
1

1

Distributed Real-Time Combat SystemsDistributed Real-Time Combat Systems

 Russ Johnston
 SPAWAR Systems Center
 russ@spawar.navy.mil

2

◆ Combat Systems and C2 Systems need to share data
and functionality under real-time constraints.

◆ A need to maintain a consistent set of data at a
specified level of QoS with the ability to enforce QoS
tradeoffs in the middleware, databases, operating
systems and networks.

◆ There is a need for heterogeneous data access, data
sharing and data distribution across multiple platforms
which may have different QoS requirements.

◆ Distributed systems need to meet specified timing
constraints with the ability to negotiate for the QoS
initially statically and then dynamically.

Operational Issues

2

3

Real-Time QoS Data and Functionality Sharing Using
Distributed Object-Oriented Middleware

Real-Time Object-Oriented Middleware

Combat System Network
Combat Systems Network

Real-Time Object-Oriented Middleware

Command & Control
Network

Combat system data
and server objects

C2 system data
and server objects

Real-Time OO DB

Command & Control
Network

Operational Issues

4

◆ Design real-time QoS model which enables the
 expression of time critical concepts and levels of QoS.

◆ Develop a multi-layered QoS negotiation schema which
 will provide a mathematical basis for synthesizing the
 parameters (real-time, accuracy, fault-tolerance & security).

◆ Develop a scheduling & analysis capability which provide
 metrics with respect to the synthesis of the parameters.

◆ Design a modular framework to support the system design
 and enable the insertion of custom solutions.

◆ Design real-time collaborative services which insure a
 consistent and current view of the data backed by
 guarantees and enforcement of timing constraints.

Technical Approach

3

5

Application-

level client

Middleware

layer

Operating

System layer

Other system

layers

...

Request:
(D,E,A,P,S)

Request:

(D,E,A,P,S)

Request:

(D,E,A,P,S)

Reply:
(D’E’,A’,P’,S’)

Reply:
(D’E’,A’,P’,S’

)

Reply:
(D’E’,A’,P’,S’)

Application-

level server

Middleware
layer

Operating

System layer

Other system

layers

...

Reply:
(D’E’,A’,P’,S’)

Reply:
(D’E’,A’,P’,S’)

Reply:

(D’E’,A’,P’,S’)

Request:

(D,E,A,P,S)

Reply:

(D’E’,A’,P’,S’)

Engineering
 Tools

Real-Time Scheduling Analysis

RTItemServer

createRTItem()
deleteRTItem()
getRTItem()
getRTItemByName()
getRTItemsOwnedBy()
getRTItem Count()
getName()
getIOR()

RTAttribute <type>

value : <type>
time : long
imprecision : <type>
update_flag : boolean

getValue()
setValue()
getTime()
setTime()
getImprecision()
setImprecision()
getValueConstraint()
getTimeConstraint()
getImprecisionConstraint()

CF <s ize>

CF_array : Array

getCF()

uses

ObjectUpdateThread

ObjectUpdateThread()
run()

RTObject

method_count : int
Active_method : Vector
Waiting_method : Vector

SLM_lock()
SLM_release()
UpdateAttribute()

{constaints}

consists

consists

gUpdateThread

RTItem

getId()
setId()
getName()
setName()
getType()
setType()
getLink()
setLink()
getOwner()
setOwner()
getImagePath()
setImagePath()

extends

consists

RTItemServerSaveThread

ItemServerSaveThread()
run()

gSaveThread

Modeling

QoS Negotiation

Reference Architecture

Client

...

RT Operating System Real-Time ORB RT Operatin g Systems

Offline RT Analysis
and Prototyp ing

Network Network

System Designer RT QoS
Server
Object

RT QoS
Server
Object

RT QoS
Server
Object

RT
Sched

Service

QoS
Dynamic
Binding

(RT
Trader
Service)

Real-Time Object-Oriented Middleware

Combat System Network

Combat Systems Network

Real-Time Object-Oriented Middleware

Command & Control
Network

Combat system data
and server objects

C2 system data
and server objects

Sharing Real-Time
Data and Server
Objects Through

Real-Time MiddlewareCommand & Control
Network

Real-Time OO DB

Technical Approach
Operational

Need

RT
Collaborative
Services, QoS

Agents,
Transition

Programs and
Applications

Architecture

RT QoS Middleware

6

Accomplishments
◆ Implementation of the network-centric real-time QoS middleware algorithms

and mechanisms. (static scheduling, dynamic scheduling, load shedding/
reduction, dynamic binding, data replication)

◆ Implementation of QoS model in International Standard Unified Modeling
Language (UML)

◆ Implementation of real-time QoS analysis tool with input from UML model and
output to RT QoS middleware

◆ Implementation of QoS negotiations among real-time agents. (Accuracy vs
Real-Time)

◆ Transitions:
– Military programs (Coalition Forces, Virginia Class Sub, COF, Raytheon,

Lockheed/Martin, Boeing, Mitre, TRW)
– International standards (RT CORBA 1.0, RT CORBA 2.0, UML)
– Commercial products (Analysis Tool, Scheduling Service, UML tools, WindRiver

RTOS, Rational Software tools, Lineo Embedded Linux, OIS ORB)
– Academic publications (IEEE TDPS, 2 Real-Time Systems Journal, conferences)

4

7

• The ability for combat systems and C2 systems to share
data and functionality under real-time QoS constraints.

• The ability to design and implement systems using a
COTS middleware approach that many programs are
adopting.

• New algorithms, mechanisms, and analysis techniques
for distributed real-time QoS middleware.

Operational Payoff

8

Collaboration: Real-Time Support In Common
Object Framework (COF)

l Enhanced Data Integration - Object interfaces to legacy data types
l CORBA based Systems Framework
l COTS/GOTS Re-use
l Distributed Environment
l Extendable for new technology
l Transportable to other platforms

Mission Planners

Maps

Correlators

Analysis Tools

JTT/CIBS-M
TRS

Imagery

OOB

Historical

Fusion

Reference

TDDS
TIBS

COF

DRCS Real-time QoS
middleware enforces
real-time constraints
in COF CORBA
framework

Trudy Morgan, SPAWAR System Center SD

5

9

Collaboration: Adaptive Resource Management in
Asynchronous Real-Time Distributed Systems

◆ Real-time computer systems for
mission management

◆ Significant run-time
uncertainties
– Execution times, communication

delays, event arrivals, etc.

◆ Require decentralization
– Distributed application

resources
– Survivability

– Meeting response time
requirements

sensors filter evaluate &
decide

act actuators

Task 1: detect

Task 2: engage

operator

Task 3: guide-missile

Timing constraint

Timing constraint

Timing constraint

Binoy Ravindran, Virginia Tech University

DRCS real-time QoS middleware
algorithm and methodology sharing

10

Technical SolutionTechnical Solution

Dr. Victor Fay-Wolfe
 University of Rhode Island
wolfe@cs.uri.edu

6

11

Application-

level client

Middleware

layer

Operating

System layer

Other system

layers

...

Request:
(D,E,A,P,S)

Request:

(D,E,A,P,S)

Request:

(D,E,A,P,S)

Reply:
(D’E’,A’,P’,S’)

Reply:
(D’E’,A’,P’,S’

)

Reply:
(D’E’,A’,P’,S’)

Application-

level server

Middleware
layer

Operating

System layer

Other system

layers

...

Reply:
(D’E’,A’,P’,S’)

Reply:
(D’E’,A’,P’,S’)

Reply:

(D’E’,A’,P’,S’)

Request:

(D,E,A,P,S)

Reply:

(D’E’,A’,P’,S’)

Engineering
 Tools

Real-Time Scheduling Analysis

RTItemServer

createRTItem()
deleteRTItem()
getRTItem()
getRTItemByName()
getRTItemsOwnedBy()
getRTItem Count()
getName()
getIOR()

RTAttribute <type>

value : <type>
time : long
imprecision : <type>
update_flag : boolean

getValue()
setValue()
getTime()
setTime()
getImprecision()
setImprecision()
getValueConstraint()
getTimeConstraint()
getImprecisionConstraint()

CF <s ize>

CF_array : Array

getCF()

uses

ObjectUpdateThread

ObjectUpdateThread()
run()

RTObject

method_count : int
Active_method : Vector
Waiting_method : Vector

SLM_lock()
SLM_release()
UpdateAttribute()

{constaints}

consists

consists

gUpdateThread

RTItem

getId()
setId()
getName()
setName()
getType()
setType()
getLink()
setLink()
getOwner()
setOwner()
getImagePath()
setImagePath()

extends

consists

RTItemServerSaveThread

ItemServerSaveThread()
run()

gSaveThread

Modeling

QoS Negotiation

Reference Architecture

Client

...

RT Operating System Real-Time ORB RT Operatin g Systems

Offline RT Analysis
and Prototyp ing

Network Network

System Designer RT QoS
Server
Object

RT QoS
Server
Object

RT QoS
Server
Object

RT
Sched

Service

QoS
Dynamic
Binding

(RT
Trader
Service)

Real-Time Object-Oriented Middleware

Combat System Network

Combat Systems Network

Real-Time Object-Oriented Middleware

Command & Control
Network

Combat system data
and server objects

C2 system data
and server objects

Sharing Real-Time
Data and Server
Objects Through

Real-Time MiddlewareCommand & Control
Network

Real-Time OO DB

Technical Approach
Operational

Need

RT
Collaborative
Services, QoS

Agents,
Transition

Programs and
Applications

Architecture

RT QoS Middleware

12

Client

...

RT Operating System Real-Time ORB RT Operating Systems

Offline RT Analysis
and Prototyping

Network Network

RT QoS Middleware Architecture

System Designer RT QoS
Server
Object

RT QoS
Server
Object

RT QoS
Server
Object

RT
Sched

Service

QoS
Dynamic
Binding

(RT
Trader
Service)

7

13

Application-

level client

Middleware

layer

Operating

System layer

Other system

layers

...

Request:
(D,E,A,P,S)

Request:

(D,E,A,P,S)

Request:

(D,E,A,P,S)

Reply:
(D’E’,A’,P’,S’)

Reply:
(D’E’,A’,P’,S’

)

Reply:
(D’E’,A’,P’,S’)

Application-

level server

Middleware
layer

Operating

System layer

Other system

layers

...

Reply:
(D’E’,A’,P’,S’)

Reply:
(D’E’,A’,P’,S’)

Reply:

(D’E’,A’,P’,S’)

Request:

(D,E,A,P,S)

Reply:

(D’E’,A’,P’,S’)

Engineering
 Tools

Real-Time Scheduling Analysis

RTItemServer

createRTItem()
deleteRTItem()
getRTItem()
getRTItemByName()
getRTItemsOwnedBy()
getRTItem Count()
getName()
getIOR()

RTAttribute <type>

value : <type>
time : long
imprecision : <type>
update_flag : boolean

getValue()
setValue()
getTime()
setTime()
getImprecision()
setImprecision()
getValueConstraint()
getTimeConstraint()
getImprecisionConstraint()

CF <s ize>

CF_array : Array

getCF()

uses

ObjectUpdateThread

ObjectUpdateThread()
run()

RTObject

method_count : int
Active_method : Vector
Waiting_method : Vector

SLM_lock()
SLM_release()
UpdateAttribute()

{constaints}

consists

consists

gUpdateThread

RTItem

getId()
setId()
getName()
setName()
getType()
setType()
getLink()
setLink()
getOwner()
setOwner()
getImagePath()
setImagePath()

extends

consists

RTItemServerSaveThread

ItemServerSaveThread()
run()

gSaveThread

Modeling

QoS Negotiation

Reference Architecture

Client

...

RT Operating System Real-Time ORB RT Operatin g Systems

Offline RT Analysis
and Prototyp ing

Network Network

System Designer RT QoS
Server
Object

RT QoS
Server
Object

RT QoS
Server
Object

RT
Sched

Service

QoS
Dynamic
Binding

(RT
Trader
Service)

Real-Time Object-Oriented Middleware

Combat System Network

Combat Systems Network

Real-Time Object-Oriented Middleware

Command & Control
Network

Combat system data
and server objects

C2 system data
and server objects

Sharing Real-Time
Data and Server
Objects Through

Real-Time MiddlewareCommand & Control
Network

Real-Time OO DB

Technical Approach
Operational

Need

RT
Collaborative
Services, QoS

Agents,
Transition

Programs and
Applications

Architecture

RT QoS Middleware

14

RT QoS Modeling

◆ UML modeling of timing and QoS constraints

◆ UML modeling of real-time QoS objects

◆ Analysis modeling of RT QoS middleware

8

15

QoS in Real-Time UML

◆ Responded to OMG Request for Proposal For RT
Unified Modeling Language (UML)

◆ Not an extension to the UML metamodel, but a set of
domain profiles for UML

◆ Goals
– Enable the construction of models that could be used to make

quantitative predictions regarding the characteristics of
schedulability, performance and time

– Facilitate communication of design intent between developers
in a standard way

– Enable interoperability between various analysis and design
tools

16

Profile Domain Packages
CommonBase

Infrastructure

EnhancedTimeRT_CORBA

Resource

Time Concurrency

AnalysisMethods

Schedulability
Analysis

9

17

Modeling Resources - The QoS
Framework

◆ Resource: a model element that has some finite properties
– reflects some finite physical quantity

– may be logical (e.g., buffers) or physical

– resources offer services (client-server model)

– need to quantify the demand/supply of services

◆ Quality of Service (QoS): a (usually quantitative)
specification of:
– the level of service required by a client from a resource or

– the level of service offered by a resource to its clients

18

ResourceClient

The General Resource Model

AnalysisContext

ResourceService

QoSCharacteristic

0..n +offeredQoS

Resource

0..n0..n

ResourceUsage

+requiredQoS

0..n

1..n

1..n

1..n

1..n

1..n0..n 1..n0..n

+offeredQoS

0..n

1..n0..n

/

{ordered}

0..nScenarioEvent ScenarioStep ScenarioResourceClient

0..1

0..1

0..n

0..1

0..n

0..1

/

0..n

1

/

0..n +participants 0..n

0..10..1 0..1

10

19

Profile Stereotypes for Resource Model

ModelElement
<<metaclass>>

GRMstereotype
<<stereotype>>

GRMresource
<<stereotype>>

GRMresourceService
<<stereotype>>

GRMresourceUsage
<<stereotype>>

<<stereotype>>

realize
<<stereotype>>

GRMrealize
<<stereotype>>

GRMqosCharacteristic
<<stereotype>>

GRMreqEnv
<<stereotype>>

GRMaccessControlPolicy
<<stereotype>>

GRMcontext
<<stereotype>>

20

Profile stereotypes (cont.)

GRMresource
<<stereotype>>

GRMprotectedResource
<<stereotype>>

GRMunprotectedResource
<<stereotype>>

GRMactiveResource
<<stereotype>>

GRMpassiveResource
<<stereotype>>

protection activeness

GRMresourceService
<<stereotype>>

GRMexclusiveService
<<stereotype>>

GRMnonExclusiveService
<<stereotype>>

GRMacquire
<<stereotype>>

GRMrelease
<<stereotype>>

11

21

Sample Schedulability Analysis (SA)
Profile

S AE vent:
 S AR elativeDeadline = 400 ms
 S AIns tances = 1
 S AOccurrencePattern = “exponential” 625

22

Model Processing Framework

Generic UML
Model

Value Set

Model
Valuator

UML
Model

Processing
Specification

Model
Processor

Model
Editor

Value Set

Analysis
Results

Model
Updater

12

23

Why Apply RMA to UML?

◆ UML addresses system structure and function
– Multiple views of the system
– Encourages top-down design
– Ignores timing characteristics

◆ RMA addresses system timing characteristics
– Uses the same system system structure
– Ignores the functional characteristics

◆ Two abstractions for the same system
– Same structure
– Different thinking

24

The Usual Approach

◆ Focus on function
– Meet the functional requirements

– Timing is a requirement, but is too difficult to address

◆ Timing issues are addressed late in the process
– Usually during system integration

– The symptom … sporadic failures

◆ Architectural changes are very expensive
– Most timing problems require architectural changes

– Usual consequence is an “over engineered” system

13

25

A Better Approach

◆ Integrate timing considerations throughout the process
– Start early in the design

– Refine and update timing in concert with functional refinements

◆ Make timing specifications visible in the UML
– Removes the dichotomy of functional and timing abstractions

– Let tools construct the timing model

◆ Require timing validation during design, unit test, and
integration

26

What Does RMA Reveal?

◆ RMA is static analysis
– Not dynamic
– Not simulation

◆ RMA establishes a bound for schedulability
– A system is guaranteed to be schedulable within the

bound
– A system may run outside the bound, but is not

guaranteed
◆ RMA shows how system resources are used

– CPU and other “active” resources
– Passive resources
– Physical and logical resources

14

27

When is a Task Schedulable?

◆ A task is schedulable if its worst case completion time is
less that its deadline.

◆ Worst case completion time accounts for three classes of
time
– Work - execution of the task itself

– Preemption - execution of higher priority tasks

– Blocking - execution by lower or equal priority tasks when the task is ready for
execution

deadlinedeadline

preemption blockingwork

28

Analysis Results

◆ Schedulability
– System, node, and task level

– Utilization

– Worst case completion times

◆ Analysis quality
– Spare capacity

– Blocking - total and by resource

– Stability - behavior in overload

◆ “What if” analysis tools
– The tool suggests changes

– Rapid assessment for timing and architectural changes

15

29

More Than Just RMA Analysis

◆ The analysis alone is very useful
– Provides interesting information about a system
– Enables “Timing Design”

◆ We can apply the analysis to another aspect of the
problem

◆ We can answer the question, “How do I assign
threads and priorities?”
– Assign message priorities
– Assign execution priorities
– Assign capsules/activities to physical threads

30

Example System

◆ Telemetry System
– Takes real-time data from a set of sensors
– Filters and processes the data
– Displays the filtered data to operator

◆ Display must be updated every 60 ms
◆ Telemetry data must be gathered every 100ms
◆ Filtered data update interval is 200ms

16

31

RMA Schedulable Entity Model

wArrival pattern
�Periodic
�Sporadic (hard
deadline)
�Aperiodic (soft
deadline)

wArrival pattern
�Periodic
�Sporadic (hard
deadline)
�Aperiodic (soft
deadline)

T1

T2

T3

R1

wShared Resources
�Usage pattern
�Priority inversion

wShared Resources
�Usage pattern
�Priority inversion

wTiming
constraints

�Execution time
�Deadline
�Deadline type

wTiming
constraints

�Execution time
�Deadline
�Deadline type

32

RT UML Schedulability Model

Event
AbsoluteDeadline
RelativeDeadline
RecurrencePattern
Overlaps

AnalysisContext

PassiveResource RealTimeSituation
defaultTimeUnits

Service
ExecutionTime

ResourceService

ActiveResourceProtectedResource

Scenario ScenarioEvent

ScenarioStep

{ordered}

ResourceAction
SchedulingPriority
isPreemptable
ExecutionTime
RelativeStartTime

0..n0..n

SchedulableEntity
ReleaseTime
ReadyTime
ExecutionTime
BlockingTime
PreemptionTime
DelayTime
WorstCaseRespTime
SpareCapacity
isSchedulable

0..n0..n

..1 0..n

+triggeredSE

0 ..1 0..n

{ordered}

matching
hierarchies

{ordered}

AccessedResource

AccessControlPolicy
Capacity
AccessTime
isMultiProcessorAccessible

0..n

0..n0..n

Step
RelativeStartTime
BlockingTime
PreemptionTime
WorstCaseExecTime
WorstCaseComplTime

1 0..n

+spec

1 0..n

1..n

+root

0..n0..n

0..n

0..n

ProcessingResource

SchedulingPolicy
AccessControlPolicy
ProcessingRate
ContextSwitchTime
PriorityRange
isPreemptable
Utilization
isSchedulable

0..n

0..n

Executes

1

0..n

0..n

Resource

{ordered}

17

33

RT UML Example: Class Diagram
SensorInterface

g etData()

<<passive>>

RawDa taS torag e

createItem()
getItem()

<<passive>>

Disp la yInte rface

display()

<<passive>>

DataGatherer

telemDataGatherer()

+ / gatherData

<<Capsule>>

Data Pro cesso r

telemProcessAndFil ter(

+ / updateData

<<Capsul e>>

DataDisplayer

dataDisplayAndRender()

+ / displayData

<<Capsule>>

34

RT UML Example: Sequence
Diagram

 / display
 : DisplayInterface

 / sensorData
 : RawDataStorage / telemetryDisplayer

 : DataDisplayer

1: telemetryDisplay : updateTrigger1: telemetryDisplay : updateTrigger
1.1: : getItem1.1: : getItem

1.1.1: 1.1.1:
1.2: : display1.2: : display

1.2.1: 1.2.1:

18

35

Sequence Diagram; Edit Timing Properties

Select any
element;

popup this
menu

Select anySelect any
element;element;

popup thispopup this
menumenu

36

Edit Timing Properties Dialog

19

37

Timing Properties on Transitions

38

RT UML Example: Annotated Sequence
Diagram

 / telemetryDisplayer
 : DataDisplayer

 / sensorData
 : RawDataStorage

 / display
 : DisplayInterface

1: telemetryDisplay : updateTrigger1: telemetryDisplay : updateTrigger
1.1: : getItem1.1: : getItem

1.1.1: 1.1.1:
1.2: : display1.2: : display

1.2.1: 1.2.1:

exectime=(rel)30 ms;10 ms;20 ms
period=590 ms
deadline=590 ms
pri=32

exectime(I)=20 ms

exectime(I)=45 ms

20

39

RT UML Example: Distributed System

◆ You can design a distributed system with Rose
RealTime
– Use a deployment diagram to identify the processors

– Assign package instances to specific processors

◆ DRCS tools can analyze a distributed system
– Use end-to-end analysis or ROSA

◆ Network latency is expressed as another annotation
on messages in the Sequence Diagram

40

RT UML Example: Deployment
Diagram (Distributed)CPU1

telemetrySystem
Instance

sensor

disk

display

switch=0 ms
sendThreads(D)=true
sendObjects(D)=true

rate=100.000%
prempt=true

CPU2

sensorInstance

CPU3

displayInstance

CPU4

diskInstance

sendThreads(D)=true
sendObjects(D)=true

21

41

RT UML Example: Sequence
Diagram (Distributed)

 / sensorDataC
 : RawDataStorageC

 / sensorsC
 : SensorInterfaceC

 / telemetryGatherer
 : DataGatherer

1: telemetryGatherer : gatherTrigger1: telemetryGatherer : gatherTrigger
1.1: readSensor : getData1.1: readSensor : getData

1.2: saveSensor : createItem1.2: saveSensor : createItem

exectime=150 ms
networkQoS=10

exectime=165 ms
networkQoS=5

42

Real-Time Objects

◆ Definition: A real-time object is an object in
the environment that must be updated
periodically to remain valid

◆ Examples:
– radar or sonar readings
– weather data

22

43

UML Design for Real-Time Objects

RTAttribute::get()

pre: Now - avi < time
post: -- none

RTAttribute::set()

pre: -- none
post: time = Now

Attribute (UML Core)

initialValue : Expression
Class (UML Core)

isActive : Boolean

Operation (UML Core)

isPolymorphic : Boolean
specification : Uninterpreted
direction = {provide, require}

RTAttribute <type>

time : Time
imprecision : <type>
avi : Time
implimit : <type>
value : <type>

set()
get()

RTOperation

startTime : Time
completeTime : Time
relDeadline : Time
WCET : Time
WAS : vector <RTAttribute>
RAS : vector <RTAttribute>

CF<size>

CFArray : Array [methodCount X methodCount]
methodCount : int

RTObject

checkConcurrency()

consists

RTOperation::Invariant
completeTime < start
Time + relDeadline

UML Core Class
for defining

class attributes

UML Core Class
for defining

classes

UML Core Class
for defining

class operations

New class to specify
 RT attributes
in a RT object

New class to
represent RTSORAC

object class
New class to

specify RT methods
in a RT object

44

Example Hurricane Object

RTObject

Hurricane

WindSpeed : RTAttribute <float>
GustSpeed : RTAttribute <float>
Location : RTAttribute <loc_type>
Direction : RTAttribute <dir_type>
Path : RTAttribute <path_type>
Image : RTAttribute <image_type>

UpdateLocation(loc_type)
GetSpeed()
ComputePath()
UpdateImage(image_type)

WindSpeed:RTAttribute <float>

avi = 10
implimit = 5

UpdateLocation : RTOperation

relDeadline = 5
WAS = <Location>
RAS = <>
WCET = 3

(a) (c)(b)

WindSpeed is a RT attribute
that specifies periodic timing

constraint of 10 seconds
and an imprecision limit of 5mph

UpdateLocation is a RT
method with a relative
deadline of 5 sec and a
worst case execution

time of 3 seconds

Hurricane class extends
RT Object class - expresses
several RT attributes and

RT operations

23

45

Modeling RT QoS Middleware

◆ A Real-Time QoS Middleware system is
modeled from the client point of view.

◆ A client is partitioned into a sequence of
dependent tasks.

◆ Middleware Services are modeled as
resources.

46

◆ Clients and Servers

main

every p1 units of time do

{

client code11...

s1 = bind (server1)

s2 = bind (sever2)

by deadline d11

s1->method1

client code 11a..

by deadline d12

s2->method1

client code13…

}

client

node 1

node 2

method1

method N

server 1

other

server

node 3

method1

method M

server 2

other

client

other

client

Modeling Real-Time QoS Middleware
Application

24

47

◆ All Servers as well as ORB and Services are
represented by resources.

main

every p1 units of time do

{

client code11...

s1 = bind (server1)

s2 = bind (sever2)

by deadline d11

s1->method1

client code 11a..

by deadline d12

s2->method1

client code13…

}

client

node 1

node 2

method1

method N

server 1

other

server

node 3

method1

method M

server 2

other

client

other

client
Node1

Node2

Node3

Modeling Real-Time QoS Middleware
Application

48

◆ Each node has a CPU as the processor.

main

every p1 units of time do

{

client code11...

s1 = bind (server1)

s2 = bind (sever2)

by deadline d11

s1->method1

client code 11a..

by deadline d12

s2->method1

client code13…

}

client

node 1

node 2

method1

method N

server 1

other

server

node 3

method1

method M

server 2

other

client

other

client Node1

Node2

Node3

CPU

CPU

CPU

Modeling Real-Time QoS Middleware
Application

25

49

◆ The servers are represented as resources.

main

every p1 units of time do

{

client code11...

s1 = bind (server1)

s2 = bind (sever2)

by deadline d11

s1->method1

client code 11a..

by deadline d12

s2->method1

client code13…

}

client

node 1

node 2

method1

method N

server 1

other

server

node 3

method1

method M

server 2

other

client

other

client Node1

Node2

Node3

Server1

Server2

CPU

CPU

CPU

Modeling Real-Time QoS Middleware
Application

50

◆ The dotted arrows indicate access to the servers
from the client.

main

every p1 units of time do

{

client code11...

s1 = bind (server1)

s2 = bind (sever2)

by deadline d11

s1->method1

client code 11a..

by deadline d12

s2->method1

client code13…

}

client

node 1

node 2

method1

method N

server 1

other

server

node 3

method1

method M

server 2

other

client

other

client Node1

Node2

Node3

Server1

Server2

CPU

CPU

CPU

Modeling Real-Time QoS Middleware
Application

26

51

◆ CORBA Clients can’t be mapped directly to
tasks since Rate Monotonic Analysis does not
support the analysis of the

– Intermediate Deadlines,
– Network Delay.

◆ Each Client with N intermediate deadlines will
be modeled as N+1 dependent tasks.

Modeling Real-Time QoS Middleware
Application

52

main

every p1 units of time do

{

client code11...

s1 = bind (server1)

s2 = bind (sever2)

by deadline d11

s1->method1

client code 11a..

by deadline d12

s2->method1

client code13…

}

client

node 1

node 2

method1

method N

server 1

other

server

node 3

method1

method M

server 2

other

client

other

client
Task1

Task2

Task3

T1 T2 T3

Modeling Real-Time QoS Middleware
Application

27

53

◆ Analysis: END-TO-END
– enables task dependencies analysis

◆ Priority assignment mechanism: Deadline
Monotonic (DM)

– Shorter the relative deadline - higher the priority.
◆ Resource access protocol: DASPCP

– deadlock-free
– limited blocking time
– include network delay

T3T2T1

Modeling Real-Time QoS Middleware
Application

54

◆ Analysis assumes that a system has 32K
priority levels (consistent with RT CORBA
standard).

◆ Typical operating systems do not permit that
many priorities.

◆ DRCS maps the priority system into the limited
priority systems on the network.

◆ The mapping minimizes the resulting priority
inversions.

Modeling Real-Time QoS Middleware
Application

28

55

Application-

level client

Middleware

layer

Operating

System layer

Other system

layers

...

Request:
(D,E,A,P,S)

Request:

(D,E,A,P,S)

Request:

(D,E,A,P,S)

Reply:
(D’E’,A’,P’,S’)

Reply:
(D’E’,A’,P’,S’

)

Reply:
(D’E’,A’,P’,S’)

Application-

level server

Middleware
layer

Operating

System layer

Other system

layers

...

Reply:
(D’E’,A’,P’,S’)

Reply:
(D’E’,A’,P’,S’)

Reply:

(D’E’,A’,P’,S’)

Request:

(D,E,A,P,S)

Reply:

(D’E’,A’,P’,S’)

Engineering
 Tools

Real-Time Scheduling Analysis

RTItemServer

createRTItem()
deleteRTItem()
getRTItem()
getRTItemByName()
getRTItemsOwnedBy()
getRTItem Count()
getName()
getIOR()

RTAttribute <type>

value : <type>
time : long
imprecision : <type>
update_flag : boolean

getValue()
setValue()
getTime()
setTime()
getImprecision()
setImprecision()
getValueConstraint()
getTimeConstraint()
getImprecisionConstraint()

CF <s ize>

CF_array : Array

getCF()

uses

ObjectUpdateThread

ObjectUpdateThread()
run()

RTObject

method_count : int
Active_method : Vector
Waiting_method : Vector

SLM_lock()
SLM_release()
UpdateAttribute()

{constaints}

consists

consists

gUpdateThread

RTItem

getId()
setId()
getName()
setName()
getType()
setType()
getLink()
setLink()
getOwner()
setOwner()
getImagePath()
setImagePath()

extends

consists

RTItemServerSaveThread

ItemServerSaveThread()
run()

gSaveThread

Modeling

QoS Negotiation

Reference Architecture

Client

...

RT Operating System Real-Time ORB RT Operatin g Systems

Offline RT Analysis
and Prototyp ing

Network Network

System Designer RT QoS
Server
Object

RT QoS
Server
Object

RT QoS
Server
Object

RT
Sched

Service

QoS
Dynamic
Binding

(RT
Trader
Service)

Real-Time Object-Oriented Middleware

Combat System Network

Combat Systems Network

Real-Time Object-Oriented Middleware

Command & Control
Network

Combat system data
and server objects

C2 system data
and server objects

Sharing Real-Time
Data and Server
Objects Through

Real-Time MiddlewareCommand & Control
Network

Real-Time OO DB

RT QoS Analysis
Operational

Need

RT
Collaborative
Services, QoS

Agents,
Transition

Programs and
Applications

Architecture

RT QoS Middleware

56

Modeling: Task Graph Editor

There are two
components to our
model. The task graph
identifies the tasks of
the system to be
modeled.

29

57

Modeling: Resource Graph Editor

The resource
graph represents
the resources in
the system. This is
a distributed
system with global
shared resources.

58

Modeling: Schedulability AnalyzerModeling: Schedulability Analyzer

The Scheduler tests
the system for
schedulability (all
tasks meet all their
deadlines). There are a
variety of scheduling
analysis algorithms in
the scheduler for
various system
architectures and
scheduling methods.

30

59

Modeling: End-to-End Analysis

End-to-End
Scheduling analyzes the
schedulability of a system
with one or more paths of
execution defined by a
series of dependencies
between tasks.

60

RT UML Example: Run RMA
Analysis

31

61

RT UML Example: Analysis Results

CPU

telemetrySystemInstance
sensorInstance
displayInstance
diskInstance

sensor disk
display

switch=0 ms
rate=100.000%
prempt=true
util=82.936%
perUtil=82.936%
aperUtil=0.000%
globUtil=0.000%
sched=true

62

RT UML Example: Analysis Results

exectime=(rel)30 ms;10 ms;20 ms
period=590 ms
deadline=590 ms
ready=0 ms
wcResp=340 ms
pri=590
globalPri=590
localPri=590
spare=66 ms
utilBound=100.000%
util=57.627%
workUtil=21.186%
higherUtil=0.000%
blkUtil=36.441%
sched=true

 / telemetryDisplayer
 : DataDisplayer

 / sensorData
 : RawDataStorage

 / display
 : DisplayInterface

1: telemetryDisplay : updateTrigger1: telemetryDisplay : updateTrigger
1.1: : getItem1.1: : getItem

1.1.1: 1.1.1:
1.2: : display1.2: : display

1.2.1: 1.2.1:

exectime(I)=20 ms

exectime(I)=45 ms

32

63

Application-

level client

Middleware

layer

Operating

System layer

Other system

layers

...

Request:
(D,E,A,P,S)

Request:

(D,E,A,P,S)

Request:

(D,E,A,P,S)

Reply:
(D’E’,A’,P’,S’)

Reply:
(D’E’,A’,P’,S’

)

Reply:
(D’E’,A’,P’,S’)

Application-

level server

Middleware
layer

Operating

System layer

Other system

layers

...

Reply:
(D’E’,A’,P’,S’)

Reply:
(D’E’,A’,P’,S’)

Reply:

(D’E’,A’,P’,S’)

Request:

(D,E,A,P,S)

Reply:

(D’E’,A’,P’,S’)

Engineering
 Tools

Real-Time Scheduling Analysis

RTItemServer

createRTItem()
deleteRTItem()
getRTItem()
getRTItemByName()
getRTItemsOwnedBy()
getRTItem Count()
getName()
getIOR()

RTAttribute <type>

value : <type>
time : long
imprecision : <type>
update_flag : boolean

getValue()
setValue()
getTime()
setTime()
getImprecision()
setImprecision()
getValueConstraint()
getTimeConstraint()
getImprecisionConstraint()

CF <s ize>

CF_array : Array

getCF()

uses

ObjectUpdateThread

ObjectUpdateThread()
run()

RTObject

method_count : int
Active_method : Vector
Waiting_method : Vector

SLM_lock()
SLM_release()
UpdateAttribute()

{constaints}

consists

consists

gUpdateThread

RTItem

getId()
setId()
getName()
setName()
getType()
setType()
getLink()
setLink()
getOwner()
setOwner()
getImagePath()
setImagePath()

extends

consists

RTItemServerSaveThread

ItemServerSaveThread()
run()

gSaveThread

Modeling

QoS Negotiation

Reference Architecture

Client

...

RT Operating System Real-Time ORB RT Operatin g Systems

Offline RT Analysis
and Prototyp ing

Network Network

System Designer RT QoS
Server
Object

RT QoS
Server
Object

RT QoS
Server
Object

RT
Sched

Service

QoS
Dynamic
Binding

(RT
Trader
Service)

Real-Time Object-Oriented Middleware

Combat System Network

Combat Systems Network

Real-Time Object-Oriented Middleware

Command & Control
Network

Combat system data
and server objects

C2 system data
and server objects

Sharing Real-Time
Data and Server
Objects Through

Real-Time MiddlewareCommand & Control
Network

Real-Time OO DB

RT QoS Middleware
Operational

Need

RT
Collaborative
Services, QoS

Agents,
Transition

Programs and
Applications

Architecture

RT QoS Middleware

64

Client

...

RT Operating System Real-Time ORB RT Operating Systems

Offline RT Analysis
and Prototyping

Network Network

Dynamic RT QoS Middleware
Architecture

System Designer RT QoS
Server
Object

RT QoS
Server
Object

RT QoS
Server
Object

RT
Sched

Service

QoS
Dynamic
Binding

(RT
Trader
Service)

33

65

Scheduling Service Architecture

Library code linked with
every client and server

Shared Memory
Configuration file (global
prios, local prios, ceilings)

Generate output file with global
priorities, local priorities, ceilings, etc.
This is the Scheduling Service
configuration file.

RTOS

66

Client

...

RT Operating System RT Operating Systems
Network Network

RT QoS
Server
Object

RT QoS
Server
Object

RT QoS
Server
Object

Bind a
client to

best object
based on
real-time
criteria

QoS Dynamic Binding Service

QoS Dynamic Binding
(RT Trader Service)

34

67

Client

...

RT Operating System RT Operating Systems
Network Network

QoS Dynamic Binding Service

RT QoS
Server
Object

RT QoS
Server
Object

RT QoS
Server
Object

•Servers register service
and execution times

•Clients request service
with deadline

•Service has probability
distribution of arrival,
deadline, service request

•Service keeps schedule
of servers

•Service picks server
with highest probability
that mythical next task
will meet its deadline

QoS Dynamic Binding
(RT Trader Service)

68

Client

...

RT Operating System RT Operating Systems
Network Network

Dynamic RT CORBA Sched Service

RT QoS
Server
Object

RT QoS
Server
Object

RT QoS
Server
Object

RT Sched Service

RT Priority
assignment,

load
shedding,
deadline

enforcement,
concurrency

control

35

69

Client

...

RT Operating System RT Operating Systems
Network Network

Dynamic RT QoS Middleware Scheduling Service

RT QoS
Server
Object

RT QoS
Server
Object

RT QoS
Server
Object

RT Sched Service

•Accepts client deadline
and importance

•Performs EDF
“admission control” and
global Prio assignment

•If not schedulable, sheds
task using heuristic
heavily weighted to
importance

•Adjusts EDF global
Priorities

•Performs Basic Priority
Inheritance CC

•Sets servant global
Priority

•Raises async exceptions
for missed deadline or
for being shed after
scheduled

70

Dynamic Scheduling Service Design

Server Side Client Side
Servant
(Server)

Client

Asynchronous Exception
“Not Schedulable” or
“Missed Deadline”

P

D, P

D, I, E

Regular CORBA
 Exception

“Done”

Parameters:
D – deadline; P – priority;
I – importance; E – execution
time

Servant
(Server)

I

III

II

IV

V

VI

Scheduling Service

Schedulability
 Analysis

Shedding

Priority
Assignment

EDF

EDF

T1

T2
T3, T4

2

3

1

Tables:
T1 – overall system repository
T2 – schedulability analysis table
T3 – shedding analysis table
T4 – shedding queue

36

71

RT QoS Middleware Databases

DRCE

DRCE

RTOODB

RTOODB

Distributed
DRCE’s Data Replication

to ensure local
availability of
required data

72

Real-Time QoS Object-Oriented Database
Support

◆ Share data among collaborating users
– possibly from remote sources

◆ Replicate data on remote sites

◆ Guarantee temporal validity of local copies of objects
◆ Just-In-Time Real-Time Replication Algorithms

37

73

New Dynamic RT QoS Middleware Algorithms

Client

...

Network Network

System
Designer

R
T

 B
inding

R
T

 Sched

•Load shedding (admission control) heuristics

•Dynamic priority mapping

•Affected Set Basic Priority Inheritance

• Just-in-time Data Replication

RT QoS Server
Object

RT ORB

74

Distributed Affected Set Priority Ceiling Algorithm

◆ The conflict priority ceiling of a method m is
the highest priority client that will ever lock
a method that is not compatible with m;
where compatibility is defined by affected set
semantics.

◆ Typical Priority Ceiling alg. steps used:
- grant lock if requesting priority > priority

ceilings of all held locks.
- use priority inheritance to reduce and bound

blocking of high priority clients

38

75

◆ Consistency - serializable object operations
◆ Tight Priority Inversion Bound

- Proof similar to original Priority Ceiling results due to
structure of protocol being the same, but granularity and
conflict definition changed.

◆ Deadlock prevention - similar to previous Priority Ceiling
results

◆ Higher concurrency - less blocking than in original Priority
Ceiling algorithms

◆ Efficient Implementation - compatibility captured in
Priority Ceiling check!

Distributed Affected Set Priority Ceiling Algorithm
Properties

76

◆ Real-Time CORBA 1.0 standard allows 32,000+ “CORBA
priorities”

◆ RT OS have limited number of priorities

– e.g. VXWorks, Lynx have 256 local priorities; Solaris 60

◆ RT middleware must map this large range of global
priorities to RT OS priorities on heterogeneous nodes

◆ More than one global priority mapped to a local priority causes
priority inversion

◆ Priority inversion must be accounted for as additional blocking
time for task in analysis

Priority Mapping Problem Definition

39

77

◆ Algorithm identifies how many overlapping
priorities on each node

◆ Starts with lowest global priority and tries to
“squeeze” it with next lowest.

◆ Performs schedulability check that includes new
priority inversion blocking.

◆ If schedulable, those two global priorities are
mapped to the same local priority. If not, then
next highest global priority is tried for “squeeze”

Priority Mapping Algorithm
Solution

78

Priority Mapping Heuristics

◆ We have proven Priority Mapping algorithm to be
optimal

◆ However, solution is NP-hard and takes excessive
execution time

◆ We have developed several heuristics that are fast
and near-optimal

40

79

Dynamic Load Shedding Algorithm

• Let j be the index of “new” (coming) task in the Analysis
Table (T2).

• Let n be the number of entries in the Analysis Table (T2).

• ∀ k = j..n compute slack time

 tsl = Dk – (tc + Σi=1..k ERi + B)

Blocking time B is essentially a place holder. It should be
considered later.

The entries in the analysis table above the new one (1.. j-1)
are schedulable.

• If tsl is negative then task k is unschedulable.

80

JIT-RT Data Replication Algorithms

◆ Static real-time environment

◆ Replication transactions
– copy required data to local site

◆ Deadline computation
– necessary and sufficient conditions for guaranteeing that

all requests read temporally consistent data

◆ Replicates at two levels:
– object level

– method level - affected set semantics

41

81

Application-

level client

Middleware

layer

Operating

System layer

Other system

layers

...

Request:
(D,E,A,P,S)

Request:

(D,E,A,P,S)

Request:

(D,E,A,P,S)

Reply:
(D’E’,A’,P’,S’)

Reply:
(D’E’,A’,P’,S’

)

Reply:
(D’E’,A’,P’,S’)

Application-

level server

Middleware
layer

Operating

System layer

Other system

layers

...

Reply:
(D’E’,A’,P’,S’)

Reply:
(D’E’,A’,P’,S’)

Reply:

(D’E’,A’,P’,S’)

Request:

(D,E,A,P,S)

Reply:

(D’E’,A’,P’,S’)

Engineering
 Tools

Real-Time Scheduling Analysis

RTItemServer

createRTItem()
deleteRTItem()
getRTItem()
getRTItemByName()
getRTItemsOwnedBy()
getRTItem Count()
getName()
getIOR()

RTAttribute <type>

value : <type>
time : long
imprecision : <type>
update_flag : boolean

getValue()
setValue()
getTime()
setTime()
getImprecision()
setImprecision()
getValueConstraint()
getTimeConstraint()
getImprecisionConstraint()

CF <s ize>

CF_array : Array

getCF()

uses

ObjectUpdateThread

ObjectUpdateThread()
run()

RTObject

method_count : int
Active_method : Vector
Waiting_method : Vector

SLM_lock()
SLM_release()
UpdateAttribute()

{constaints}

consists

consists

gUpdateThread

RTItem

getId()
setId()
getName()
setName()
getType()
setType()
getLink()
setLink()
getOwner()
setOwner()
getImagePath()
setImagePath()

extends

consists

RTItemServerSaveThread

ItemServerSaveThread()
run()

gSaveThread

Modeling

QoS Negotiation

Reference Architecture

Client

...

RT Operating System Real-Time ORB RT Operatin g Systems

Offline RT Analysis
and Prototyp ing

Network Network

System Designer RT QoS
Server
Object

RT QoS
Server
Object

RT QoS
Server
Object

RT
Sched

Service

QoS
Dynamic
Binding

(RT
Trader
Service)

Real-Time Object-Oriented Middleware

Combat System Network

Combat Systems Network

Real-Time Object-Oriented Middleware

Command & Control
Network

Combat system data
and server objects

C2 system data
and server objects

Sharing Real-Time
Data and Server
Objects Through

Real-Time MiddlewareCommand & Control
Network

Real-Time OO DB

QoS Negotiation
Operational

Need

RT
Collaborative
Services, QoS

Agents,
Transition

Programs and
Applications

Architecture

RT QoS Middleware

82

QoS Negotiation
Application-
level client

Middleware
layer

Operating
System layer

Other system
layers

...

Request:
(D,E,A,P,S)

Request:
(D,E,A,P,S)

Request:
(D,E,A,P,S)

Reply:
(D’E’,A’,P’,S’

)

Reply:
(D’E’,A’,P’,S’

)

Reply:
(D’E’,A’,P’,S’

)

Application-
level server

Middleware
layer

Operating
System layer

Other system
layers

...

Reply:
(D’E’,A’,P’,S’

)

Reply:
(D’E’,A’,P’,S’

)

Reply:
(D’E’,A’,P’,S’

)

Request:
(D,E,A,P,S)

Reply:
(D’E’,A’,P’,S’

)

•Analysis trades off real-
time for quality in
middleware and OS
levels.

•Establishes middleware
and OS priorities using
real-time analysis

•Agents negotiate to
tradeoff application
quality for real-time
constraints

Real-Time Scheduling Analysis

42

83

Distributed Real-time Collaborative
Environment Architecture - RT Agents for

QoS Negotiation

RT Clients

RT Clients

RT Agents

RT Agents

RT Middleware
Services

84

Real-Time Agents

◆ Definition: A real-time agent is a flexible,
autonomous software entity that must meet its
design objectives within specified timing
constraints.
– model
– architecture
– communication
– facilitation
– scheduling

43

85

Real-Time Agent Model

◆ RT Agent
– solvables with multiple execution strategies
– varying exec time and result quality

◆ RT Agent Message
– deadline
– importance

– required quality

86

RT Agent Architecture

Real-Time Operating System

RT Scheduling ServiceRT Trader Service

Real-Time CORBA Services

Real-Time ORB

RT Facilitator

RT
Requestor

Agent
RT Service

 Agent

RT ACL RT ACL

Real-Time Agent Services

RT Agent Scheduling

RT Agent Communication

44

87

RT Agent Communication

◆ Extend agent communication language

◆ Express QoS within:
– agent capabilities
– agent requirements

88

RT Agent Communication Language

(ask-one
:sender UserAgent
:receiver TrendWatcher
:content Watch(internet)
:QoS_requirement (dl 15,imp 4,acc 75))

(advertise
:sender BuyerSeller
:receiver Facilitator
:content BuyStock(A)
:QoS_capabilities(

(ex 5, acc 85)
(ex 2, acc 65)))

Ask a fellow agent
to watch a stock

trend within 15 seconds

Advertise QoS
capabilities to facilitator

including worst case
execution times and

accuracy levels

45

89

RT Agent Scheduling

◆ Extend RT CORBA Load Shedding scheduling
algorithm

◆ Load Reduction
– if system of tasks cannot be scheduled
– reduce in quality of one or more tasks to gain more

execution time for schedule

90

RT Agent Scheduling and Facilitation

Scheduling Service

Responding
 Agent

Requesting Agent

RT Agent Facilitator

task

execution
strategies

1

2

3

4

5

Register
tasks

Request
task

Sched
analysis
and load
reduction

Assign
priority
and QoS

Call agent
task

Schedulability
Analyzer

Σ

46

91

Application-

level client

Middleware

layer

Operating

System layer

Other system

layers

...

Request:
(D,E,A,P,S)

Request:

(D,E,A,P,S)

Request:

(D,E,A,P,S)

Reply:
(D’E’,A’,P’,S’)

Reply:
(D’E’,A’,P’,S’

)

Reply:
(D’E’,A’,P’,S’)

Application-

level server

Middleware
layer

Operating

System layer

Other system

layers

...

Reply:
(D’E’,A’,P’,S’)

Reply:
(D’E’,A’,P’,S’)

Reply:

(D’E’,A’,P’,S’)

Request:

(D,E,A,P,S)

Reply:

(D’E’,A’,P’,S’)

Engineering
 Tools

Real-Time Scheduling Analysis

RTItemServer

createRTItem()
deleteRTItem()
getRTItem()
getRTItemByName()
getRTItemsOwnedBy()
getRTItem Count()
getName()
getIOR()

RTAttribute <type>

value : <type>
time : long
imprecision : <type>
update_flag : boolean

getValue()
setValue()
getTime()
setTime()
getImprecision()
setImprecision()
getValueConstraint()
getTimeConstraint()
getImprecisionConstraint()

CF <s ize>

CF_array : Array

getCF()

uses

ObjectUpdateThread

ObjectUpdateThread()
run()

RTObject

method_count : int
Active_method : Vector
Waiting_method : Vector

SLM_lock()
SLM_release()
UpdateAttribute()

{constaints}

consists

consists

gUpdateThread

RTItem

getId()
setId()
getName()
setName()
getType()
setType()
getLink()
setLink()
getOwner()
setOwner()
getImagePath()
setImagePath()

extends

consists

RTItemServerSaveThread

ItemServerSaveThread()
run()

gSaveThread

Modeling

QoS Negotiation

Reference Architecture

Client

...

RT Operating System Real-Time ORB RT Operatin g Systems

Offline RT Analysis
and Prototyp ing

Network Network

System Designer RT QoS
Server
Object

RT QoS
Server
Object

RT QoS
Server
Object

RT
Sched

Service

QoS
Dynamic
Binding

(RT
Trader
Service)

Real-Time Object-Oriented Middleware

Combat System Network

Combat Systems Network

Real-Time Object-Oriented Middleware

Command & Control
Network

Combat system data
and server objects

C2 system data
and server objects

Sharing Real-Time
Data and Server
Objects Through

Real-Time MiddlewareCommand & Control
Network

Real-Time OO DB

Transitions
Operational

Need

RT
Collaborative
Services, QoS

Agents,
Transition

Programs and
Applications

Architecture

RT QoS Middleware

92

Accomplishments
◆ Implementation of the network-centric real-time QoS middleware algorithms

and mechanisms. (static scheduling, dynamic scheduling, load shedding/
reduction, dynamic binding, data replication)

◆ Implementation of QoS model in International Standard Unified Modeling
Language (UML)

◆ Implementation of real-time QoS analysis tool with input from UML model and
output to RT QoS middleware

◆ Implementation of QoS negotiations among real-time agents. (Accuracy vs
Real-Time)

◆ Transitions:
– Military programs (Coalition Forces, Virginia Class Sub, COF, Raytheon,

Lockheed/Martin, Boeing, Mitre, TRW)
– International standards (RT CORBA 1.0, RT CORBA 2.0, UML)
– Commercial products (Analysis Tool, Scheduling Service, UML tools, WindRiver

RTOS, Rational Software tools, Lineo Embedded Linux, OIS ORB
– Academic publications (IEEE TDPS, 2 Real-Time Systems Journal, conferences)

47

93

• The ability for combat systems and C2 systems to share
data and functionality under real-time QoS constraints.

• The ability to design and implement systems using a
COTS middleware approach that many programs are
adopting.

• New algorithms, mechanisms, and analysis techniques
for distributed real-time QoS middleware.

Operational Payoff

94

Web Sites

www.tripac.com

atticus.spawar.navy.mil/dhda

homepage.cs.uri.edu/research/rtsorac/

