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ABSTRACT

Background

The RCSB (Research Collaboratory for Structural Bioinformatics) Protein Data Bank (PDB, www.rcsb.org) is a worldwide repository for 3-D biological macromolecular structure data. A reengineered beta site released in 2004 (pdbbeta.rcsb.org) features improved primary data in new mmCIF and XML formats, results of the Data Uniformity Project.  The XML files were obtained using a two-step process: converting PDB to mmCIF, and then converting mmCIF to XML. The conversion software (pdb2cif and mmCIF_loader) is limited to the UNIX platform and not fully automated. To our knowledge, no direct PDB to XML converter is available. 

Many biologists still work with files in old PDB format stored in their own collections on local computers and there is still a need for access support.  These files are formatted in plain text, organized in 80-character lines, restricted to fixed ranges of character positions defined in the PDB standard, are very long (many over 100 pages), and use abbreviated nametags.  Although this format is useful for computer applications, scientists find it time consuming to search for information.  

Results

The prototype URI software that we propose allows scientists to convert locally stored PDB files to XML format and then access protein information using user-friendly query interfaces. Our URI PDB-XML Converter component inputs a PDB file and a DTD file (describing the XML model) and outputs an XML file. It also has built-in capability for producing one-letter sequences and calculating phi and psi angles, and including this information in the XML files with the PDB data. Our system features an extensible design to accommodate additional or modified queries, and will accommodate a different DTD. The software is documented and freely available.

Conclusions

The URI PDB-XML Converter is, to our knowledge, the first tool providing direct PDB to XML conversion. It is extensible, and easily modifiable to handle changes in format and XML schema. The URI software is designed to handle the addition of queries as needed and can be easily integrated with other software supporting a web interface, compiled or ad hoc queries, and a mapping from the XML file to a DBMS.

BACKGROUND

1. Introduction

Scientists can access three-dimensional structure data that reflects the latest information on proteins or nucleic acids molecules gathered from researchers around the world and posted on the Internet.  The data is obtained from X-ray Crystallography and Nuclear Magnetic Resonance (NMR) experiments.  This information is stored in a format called Protein Data Bank (PDB) that since 1999 has been under the management of the Research Collaboratory for Structural Bioinformatics (RCSB: www.rcsb.org).

The PDB is an invaluable research tool for scientists, attested by the fact that 5 million files of individual structure entries are downloaded in an average month [1]. However, the data presentation style in the PDB files is not easily accessible and understandable. For example, a scientist unfamiliar with the PDB file format must devote time and energy to learning how the PDB stores and presents information. 

2. Background Research

Over more than 30 years of collecting the information stored in the PDB bank, the content, amount of detail and the structure of PDB data records have changed. The information stored in the simple-text-based PDB files became more structured, into a form with over 40 fixed format data record types. The most recent version of the official standard for the PDB file format is described in the document "Protein Data Bank Contents Guide" [2] published on the RCSB website.

Information from PDB files can be retrieved from the main PDB web site at http://www.rcsb.org/pdb/, using several search methods. Their query tutorial [3] mentions the following note: "The PDB is a historical archive. Its contents are not uniform, but reflect the knowledge of the time as well as the data management practices. This may produce incomplete query results. The RCSB is addressing this through the Data Uniformity Project” [4]. 

The Data Uniformity Project work was started in late 1999 [5]. This work corrected missing, erroneous and inconsistently reported data, nomenclature and functional annotation, by using a tedious file-by-file and record-by-record approach. They also chose to replace the simple-text PDB file format with a new format, the mmCIF (Macromolecular Crystallographic Information File) [6]. This new format was developed over a long period of research (started in 1993) and it uses tag-value pairs, with the tags being described in a dictionary, and it can be converted back to the PDB format if needed. In Summer 2004 the RCSB made public a new PDB Beta site at http://pdbbeta.rcsb.org that features improvements brought by the Data Uniformity Project in software architecture, database content and schema, and query and analysis capabilities [7].

3. Problem Definition

Currently the new PDB Beta system does not provide any tools that would allow biologists who already have their own local collection of data in the old PDB format to perform searches on PDB data stored locally on their machines. Furthermore, even if the PDB data converted in XML format is already available for download, no direct PDB to XML converter is currently available. Such conversion can currently be performed in two separate steps. First, the conversion from PDB to mmCIF is performed using the pdb2cif converter [8] that is limited to the UNIX platform and not fully automated.  As stated in [8] "PDB and mmCIF formats agree simply and directly for some data items and admit a simple tabular mapping, while other important macromolecular data descriptors, because of the very different views of the same data, require complex transformations".  Then, in order to convert the mmCIF to XML, another software is needed: the mmCIF loader [9], which is a program that can be used to load mmCIF data into relational databases and XML. This tool is currently available just for the Unix platform.

Many biologists still work with files in the old PDB format that they gathered in their own collections stored on local computers. The PDB files are in the form of plain text (ASCII) files, made up of data records organized in 80-character lines, in which each data item is entered within a fixed range of character positions as defined in the PDB record types formats standards [2]. Moreover, the PDB file for a single protein can include up to more than 100 pages. Although the PDB file format is useful for computer applications, in order to pull out the desired information, a researcher must manually scan through all the pages. Not only is this time consuming, there is another complication because the file format was written using code-words that must be learned before a layperson can understand the nametags used for various protein attributes. Besides the difficulty of having to understand the PDB file format and take the time to scan through its numerous pages, another setback is the fact that a scientist can only work with one protein file at a time and must perform all calculations by hand.

4. Proposed Solution

Our proposed solution is a new software system named URI (“Universal Research Interchange Format”) that will improve the means of accessing the information currently stored in old PDB file format, by providing scientists a user-friendly interface for queries, reports and data entry. In this paper we give an overview of the research conducted to create a conceptual model of the PDB files and to provide access to the PDB data via a web-based interface. We then describe in detail one of the main software components of our URI system, namely the URI PDB-XML Converter. This component converts the data stored in old PDB format into XML file format. The technique used to develop the URI PDB-XML Converter is general and can be easily extended for other structured text files that have an associated XML model.

The URI software system aims to take advantage of the latest computer technologies, which have improved significantly since the old PDB format was developed many years ago, especially with respect to structures used for data storage and manipulation. 
The new URI format is based on XML (eXtensible Markup Language) format, which was developed by the World Wide Web Consortium (www.W3C.org). XML has proven to be very useful for representing data, exchanging data between environments and applications, and transporting data over distributed networks. The XML format is believed to be the future choice for information representation and storage. 

Currently there is only one format for the life science community that is based on XML, the BSML (Bioinformation Sequence Markup Language) [10]. BSML was created as an evolving public domain standard for the bioinformatics community. However, BSML is not intended to be the answer to every issue of knowledge representation in the life sciences, and currently only data from a few databases (GenBank, EMBL, Ensembl, Swiss-Prot and DDBJ) can be automatically converted to BSML format. To our knowledge, no direct converter from PDB to XML format is currently available. 

From the discussions we had with biological researchers at the University of Rhode Island, we identified the following desired initial functionalities for the URI Software System:

· The system should be able to convert files in the old PDB files to the new XML-based URI format, while still allowing the ability to view the data in the old PDB file format.

· Upon the conversion from the PDB format to the XML-based URI format, the amino acid or nucleic acid sequence of residues in each chain of the macromolecule should be converted from three-letter, space-separated form, to one-letter continuous form. Also each consecutive amino acid should be given a number to indicate its order in the sequence chain

· The system should provide user friendly graphical interfaces to facilitate the following queries:

· When was the last revision and what type of information did it consist of?

· What is the data concerning only the heavy chain or only the light chain?

· What is the data concerning only oxygen (or carbon, nitrogen, etc.) atoms?

· Are there any crystallographic waters, and if so, where in the sequence?

· Where in the amino acid sequence are the disulfide bonds, alpha helices, and beta plated sheets located?

· What are the values of the protein's Phi and Psi angles?

· Which reported regions of the protein’s structure are most well defined (based on the error values associated with the data)?

· Which prolines are cis?  Which prolines are trans?

· Where in the amino acid sequence are the binding sites?

IMPLEMENTATION

1. URI Software System Design

Although this paper focuses primarily on only two of the components belonging to our proposed URI software system (namely on the URI-DTD and the URI PDB-XML Converter, which will be both discussed in detail later), we give an overview of the entire URI system in this subsection. The documents described below can be found at http://homepage.cs.uri.edu/research/brin/URI.

The URI software system has the following components:

· URI-DTD: Document Type Definition file that describes the XML format structure for our URI XML format. (File name: URI_DTD.dtd). (Fully implemented; Discussed in detail in subsection 2)

· URI PDB-XML Converter: a program that takes as input a file in the old PDB format and the URI-DTD file and converts the PDB file into a file in the URI XML format. The URI format is XML based on the grammar rules defined in the URI-DTD. (File name: URI_PDB2XML.pl). (Fully implemented; Discussed in detail in subsection 3). The association between the PDB record types and their corresponding DTD elements is defined in a table placed in a separately defined Perl module (File name pdb_dtd_table.pm), which is linked to the converter. URI-PDB Relational Database: designed to store PDB data. (Currently just hard-coded prototype; see discussion in subsection 4)

· URI XML-DB Loader: a program that takes as input an URI-XML file and stores its data in the Relational Database mentioned above. (Left for future work; see discussion in subsection 4)

· Set of Graphical User Interfaces: to be used for performing queries against URI-XML files, or against database. (Currently just hard-coded prototype; see discussion in subsection 5)

Data-flow Diagram:

The Data-flow diagram seen in Figure 1 pictures the logical architecture of our URI software system, describing the flow of the data among its components.


[image: image2.wmf]
Figure 1: Data-flow Diagram 

The URI PDB-XML Converter converts a given PDB file into a file in URI XML format, following the rules provided in the XML Document Type Definition (the URI-DTD file). The URI PDB-XML Converter is dependent on the PDB and DTD input files, and uses a PDB-DTD association table defined in a linked Perl module. The PDB-DTD association table and the DTD were created by following the rules in the PDB File Format Specification [2]. The XML Query Interface set will interface with either a URI XML file or the contents of the URI-PDB Database. The URI-DB Loader component will load a URI XML file into the URI-PDB Database. The URI-DB Loader is left for future work. The XML Query interface set and the URI-PDB database are left for future work as well, but we have created some basic, hard-coded prototypes.

2. URI-DTD

There are two types of structures that can be used for XML specification and validation: either a DTD (Document Type Definition), or an XML Schema. The purpose of a DTD is to define a set of grammar rules to be followed in creating XML data files. The DTD accomplishes this by defining a list of legal elements. An XML document with correct syntax is called “Well Formed” XML. An XML document is called "Valid" if it is "Well Formed" and if it also conforms to the rules of a Document Type Definition (DTD). We decided to use DTD versus XML Schema due to the fact that the BSML [10] format (previously mentioned in the Background section) is also using DTD, and BSML is a currently evolving standard. More information about DTD and XML can be found from numerous sources, one example being the World Wide Web Consortium (W3C) found at http://www.w3.org, and some good tutorials can be found at http://www.w3schools.com/.

The main building blocks of XML documents are tags that describe the structure of the data contained within them. This data structuring is necessary so that programs that will be using the data will know how to store it, manipulate it and present it. From a DTD point of view, all XML documents are made up by the following building blocks: elements, attributes, entities, PCDATA, and CDATA. Elements are the main building blocks and can contain text, other elements (named "children elements"), or they can be empty. Inside an XML document, tags bearing element names are used to markup the starting and ending of the elements' data. Attributes provide extra information about elements, and are placed inside the starting tag of an element. PCDATA defines parsed character data, which may be placed between the start tag and the end tag of an XML element. CDATA also means character data, but it is used for text that will not be parsed by a parser. The following example shows the DTD definition for one of our elements.

<!ELEMENT source  (#PCDATA)>

<!ATTLIST source pdb_id CDATA #IMPLIED>

<!ATTLIST source source_entry_id_count CDATA  #REQUIRED>

In the above example we can see the DTD definition for the element named source, which will contain PCDATA text contents, and has two associated attributes: the pdb_id and source_entry_id_count, which will both contain CDATA text.

Next we show how this source element is used to structure the data in an XML file created for the PDB record 1MCP:

<source pdb_id="1MCP" source_entry_id_count="1">MOUSE (MUS $MUSCULUS)</source>

In the above example we can see how the data "MOUSE (MUS $MUSCULUS)" gets placed inside the element source, which also gets assigned two attribute values: "1MCP" for the pdb_id attribute and "1" for source_entry_id_count attribute.

A DTD can be declared inline (inside a XML document as an internal reference), or as an external DTD. An internal DTD lets the user easily view the rule specification inside the XML source document. On the other hand, the DTD for URI is large and complicated, and for that reason we choose to declare the DTD of URI stored as a separate file. This latter method avoids including the DTD in every XML file, by only pointing to it as an external file in the DOCTYPE tag of each XML file.

We established the following guidelines for our DTD design: 

1. Assign the XML tag names to be similar to the PDB record type names, but less cryptic. By doing this, we make every tag more meaningful and make the protein file more understandable from the point view of a biologist. The ability to do this is one of the reasons we chose XML as a basis for our URI format. Also this will keep the URI XML format consistent with old PDB format as much as possible.

2. Iteratively group the most logically related PDB record types into common XML elements and then divide them into sub-elements based on their differences. This ensures a data hierarchy and makes the document easy to query and understand. 

3. Compress the same or similar data as much as possible to make the DTD of URI smaller and simpler. This way we avoided the repetition of similar data structures and made the URI file structured and easy to create.

Our DTD defines 379 elements and 143 attributes. The vast majority of the elements declared in the DTD follow our guideline 1, having tag names in direct correspondence to the record types and fields names of the official PDB format specification. Not only does this keep the URI format consistent with the PDB format, and also it helps users familiar with PDB file access URI easily. The correspondence is described in the pdb_dtd_table.pm Perl module that is linked to the converter.

We named the root element of our DTD URI_protein, and we assigned an attribute (pdb_id) to it. This is consistent with the PDB file ID and identifies the protein. 

Following guideline 2, we divided the PDB root element into ten main sub-elements (called “children-elements” in DTD terminology), which in turn are divided into other sub-elements. Below is a snippet from our DTD that defines the root element:

<!ELEMENT URI_protein  (attributes?, annotation?, seq_data?, connectivity_section?, sites?, crystallographic_unit?, orig_matrices?, atom_models?, atom_connections?, bookkeep_info?)>

<!ATTLIST URI_protein pdb_id CDATA #REQUIRED>

Note: In the DTD, the “?” symbol is conventionally used to indicate that a particular element can have one or more instances.

Figure 2 represents the root structure of the DTD for the URI XML format. Every sub-element has an attribute pdb_id that is inherited from the root.

[image: image3.wmf]
Figure 2: Root structure of the URI DTD. Rectangles indicates elements and ovals indicate attributes
3. URI PDB-XML Converter

The purpose of the URI PDB-XML Converter is to take an old PDB file together with a DTD file as inputs, and based on the rules in the DTD (that describe the schema of the XML format), convert the PDB file into a file in the URI XML format.

For the converter's implementation, we chose to use the Perl programming language because of its ability to allocate memory dynamically. This allows code writing at a more abstract level and frees the programmer to concentrate more on the algorithm without losing time to handle memory allocation in the code, giving rise to less error-prone code. Other advantages are Perl's platform independence and its great support for text searching and manipulation. 

Our software design is shown in the Dataflow Diagram seen in Figure 3.
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Figure 3: URI PDB-XML Converter - Dataflow diagram

As seen in Figure 3, the PDB file and DTD file are both received as input to the URI PDB-XML Converter, which ultimately outputs the PDB file contents converted into the URI XML format. Upon reading the contents of the DTD file, the program builds a DTD tree in memory. This DTD tree reflects the structural schema of the XML file that constitutes the final result of the conversion process. Then, upon reading the data from the PDB file line by line, the program uses a recursive algorithm to build a PDB tree in memory. This PDB tree represents the PDB data reorganized in the hierarchy of the XML format. While reading each consecutive line from the PDB file, the recursive algorithm dynamically makes decisions about how to build the PDB tree by retrieving information from the DTD tree and from the PDB-to-DTD table (stored in the Perl module pdb_dtd_table.pm). The PDB-to-DTD table provides the algorithm with the correspondence between each PDB record (and its associated data) that might be read from the PDB file and its corresponding element(s) in the DTD, while the DTD tree provides the tree architecture that needs be followed in building the tree-nodes for each element. Once the PDB tree is completely built, the program reads its contents from top to bottom and creates the XML file output.

3.1. Contributions / Novel Features

The primary contributions of this program are its dynamic approach and the modularity of its design that ensures extensibility and flexibility. We shall describe below the principal characteristics of our design approach.
Building the DTD Tree 

From a conceptual standpoint, the algorithm is a Depth First Search driven by the element definitions found in the DTD file.  As the lines of the DTD file are read and processed, a tree (the DTD Tree) is built from the logical traversal of the element definitions. When the search is finished, the DTD Tree is built and becomes resident in the program memory. The DTD tree is representative of the complete DTD, and is used as a template for converting PDB records to XML.

The input DTD file is parsed by the ReadDTDFile() function, which is responsible for organizing the DTD entries into suitable lists in memory.  The lists are grouped into three areas: Elements, Attributes, and Entities, with special attention being paid to the uniqueness of the entries. Duplicates and logical problems are found and reported to an error-checking function (discussed after the following paragraph).  

The DTD tree is built by the BuildDTDTree() function, incorporating the DTD data structures from the Declarations lists created by ReadDTDFile().  BuildDTDTree() is a recursive function initialized for its first invocation with a DTD node containing the root Element name. The first responsibility of the function is to determine if each Child Element name “Proclaimed” to exist by a Parent Element node, really does exist.  If a proclaimed Element does not exist in the Element Declarations list, an error message and status regarding the situation are returned by the function, otherwise the "proclaimed" element and its parent node are formally defined as “Associated” and the execution continues. The checks and balance of Proclaimed and Associated Elements, as well as situations where two Elements proclaim to have children of the same Element name declaration, are important to ensure integrity.  Similar integrity checks are performed for elements' attributes as well.  After a current Element's integrity is checked, its node’s category is determined and the appropriate XML tags are generated containing the Attributes names inserted in the order in which they are discovered in the DTD file.  If the current Element node is defined to have children, then new child Element nodes are created, made aware of whom their parent is (the current Element node), and are noted as being “Proclaimed”.  Each child Element node is passed in the order in which they are discovered to a recursive call to BuildDTDTree(), so they too may become nodes in the DTD Tree. 

Once the DTD Tree is built, the statistical information gathered while reading and building the DTD Tree, is reviewed by the error-checking function named ReviewDTDTreeForErrors().  If no error is found to have occurred, statistical information is displayed, otherwise an error message is displayed. In the later case, the program will abort and the error message will describe the type of problem found as well as the line numbers in the DTD file that should be checked for correcting the errors. The error review process can guarantee against DTD file problems such as the presence of duplicate Element Declarations, Attributes whose Elements have no declaration ("orphan" attributes), and elements that are declared but do not have any parent-element proclaiming them as children ("orphan" elements). Such type of problems can cause a cascading effect on the amount of orphan Elements and Attributes found. These kinds of errors are determined by comparing the physical existence of entries in the DTD file to the logical DTD tree created from the DTD file. The function BuildDTDTree() accounts for the special-case where two Proclaimed and Realized Elements proclaim to have a child element with the same Element name declaration in the DTD.  We have one such example: the special case of the elements atom and het_atom which both proclaim to have children named sigatm, anisou, and siguij. 

Building a PDB Tree 

The algorithm has three layers that manage the conversion of PDB records to XML at different levels. Each layer has a specific responsibility in the conversion from a top-down text-based data storage approach to an approach where the data is stored in a tree structure, while working independent of each other.  Each layer of the algorithm relies primarily on one data structure to perform its part in building the PDB Tree. This will be explained in the following three paragraphs. 

	******** PDB Node **********

  Node Address: HASH(0x1d21eec)

P.Node Address: HASH(0x1e3dd44)

*********************

   Element: sheets

Attributes: pdb_id CDATA #IMPLIED 

Attributes Name: "pdb_id" 

 BEGIN_TAG: <sheets pdb_id>

    PCDATA: ""

   END_TAG: </sheets>

  Category: LIST

Child Elements: sheet* 

   Visited: White

    Status: NotSatistfied

*********************

Figure 4: PDB Node structure


The outer-layer of the algorithm is a Depth First Search that is performed on the DTD Tree. This layer is supported by a PDB node data structure for building the PDB Tree.  The PDB node, seen in Figure 4, is similar to the DTD node, but with additional elements to aid in the building of the PDB Tree. While traversing the DTD Tree, the PDB Tree is built based on the paradigm of White (New), Gray (Visited), and Black nodes (Visited and Populated with data).  If the current PDB record is found to match the criteria of the current PDB node being built, its data is converted into XML and assigned to the current node of the PDB Tree.  The Status of the PDB node is changed from "UnSatisfied" to "Satisfied" when all data fields of the PDB node have received data. The Visited state of a PDB node denotes a node's discovery state, allowing pruning to occur. Pruning of a child node is performed upon the return from the recursive call building that node, if the color status of the child was not marked "black". The Child Elements list contains the node's children, if any such children exist. For a given record type, if there are multiple records to be located at the same depth in the tree, multiple instances will be created. Each instance of a specific type of child has an instance number, giving it distinction among similar children containing similar type of record information.  The PDB node, once satisfied, will contain all required information to print XML at its location in the PDB Tree.  

	******** LineInfo: "" ********

 Record Name: SHEET

Element Name: sheets

 Record Type: RecMultipleCont

    PDB Line: "SHEET    1   A 2 PHE L  10  THR L  13  0"

      Action: "ParseToMultiChildren"

rfField Hash: "HASH(0x1d10a60)"

** Record Field Keys ** 

   Key Count: 23

 Master Keys: "1_6" "12_14" "15_16" "17_17" "18_20"...

   Curr Keys: "1_6" "12_14" "15_16" "17_17" "18_20"...

   Used Keys: None

** Current Pivot Data **

 Pivot Index: "0"

 Pivot   Key: "1_6"

 Pivot Entry: "sheets"

 M Pivot Key: "0"

** Record Pivot Data **

 Multi State: "2"

       MKey1: "1_6" MKey1 Data: "sheets"

       MKey2: "12_14" MKey2 Data: "sheet"

       MKey3: "0" MKey3 Data: "0"

       MKey4: "0" MKey4 Data: "0"

       MKey5: "0" MKey5 Data: "0"

** Entry ID Count ******

       Count: "0"

************************

 Line Status: "UnProcessed"

************************  

Figure 5: LineInfo structure.


The middle-layer of the algorithm handles the classification of common configurations and is supported by the LineInfo structure, seen in Figure 5.  In this structure, the term "key(s)" is used to denote the character positions (of the 80 character-positions in the PDB files' record lines) which delimit the record's fields that potentially contain data to be stored in a DTD element or attribute. The LineInfo structure contains the record’s information and is initialized when a new PDB record is retrieved. Part of this information is static information, storing the record name, the DTD element name to be targeted, along with the Record Pivot Data section that lists the keys determining the branching locations in the tree. The Record Field Keys (valid field locations of a record), and the Current Pivot Data section, reflect the dynamic state of a record and are initialized with the record’s first field based on the pivot entry provided by the Master (M) Pivot Key. As the PDB line is processed from left to right, the Master Pivot Key is dynamically changed to reflect which field is currently being processed. The "Record Type" determines the sub-algorithm to be used given the general nature of the PDB record, while the "Action" provides the means for yet another more distinct algorithm to be applied, that focuses on the format structure chosen in the DTD rules to be followed for conversion to the XML format.  These two combined allow various desired layouts, ranging between one-record-to-many-nodes and many-records-to-one-node. This supports the definition of a variety of formats in the DTD.   

	#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

'SHEET' =>

{$REC_TYPE => $REC_MULTIPLE_CONT, $EXIST_TYPE => $EXIST_OPTIONAL, 

              $LOGICAL_REC_COUNT =>'',

 $REF_ACTION => {$ACTION => $PARSE_TO_MULTI_CHILDREN, $TOKEN => '18_20'},

 $REF_MULTI_KEY => {$REF_KEY_ORDER =>['1_6', '12_14'], 

                    '1_6'=>'sheets', 

                    '12_14'=>'sheet'},

 $REF_FIELD => {'1_6'=>'sheets', '12_14'=>'sheet_id',  

      '15_16'=>'num_strands', '18_20'=>'strand_begin_residue', 

      '22_22'=>'strand_begin_chain_id', '23_26'=>'strand_begin_seq_num', 

      '27_27'=>'strand_begin_insertion_code', '29_31'=>'strand_end_residue', 

      '33_33'=>'strand_end_chain_id', '34_37'=>'strand_end_seq_num',

      '38_38'=>'strand_end_insertion_code', '39_40'=>'strand_sense', 

      '42_45'=>'curr_strand_atom', '46_48'=>'curr_strand_residue', 

      '50_50'=>'curr_strand_chain_id', '51_54'=>'curr_strand_seq_num', 

      '55_55'=>'curr_strand_insertion_code', '57_60'=>'prev_strand_atom', 

      '61_63'=>'prev_strand_residue', '65_65'=>'prev_strand_chain_id', 

      '66_69'=>'prev_strand_seq_num', '70_70'=>'prev_strand_insertion_code'}},

###########################################################################

Figure 6: One record definition from the PDB-to-DTD table (PDB_DTD_TABLE.PM).


The inner-layer of the algorithm focuses on real-time processing of a PDB line and is supported by the LineInfo structure together with the PDB-to-DTD table seen in Figure 6.  Populating a PDB node with PDB record information occurs by combining the information from the Current Keys and the PDB-to-DTD table. This information is stored in the Current Pivot Data section of the LineInfo structure. The Current Keys and Used Keys give the current processing state of a line in context to the possible fields that could contain data for a given PDB record (see again Figure 5). When a key becomes the first in the Current Keys list, it also becomes the Pivot Key, which is used to retrieve a specific Element or Attribute from the PDB-to-DTD table, and is placed in the Pivot Entry of the Current Pivot Data section. Once the Pivot Entry is found to match an Element or Attribute of some PDB node, the Pivot Key is used to transfer the data found at that field location in the PDB Line into the PDB node. After all keys have been processed and are on the Used Key list, the Line Status of “Processing” is changed to “Processed”.  

The PDB-to-DTD table, provided separately from the main converter program, uses a novel means to classify PDB records into categories. Each record category is to be handled by a slightly dissimilar algorithm, while all algorithms use a general method to process the records. A record category has two aspects to it, the Record Type, which focuses on the PDB record types defined by the “Protein Data Bank Contents Guide” [2], and the Action, which focuses on the style of the XML format desired.

Our PDB-to-DTD table declares each PDB record as belonging to one the following Record Types:

· Single - Records may only appear once in a single line of a file and it is an error for duplicates of any of these. 

· Single Continued - Records that conceptually exist only once in an entry, but the information may exceed the number of columns. These records are continued on subsequent lines. 

· Multiple - Most record types appear multiple times, in groups where the information is not logically concatenated but is presented in the form of a list. 

· Multiple Continued - There are records that conceptually exist multiple times in an entry, but the information content may exceed the number of columns available. 

· Group - Records used to group other records.  

· Other - The remaining record types have a detailed inner structure. 

The algorithms that are used for processing various Record Types can use the following types of Record Actions:

· CONCAT - Allows a PDB node to have the data of consecutive similar record lines placed onto it. 

· PARSE - Allows a PDB node to process a line’s field data by placing it into many children nodes.

· PARSE_TO_MULTI_CHILDREN - Allows a PDB node to process multiple lines as a single set of children descendants.

· READ – Processes the record with the most generic algorithm defined for a category.

· SEARCH - Allows a PDB node to process any of its children multiple times in any order.
Table 1 shows which actions can be associated with which record types.

Table 1: Record Types - Actions associations

	Record Type / Function
	READ
	PARSE
	PARSE_TO_MULI _CHILDREN
	SEARCH
	CONCAT
	CONCAT

	Used in function:
	BuildPDB
	BuildPDB
	BuildPDB
	BuildPDB
	BuildPDB
	Visit

	REC_SINGLE:
	YES
	N/A
	N/A
	N/A
	N/A
	N/A

	REC_MULTIPLE:
	YES
	N/A
	N/A
	YES
	N/A
	N/A

	REC_SINGLE_CONT:
	N/A
	YES
	N/A
	N/A
	N/A
	YES

	REC_MULTIPLE_CONT:
	N/A
	YES
	YES
	YES
	YES
	YES

	REC_OTHER:

REC_GROUP:
	Special Branching function BuildOTHERTree() that calls user defined function to process record type. 

Multiple PDB field formats are defined for a record. 
	YES




The Significance Of The PDB-To-DTD Table

The PDB-to-DTD table is the key-factor in allowing a general three-layered algorithm to handle the conversion of all the various PDB records to any desired XML formats, without having to know too much detail about the PDB record or the XML format.  With the PDB‑to‑DTD table and the other data structures presented above, the three-layered algorithm is able to manage, at different levels, the conversion of PDB records to XML.  Each layer's specific responsibility is transparent to the other layers, while all layers process distinct records that have had their specifics virtualized.  

Moreover, this design approach of using a PDB-to-DTD conversion table defined separately from the main converter algorithm ensures extensibility and flexibility. Our converter can be easily adjusted to changes in the PDB files format and the DTD, by modifying accordingly the PDB-to-DTD table, without any changes needed to the main converter algorithm. It can also handle as input any text file (other than PDB files) as long as a new conversion table is designed (to replace the PDB-to-DTD table), based on the specifics of the data layout in the given text file and the XML structure described in a new DTD file.
4. URI-PDB Database

Retrieving desired information about particular proteins is a challenging task faced by the scientists/biologists, especially from PDB files in the old plain text format. Even with the improvements brought by converting the PDB files to the URI XML format, storing the information for all the proteins in one centralized relational database will improve the storage efficiency and allow quick retrieval of pertinent information. 

The problem of XML query is still actively researched, both involving XML-native techniques (XQuery, XPath, XML-QL [11, 12, 13]), as well as techniques that leverage on the already established query systems in relational databases by shredding and mapping XML to RDBs (i.e. Edge approach [14], Inlining techniques [15], Cost based approaches [16,17], and Theoretical approach to Normal Forms for XML [18]). 

The latest research work concerning XML-RDB mapping (published in November 2004) discusses the recent approaches and proposes ShreX, a XML-to-relational mapping framework and system that provides the first comprehensive solution to the relational storage of XML data [17].

Commercial solutions to XML-RDB mapping are already available, both as utilities part of commercial database products (thus to be used exclusively with those products), as well as database-independent utilities: 

· Database-dependent utilities: Oracle XML-SQL Utility (XSU) [19] models XML document elements as a collection of nested tables (however there are limitations and laborious workarounds [20, p.5]. IBM DB2 XML Extender [21] allows storing XML documents, the mapping between XML and the DB2 tables being accomplished by using a Data Access Definition (DAD) file. Microsoft approaches the problem by introducing a new OPENXML row set function [22]. Sybase Adaptive Server introduces a ResultSetXml Java class for XML mapping [23, 24].

· Database-independent utilities: MapForce 2005 is a  XML / database / flat file / EDI data mapping tool produced by the Altova software company [25]. Allora is Real-time, bi-directional XML-RDB transformation Java middleware, produced by the Hit Software company, which works with any relational database that has a JDBC or ODBC connector [26].

We chose the Microsoft Access 2000 relational database for the prototype implementation of the database structure needed to store the data from our URI files. We made this choice based on the fact that Microsoft Office is a popular software, thus we think it is a good chance scientists in many organizations will have it available. In the future, a more robust relational database such as Oracle or SQL Server may have to be used to deal with the volume of data that is present in PDB files. 

To map the URI XML DTD to a relational database we reviewed some of the commercial tools available for converting DTD to database schema, like Altova XML Spy and WinAllora Express. These are good quality software with a well-designed user interfaces. However, we found that it requires a lot of work to configure these software applications for mapping the URI DTD to the database in the desired structure. Also, the listed tools are somewhat expensive, e.g., the cost of XML Spy software suite is about $999.99 (without maintenance and support). 

For these reasons, we decided the best solution would be to design a software component able to load the URI XML files into a relational database creating its DTD-based mapping on the fly. This is left for future work.

For the time being, in our prototype we did the mapping and the insertion of the data for one example protein (1MCP) manually. Once this was achieved, our prototype database was ready for testing querying the database to retrieve the desired information. However, we note that at the time we performed the manual insertion for our example protein, our URI PDB-XML Converter was not completely implemented, thus we used a prototype XML for the 1MCP protein that was manually created based on our initial design for the DTD rules. In the meantime, while finishing the implementation of the converter, our DTD changed, but the database prototype is still sufficient to illustrate the possibilities it offers for efficient queries.

5. XML Query Interface Set

The goal of our Query Interface Set is to provide queries written in HTML able to target the protein data stored both in XML files and in the URI-PDB database. We have partially implemented prototype queries targeting the protein data stored in XML form and in the URI-PDB database. Their completion is left for future work. 

The Universal Research Interchange (URI) interface is used to display specific data from a PDB file in URI XML format, find a protein by sequence, and to search the URI PDB database for specified queries.  The queries that we focused upon involved the access of information about phi/psi angles, bonds, binding sites, revisions, proteins well defined, cis and trans prolines, crystallographic waters, amino acid chains, and specific molecules of the protein.

The query results are displayed by using XSL (eXtensible Stylesheet Language). XSL is the preferred style sheet language to handle displaying XML data. One way to use XSL is to transform XML into HTML before the browser displays it. For that, we add a XSL reference with the syntax <?xml-stylesheet type="text/xsl" href="filename.xsl"?> on the second line of the XML file, that links the XML file to the XSL file. 

Since our design is in rough prototype stage, we hard-linked parts of the XML file for each query. For example, each query has its own XML file and XSL file to display the query results.  The XML file is linked in the HTML "Select Search Type" drop‑down menu.  When a query is selected, the XML file for that query is displayed according to the XSL style sheet that determines what values from the XML file are to be displayed.  To save space, every query contains a short version of the full XML file that contains only the specified areas of the full XML file that are needed for the query. For sequence searching, a section was taken out of the full XML document for that protein and used to create a short XML document containing the proteins PDB ID, name, and full amino acid sequence.  When a letter sequence is inputted, the HTML page uses JavaScript to search through the sequence tags in the XML file and matches the inputted letter sequence with the proteins sequence in the XML.  If a match occurs then the protein PDB ID and name are displayed. This approach of hard-coding the XML into the queries has to be changed in future work, and allow just one XML file for each protein to be accessed by all the queries that need to work with it.  

Figures 7, 8 and 9 show a few examples of Use-Case scenarios, describing the user interaction with the query interface:

Figure 7 shows the interface for searching for a protein by a part of the sequence. 
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Figure 7: Searching for a protein by a part of the sequence

The following steps need to be preformed:

1. User opens interface.

2. User selects "Sequence Search" from search selection menu.

3. User enters amino acid sequence into the text box, then clicks search button.

4. Text entered is searched through all "sequence" tags in the database.

5. Match is made between entered text and sequence.

6. Protein amino acid sequence is displayed on the interface.

7. Search continues until all sequences matching the entered text are found.

Figure 8 shows the interface for finding previous revisions of a PDB entry.
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Figure 8: Find previous revisions of a protein

The following steps need to be preformed:

1. User opens interface.

2. User selects “Protein List” from the main menu, then selects the 1MCP protein, then selects "Revisions" from drop down search selection menu.

3. User enters PDB ID # for protein into text box.

4. User clicks search button.

5. Text entered is searched through all "PDBid" tags in the database.

6. Protein is found matching PDB ID #.

7. The data for previous revisions is found in XML data file.

8. Previous revisions data is displayed on the interface.

The results of the query described in Figure 8 are shown in Figure 9.
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Figure 9: Find previous revisions of a protein: Results
RESULTS AND DISCUSSION

1. Problems Encountered

During the software development stages, we encountered various problems: For the computer science members of our team, the amount of background research we needed to perform was much greater than expected in the beginning of the project. We also underestimated the amount of work needed to create a complete and valid DTD. The DTD has to define elements in correspondence to all the possible record types that might exist in the PDB files. The official PDB file format specification document [2] that describes all the PDB record types has over 150 pages that we had to study, understand, and decide how to define corresponding DTD elements based on it.

We discovered that certain "logical" errors in the DTD could pass the XML validators. The problem with using the available free XML validators for the purpose of validating the structure of a DTD document is that it works only by testing XML documents that use the entire collection of elements declared and defined in the DTD. For example, an XML validator will not detect "orphaned" elements that are defined in the DTD but are not declared as children of any other elements in the DTD hierarchy tree, if the tested XML file is not actually using them. Thus we added our own DTD validation algorithms in the URI PDB-XML Converter, which checks for both “physical” errors (that would be caught by the XML validators), and for the type of logical DTD errors mentioned above, while parsing the contents of the DTD file and building the DTD tree in memory. 

Initially we were planning to use either Java or C++ for the implementation of the URI PDB-XML Converter, but subsequently, after some failed attempts, we realized that Perl was a better choice (See the details presented earlier, in the subsection 3 of the Implementation section).

We were also planning to simplify our programming work by using some middleware (i.e. XML Spy for data transferring between XML document and relational database). Upon researching those possibilities, we arrived to the conclusion that we could not use them in our particular situation (See the details presented earlier, in the subsection 4 of the Implementation section).

2. Contributions Of The URI Software System

The URI Project explores a possible solution (The URI Software System) to improve the usability metric of the old text-based format (PDB) for storage and access of experimentally determined three-dimensional structures of biological macromolecules.

Our URI Software System solves the following usability problems of the PDB format:

Browsing Difficulties: The PDB file format is using plain ASCII text files, with data written over thousands of lines, thus it is difficult to browse for obtaining the needed information. Our URI PDB-XML Converter facilitates transferring the data from old PDB files into XML files, which allow various ways of display (i.e., using HTML code, or XSL, etc.). Even just displaying an URI XML file directly in the Internet Explorer (IE) browser, provides a major improvement in the ability of browsing the contents of a file: when you open an XML document in IE, it will display the document with color-coded root and child elements, and plus (+) or minus (-) signs to the left of the elements, which can be clicked to expand or collapse the element structure. 

Partial Data Extraction Difficulties: The data entries in the PDB format follow strict line positioning rules that cause cumbersome spaces, which create difficulty in extracting (by copy-and-paste methods) partial information from various places in the file. Our URI format eliminates such logically unnecessary spaces, thus making easier to extract partial information.

Queries Difficulties: Since the old PDB files are text-based, queries on PDB data files stored locally on the scientists' computer stations are limited to just the basic functionality offered by the “Find…” option from the Edit menu of the text editor that is used to display the PDB file. Our URI Software System offers the possibility of performing queries using friendly Graphical User Interfaces, currently custom tailored based on the requirements presented by the biologists in our university, and which can be easily extended to accommodate other requests.

Data Structure Efficiency: The structure for storing the data in the old PDB files is rudimentary by today’s standards. Biologists who have their own locally stored collection of old PDB files rely on the ability of the File System of their Operating System, thus they have to use the Operating system’s interface (i.e. Windows Explorer, or My Computer) to locate and open PDB files. Our URI Software System proposes to use a relational database (i.e., the URI-PDB database) to store the PDB files in a centralized location. This improves the efficiency of data storage and offers the possibility of performing queries against more than one protein file at a time, facilitated by easy-to-use graphical interfaces.

Design Modularity / Options Flexibility: The URI software system features an extensible design able to accommodate additional or modified queries. Our URI PDB-XML Converter is extensible, and easily modifiable to handle changes in input format and DTD structure. It can also be easily integrated with other software supporting a web interface, compiled or ad hoc queries, and a mapping from the XML file to a DBMS. The software is documented and freely available.

3. Future Work

We chose to use recursion in our URI PDB-XML converter because it logically fits better with the tree-structure of the DTD, thus it allows code writing to be more compact and less error-prone. However, due to its recursive approach, our converter is slow in producing its output given large PDB files as input. While this might be considered acceptable in view of the fact that the converter has to be used only once per each PDB file, it might still be beneficial to change its design from using recursion to a top-down loop-based approach, in order to improve its time performance. This was too difficult and error prone to do this in the first prototype of the converter, but now that we have implemented and tested the Perl code, it will be straightforward to re-code in a more efficient fashion. We also note that the converter runs substantially faster when run in the Unix environment, and that should be analyzed closer in future work.  

Currently our URI PDB-XML Converter requires the DTD to have its elements declarations typed in contiguous lines. We handled this limitation by printing error messages that clearly describe the problems found, including line numbers in the DTD file. For the future, this feature should be examined to determine if the ability to handle DTD files with elements declarations over multiple lines (separated by LineFeed-CarriageReturn sequence) should be added.

Our prototypes for both the XML queries and the URI-PDB database were created before our design and implementation work for the URI PDB-XML Converter was fully finished. For this reason, we manually created an XML file prototype (named “1mcp_dtd_inter.xml”), which is a shortened XML representation of the 1MCP PDB file, based on our initial DTD concept. This XML prototype was used for both the XML queries and the URI-PDB database. However, during the design of the URI PDB-XML Converter, the DTD defining the XML schema was substantially changed. Therefore, both the XML queries and the URI-PDB database will have to be adjusted to reflect our latest version of our DTD.  

Since for the illustration of our approach we manually entered the 1MCP protein data into the URI-PDB Database prototype, the data is limited to a minimal set of records, and also the relational tables we created do not reflect our final DTD design. Future work is needed to design and implement the URI XML-DB Loader. This program should have the ability to create the relational database tables according to a given a XML structure defined by a DTD, as well as to take any URI XML file as input and properly store it in the relational database. For the design of such program, more research should be performed to decide if the process might benefit by a conversion from DTD to XML Schema.

CONCLUSIONS 

The URI Software System is a solution that improves the usability metric of the old text-based format (PDB) for storage and access of biological macromolecules data. It features the fully implemented URI PDB-XML converter that converts data from old PDB format files into a much more efficient format based on XML. Our proposed system also includes a relational database prototype for storing the PDB data, and a set of query interface prototypes. These query prototypes feature friendly graphical user interfaces and target the PDB data stored in XML files produced by our converter, and in our prototype relational database. The URI PDB-XML converter's design is extensible, and easily modifiable to handle changes in input format and DTD structure. Such changes could range from minor modifications in the format of the PDB files, to handling any other text files as input (other than PDB files, and thus following a different DTD) by just creating a appropriate conversion table to replace the PDB-to-DTD table, and without any major changes needed in the main converter algorithm.
AVAILABILITY AND REQUIREMENTS 

All the documentation and software files for the URI software system can be freely accessed at http://homepage.cs.uri.edu/research/brin/URI. The URI PDB-XML Converter can be run in a Windows Command prompt window, or at the Unix command line, and a user's manual with detailed instructions is available at the URL mentioned above. The converter is platform independent, thus there are no special requirements for running it aside from needing to have Perl installed. Perl is available for free download from http://www.activestate.com/Products/ActivePerl/. The DTD files (extension .dtd), the Perl source files (.pl and .pm), as well as the files in the old PDB format (extension .ent), can be opened for viewing and/or editing in any text editor. The XML files produced by the URI PDB-XML Converter can be viewed in any web browser, and their source can be viewed/edited in any text editor.
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FIGURE LEGENDS

Figure 1: Data-flow Diagram.
Figure 2: Root structure of the URI DTD. Rectangles indicates elements and ovals indicate attributes represents the root structure of the DTD for the URI XML format.

Figure 3: URI PDB-XML Converter - Dataflow diagram.
Figure 4: PDB Node structure.
Figure 5: LineInfo structure.

Figure 6: One record definition from the PDB-to-DTD table (PDB_DTD_TABLE.PM).

Figure 7: Searching for a protein by a part of the sequence.
Figure 8: Find previous revisions of a protein.
Figure 9: Find previous revisions of a protein: Results.
TABLES AND CAPTIONS

Table 2: Record Types - Actions associations.
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