluorophores ofndole rings confirmed this statement (data not shown).
class S, having structured spectra with main peaks3d7  Thus, it seems that interaction ofeN and @2 atoms of
nm, has been assumed to form hydrogen-bonded exciplexexcited indole rings of tryptophan residues with their sur-
in 1:1 stoichiometry (Burstein, 1977a, b, 1983). Emissionrounding (especially with water molecules) is very impor-
spectra of classes A and S do not undergo any spectral shi@nt, and possibly just these two atoms may be the best
by freezing the protein solutions down t6196°C, i.e., the candidates for hydrogen bond formation in the excited state.
dipole moments of these fluorophores are scarcely changddoreover, the recent quantum mechanical studies indicated

330

wavelength, nm

310

FIGURE 6 () The dependence of canonical variate (Root 1), which was

TABLE 10 Mean values and standard deviations of the spectral parameters in each class based on classification of tryptophan
residues obtained in discriminant analysis

Parameters Class A Class S Class | Class Il Class I
Am (NM) 307.9 322.5+ 4.6 331.0+ 4.8 342.3+ 3.3 347.0+ 3.1
K 0.0 0.10+ 0.11 0.11+ 0.16 0.44+ 0.44 0.76+ 0.71

rel
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FIGURE 7 The distributions of spectral components assigned to tryptophan residues from different structure-based classes.

that electron density is mostly lost fromelMand Gy atoms  and Il are the packing densitiden2 total solvent accessi-
and mostly rises at the €3, C{2, and G2 atoms of the bility, Acg and “dynamic accessibility,R,,. The increase
indole ring during excitation in th&La state (Callis, 1997). in accessibility and decrease in packing density around
The averaged number of atoms in the 7.5 A layer (packindryptophan residues belonging to class Il evidently con-
density) around tryptophan residues of classes S and | afemed their partial exposure to solvent. Howevei31% of
~148 and 129, respectively. Because the total accessibilitiotal solvent accessibility of class Il fluorophores is due to
of indole rings of class | is very smalq6%, see Table 5), their contact with bound water molecules (compaeew
the decrease iDen2in class | could not be associated with andAccvalues in Table 5). High-resolution NMR measure-
the presence of many free water molecules near the fluoranents of protein hydration in aqueous solutions showed that
phores. Such a lowering of the packing density of thethere exist two qualitatively different types of hydration: 1)
environments of tryptophan residues of class | comparethe water molecules in the protein interior, identically lo-
with those of class S may result in an increase in frequencgated in both crystals and solution with residence times in
and/or amplitude of structural mobility of the environment the range 10% up to 10 ? s, and 2) the water molecules
favoring both hydrogen-bonded exciplex formation and di-forming outer hydration shells at the protein surface and
pole relaxation during the lifetime of fluorophore excited having residence times in the range from10 ns down to
state. subnanoseconds (Otting et al., 1991). Water appears to act
It was suggested that tryptophan residues of class Il aras a plasticizer for the protein polymer, giving the globule
partially exposed to solvent (Burstein, 1977a, b, 1983). Hersurface almost fluid-like properties (Vanderkooi, 1998).
we estimated the mean value of maximum position ofThe mobility of water molecules included in x-ray struc-
fluorescence of the structure-based class Il fluorophores dtires was shown to correlate with values of their B-factors
342.3 = 3.3 nm. However, unexpectedly, the statisticaland occupancies in crystals (Sanschagrin and Kuhn, 1998;
analysis revealed that microenvironment parameters of trypCraig et al, 1998). The increase in dynamic accessibility for
tophan residues of classes | and Il are overlapped, while atflass Il fluorophores suggests that their environment, which
histograms of spectral maximum positions (Reshetnyak andonsists of protein atoms and bound water molecules, is
Burstein, 2001) gave the deep global minimum just betweemssentially more flexible than the environment of class |
these classes. The parameters best discriminating classemtlole rings. These structural characteristics are in good

Biophysical Journal 81(3) 1735-1758
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agreement with the high accessibility of class Il fluoro- Statistical methods allowed us to reveal the structure-
phores to external small fluorescence quenchers, in contrabased classification of tryptophan residues using six phys-
to those of class | (Burstein et al., 1973; Burstein, 1977a, b)ical and structural microenvironment parameters. However,
The microenvironment characteristics of fluorophores ofwe assume that these six chosen parameters may not be
classes | and Il allow us to assume that emission of class Bxhaustive enough for the overwhelming description of all
fluorophores takes place after completion of relaxation proprocesses of excited fluorophores of different spectral
cess of dipoles surrounding excited fluorophores, in contragtlasses. It seems to be reasonable to more carefully analyze
to fluorophores of class I, which emit from the unrelaxedall 18 parameters in the future, and maybe include several
state. Such an interpretation can explain the existence of @dditional characteristics that would reflect the magnitude
deep gap in occurrence histograms between these twand direction of protein electric field, since Callis (1997)
classes by very low statistical probability (statistical SUggested that the fluorescence could be strongly blue-
weights) of a situation where dipole relaxation time of shifted if the local electric field is oriented against the
environment,r,, is comparable with the fluorophore excit tryptophan dipole change, and vice versa. Moreover, the
ed-state lifetimer,,,, in contrast to situations with, > 7,  duantitative accounting (_)f eventual hydrog_en-bono!lng part-
(class 1) orr, < 7., (class Il). This hypothesis can be Ners near fluorophore might become very informative char-

checked in experiments with time dependencies of positiofcteristics, discriminating members of classes A, S, and .

of time-resolved instant emission spectra during excitation

lifetimes measured with proteins representing steady-state

fluorescence spectra of classes | or Il. If the hypothesis ig’he authors thank Dr. Boris P. Atanasov (Institute of Organic Chemistry,
lid h ti ved . ) t f el Il Bulgarian Academy of Sciences, Sofia, Bulgaria) for 3D models of vipe-

valid, suc _'me'reso ved emission specira of class u'rotoxin subunits; Drs. Monique Laberge and Jane Vanderkooi (University

orophores, in contrast to those of class |, are expected tg pennsylvania, Philadelphia, PA) for the 3D model of cod parvalbumin;

experience the effective relaxation-induced shift to longemr. Julian Borejdo (University of North Texas Health Science Center) for

wavelengths during excited-state lifetimes. support; Dr. Robert V. Polozov (Institute of Theoretical and Experimental

. iophysics, Pushchino, Russia); Dr. K. K. Turoverov (Institute of Cytol-
The model of discrete states assumed that tryptophacagy, St. Petersburg, Russia), and Dr. Oleg A. Andreev (University of North
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