Distributed Real-Time Combat Systems

N Russ Johnston
'J" @' SPAWAR Systems Center
;) russ@spawar.navy.mil

T
ﬁ‘F

TRI-PACIFIC
SOFTWARE. ING

Operational |ssues

Combat Systems and C2 Systems need to share data
and functionality under real-time constraints.

A need to maintain a consistent set of data at a
specified level of QoS with the ability to enforce QoS
tradeoffsin the middlewar e, databases, operating
systems and networks.

Thereisaneed for heter ogeneous data access, data
sharing and data distribution across multiple platforms
which may have different QoS requirements.

Distributed systems need to meet specified timing
constraints with the ability to negotiate for the QoS
initially statically and then dynamically.

Operational |ssues

Real-Time QoS Data and Functionality Sharing Using
Distributed Object-Oriented Middleware

[

Combat System Network

Combat system data
and server objects

C2 system data
and server objects

Command & Control Command & Control
Network Network

Technical Approach

Design real-time QoS model which enablesthe
expression of timecritical concepts and levels of QoS.

Develop a multi-layer ed QoS negotiation schema which
will provide a mathematical basis for synthesizing the
parameters (real-time, accuracy, fault-tolerance & security).

Develop a scheduling & analysis capability which provide
metrics with respect to the synthesis of the parameters.

Design a modular framework to support the system design
and enabletheinsertion of custom solutions.

Design real-time collabor ative serviceswhich insure a
consistent and current view of the data backed by
guarantees and enfor cement of timing constraints.

Technical Approach

Collaborative
Services, QoS
Agents,
Transition
Programs and
Applications

Accomplishments

Implementation of the network-centric r eal-time QoS middlewar e algorithms
and mechanisms. (static scheduling, dynamic scheduling, load shedding/
reduction, dynamic binding, data replication)

Implementation of QoS model in International Standard Unified M odeling
Language (UML)

Implementation of real-time QoS analysistool with input from UML model and
output to RT QoS middleware

Implementation of QoS negotiations among real-time agents. (Accuracy vs
Real-Time)

Transitions:
Military programs (Coalition For ces, Virginia Class Sub, COF, Raytheon,
L ockheed/Martin, Boeing, Mitre, TRW)
International standards (RT CORBA 1.0, RT CORBA 2.0, UML)

Commercial products (Analysis Tool, Scheduling Service, UML tools, WindRiver
RTOS, Rational Softwaretools, Lineo Embedded Linux, OIS ORB)

Academic publications (IEEE TDPS, 2 Real-Time Systems Journal, conferences) g

Oper ational Payoff

» The ability for combat systemsand C2 systemsto share
data and functionality under real-time QoS constraints.

* The ability to design and implement systemsusing a
COTS middlewar e approach that many programsare
adopting.

* New algorithms, mechanisms, and analysis techniques
for distributed real-time QoS middleware.

Collaboration: Real-Time Support In Common
Object Framework (COF)

Trudy Morgan, SPAWAR System Center SD

Enhanced Data | ntegration - Object interfacesto legacy data types
CORBA based Systems Framework

COTS/IGOTSRe-use T
Distributed Environment Q&ﬂ)fé%
Extendable for new technology //mos
Transportable to other platforms y TIBS

DRCS Real-time QoS
middleware enforces
real-time constraints
in COF CORBA
framework

Collaboration: Adaptive Resource Management in
Asynchronous Real-Time Distributed Systems

Binoy Ravindran, Virginia Tech Univer sity

Real-time computer systemsfor
mission management
Significant run-time
uncertainties

— Execution times, communication
delays, event arrivals, etc.

Require decentralization
Distributed application
r esour ces
Survivability
M eeting response time
requirements

Timing constraint

'

T-ask-3: guide-missite

DRCS real-time QoS middleware
algorithm and methodology sharing

Technical Solution

Dr. Victor Fay-Wolfe

University of Rhode Island
wolfe@cs.uri.edu

oy

=F

TrRI-PACIFIC
SOFTWARE. INC

Collaborative
Services, QoS
Agents,
Transition
Programs and
Applications

System Designer

Technical Approach

i Collaborative
| Services, QoS
I Agents,

1 Transtion

i Programsand
\ Applications

Rl]

RT QoS Modeling

UML modeling of timing and QoS constraints
UML modeling of real-time QoS objects
Analysis modeling of RT QoS middleware

QoSin Real-Time UML

Responded to OMG Request for Proposal For RT
Unified Modeling Language (UML)

Not an extension to the UM L metamodel, but a set of
domain profilesfor UML

Goals

— Enablethe construction of modelsthat could be used to make
quantitative predictionsregarding the char acteristics of
schedulability, performance and time

— Facilitate communication of design intent between developers
in a standard way

- En?ble inter oper ability between various analysis and design
tools

Profile Domain Packages

CommonBase

— 1
Resource

— 1 L

Time Concurrency

AnalysisMethods

. 1 1
Schedulability | | ! RT_CORBA EnhancedTime
Analysis | !
7

M odeling Resour ces - The QoS
Framewor k

Resource: amodel element that has some finite properties
— reflects some finite physical quantity

— may be logical (e.g., buffers) or physical

— resources offer services (client-server model)

— need to quantify the demand/supply of services

Quality of Service (QoS): a(usually quantitative)
specification of:

— the level of service required by a client from a resource or
— the level of service offered by a resource to its clients

The General Resour ce M odel

AnalysisContext
* -
1.n 1.n

/

+requiredQoS . +offeredQoS
QoSCharacteristic
0..n 0..n

1.n on 0..n +offeredQoS in Ln

ResourceUsage Resource
ResourceService
0..n 1l.n 0..n
0.1
/

A

0:niliolal | on

ResourceClient ScenarioEvent ScenarioStep [oy Scenario
0.1 0.1 {ordered
0.n

0..n +participants.

Profile Ster eotypes for Resource M odel

<<metaclass>>
ModelElement

<<stereotype>>

<<stereotype>> <<stereotype>> <<stereotype>>
GRMcontext > GRMstereotype realize

<<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>
GRMqosCharacteristic GRMresource GRMresourceService GRMresourceUsage GRMrealize

<<stereotype>> <<stereotype>>
GRMaccessControlPolicy GRMregEnv

Profile ster eotypes (cont.)

<<stereotype>>
GRMresource

protection activeness
<<stereotype>> <<stereotype>> <<stereotype>>
GRMprotectedResource GRMunprotectedResource GRMactiveResource

<<stereotype>>
GRMresourceService

A

<<stereotype>> <<stereotype>>
GRMexclusiveService GRMnonExclusiveService

<<stereotype>> <<stereotype>>
GRMacquire GRMrelease

10

Sample Schedulability Analysis (SA)
Profile

SAEvent:
S AR elativeDeadline = 400 ms
SAlnstances = 1
S AOccurrenceP attern = “exponential” 625

Model Processing Framework

Generic UM Model -
Model Valuator
Model

Processor

Processing
) Specification
[1

model B analysis
S | Updater Results

11

Why Apply RMA to UML?

UML addresses system structure and function
— Multiple views of the system

— Encourages top-down design

— Ignores timing characteristics

RMA addresses system timing characteristics
— Uses the same system system structure

— Ignores the functional characteristics

Two abstractions for the same system

— Same structure

— Different thinking

The Usual Approach

Focus on function

— Meet the functional requirements

— Timing is a requirement, but is too difficult to address
Timing issues are addressed late in the process

— Usually during system integration

— The symptom ... sporadic failures

Architectural changes are very expensive

— Most timing problems require architectural changes
— Usual consequence is an “over engineered” system

12

A Better Approach

Integrate timing considerations throughout the process
— Start early in the design
— Refine and update timing in concert with functional refinemen

Make timing specifications visible in the UML

— Removes the dichotomy of functional and timing abstractions
— Let tools construct the timing model

Require timing validation during design, unit test, and
integration

What Does RM A Reveal ?

RMA is static analysis

— Not dynamic

— Not simulation

RMA establishes a bound for schedulability

— A system is guaranteed to be schedulable within the
bound

— A system may run outside the bound, but is not
guaranteed

RMA shows how system resources are used
— CPU and other “active” resources

— Passive resources

— Physical and logical resources

13

When isa Task Schedulable?

A task is schedulableif itsworst case completion timeis
less that its deadline.

Worst case completion time accounts for three classes of
time

— Work - execution of the task itself

— Preemption - execution of higher priority tasks

— Blocking - execution by lower or equal priority tasks when the task is read'
execution

work | preemption .

Analysis Results

Schedul ability

— System, node, and task level

— Utilization

— Worst case completion times
Analysis quality

— Spare capacity

— Blocking - total and by resource
— Stability - behavior in overload
“What if” analysis tools

— The tool suggests changes

— Rapid assessment for timing and architectural changes
28

14

More Than Just RMA Analysis

The analysisaloneis very useful
— Provides interesting information about a system
— Enables “Timing Design”

We can apply the analysis to another aspect of the
problem

We can answer the question, “How do | assign
threads and priorities?”

— Assign message priorities
— Assign execution priorities
— Assign capsules/activities to physical threads

Example System

Telemetry System

— Takes real-time data from a set of sensors
— Filters and processes the data

— Displays the filtered data to operator

Display must be updated every 60 ms
Telemetry data must be gathered every 100ms
Filtered data update interval is 200ms

RMA Schedulable Entity Model
Timing
constraints
Execution time
Deadline
Deadline type

Arrival pattern
Periodic
oradic (hard
d%line) (
Aperiodic (soft
deadline)

Shared Resources
Usage pattern
Priority inversion

RT UML Schedulability Model

A

Scenatio
defaultTimeUnits

¢ A
0.n

0.n
ResourceServi
Resoul
SchedulableEntity
AbsoluteDeadline
o.n AccessControlPolicy ReadyTime Recreana
Overlaps

i Capacit ExecutionTime
o
i i ptionTime
DelayTime
WorstCaseRespTime

ScenarioStep SpareCapacity
isSchedulable

0.n

o.n 1.0 fordered)

] Executes
ResourceAction | ProcessingResource
ChedulngPrior s;‘gﬂiﬁ‘e?’i;’g""e : 1
isPreemptable spec g SchedulingPolicy
y P PreemptionTime
ExecutionTime) AccessControlPolicy
RelativeStartTime [JREEI) WorstCaseExecTime [ty ProcessingRate
WorstCaseComplTim SRRl g
o ContextSwitchTime
o.n PriorityRange
isPreemptable
Utilization
isSchedulable

matching
hierarchies

16

RT UML Example: Class Diagram
z

<<Capsule>>

HgetData() DataGatherer

+ "telemDataGatherer()
[+ / gatherData

i)

e e <<passive>>
DataDisplayer
play RawDataS torag e @
<<Capsule>>
“ydataDisplayAndRender(
pe— S
i+ / displayData fgetitem()
“4telemProcessAndFilter

/ updateData

<<passive>>
isplayinte face

RT UML Example: Sequence
Diagram

E / sensorData

/ telemetryDisplayer H : RawD
: DataDisplayer

1: telemetryDisplay : updateTrigger

.2 :display

17

Sequence Diagram; Edit Timing Properties

Edit Timing Properties Dialog

raameh 1

Elrmrd [Brrnge wemrini o W] it bt b B i

e 1
[] | ﬂ nh_i_u—'i"ﬂ "
=i

=u.-\...._-| ks |

(=T 2 dy T

M arveirudied rars

Timing Propertieson Transitions

el I
"""“'I

Peeormsgrderd rera

RT UML Example: Annotated Sequence
Diagram

L display / sensorData
/ telemetryDisplayer : DisplayInterface : RawD.
DataDls layer

1: telemetryDisplay : updateTrigger
e — 1.1: : detitem

exectime=(rel)30 ms;10 ms;20 ms [
period=590 ms
deadline=590 ms

= 1.2 :displa
pri=32 : play >

exectime(l)=45 ms

19

RT UML Example: Distributed System

Y ou can design a distributed system with Rose
Real Time

— Use a deployment diagram to identify the processors
— Assign package instances to specific processors
DRCS tools can analyze a distributed system

— Use end-to-end analysis or ROSA

Network latency is expressed as another annotation
on messages in the Sequence Diagram

RT UML Example: Deployment

@Diagram (Distributed)

20

RT UML Example: Sequence
Diagram (Distributed)

Real-Time Objects

Definition: A real-time object isan object in
the environment that must be updated
periodically to remain valid

Examples:
—radar or sonar readings
— weather data

21

UML Design for Real-Time Objects

Attribute (UML Core) Class (UML Core) Operation (UML Core)

initialValue : Expression e s Bl isPolymorphic : Boolean
|] SR

A direction

RTAttribute <type> RTAttribute::get()

time : Time
imprecision : <type> o RTOperation
avi : Time startTime : Time RTOperati variant
implimit : <type> completeTime : Time completeTime < start
value : <type> relDeadline : Time Time + relDeadline
WCET : Time
post: time = Now WAS : vector <RTAttribute>
RAS : vector <RTAttribute>

RTObject

CF<size>

CFArray : Array [methodCount X methodCount]
methodCount : int

Example Hurricane Object

Hurricane
t\NindSpeed : RTAttribute <float>
@¥GustSpeed : RTAttribute <float> WindSpeed:RTAttribute <float> UpdateLocation : RTOperation
tLocation : RTAttribute <loc_type> vi = 10 elDeadline = 5
tDirection : RTAttribute <dir_type> Eamplimit =5 AS = <L0(;ation>
[@EPath : RTAttribute <path_type> AS :_<>
tlmage : RTAttribute <image_type> - BENCET = 3

l‘UpdateLocation(loc_type)
l‘GetSpeed()
"ComputePath()
I.Updatelmage(imf-,\ge_type)

Modeling RT QoS Middleware

A Real-Time QoS Middleware system is
modeled from the client point of view.

A client is partitioned into a sequence of
dependent tasks.

Middlewar e Services are modeled as
I esour ces.

Modeling Real-Time QoS Middleware

Application
Clientsand Servers

23

Modeling Real-Time QoS Middleware

Application
All Serversaswell as ORB and Servicesare
represented by resources.

maglient
every pl unitsof time do

{

client codell...
s1=bind (serverl)
<2 =bind (sever2)
by deadlined11
s1->methodl
client code 11a.
by deadline d12
s2->methodl
client code13...

}

node 1

Modeling Real-Time QoS Middleware
Application

Each node hasa CPU asthe processor.

malient
every pl unitsof time do
{
client codell...
1 =bind (server1)
2 = bind (sever2)
by deadline d11
sl->methodl
client code 11a.
by deadline d12
2->methodl
client code13...

}

node 1

24

Modeling Real-Time QoS Middleware
Application

Theserversarerepresented asresour ces.

naglient

every pl units of time do
{
client codell...
s1 = bind (serverl)
s2 = bind (sever2)
by deadline d11
s1->methodl
client code 11a..
by deadline d12
2->method1
client code13...

}

node 1

Modeling Real-Time QoS Middleware
Application

Thedotted arrowsindicate accessto the servers
from theclient.

malient
every pl unitsof time do
{
client codell...
1 =bind (server1)
2 = bind (sever2)
by deadline d11
sl->methodl
client code 11a.
by deadline d12
2->methodl
client code13...

}

node 1

25

Modeling Real-Time QoS Middleware
Application

CORBA Clientscan’'t be mapped directly to
tasks since Rate Monotonic Analysis does not
support the analysis of the

— Intermediate Deadlines,

— Network Delay.

Each Client with N intermediate deadlines will
be modeled as N+1 dependent tasks.

Modeling Real-Time QoS Middleware
Application

maflient

every pl units of time do
{
client codell...
sl = bind (serverl)
s2 = hind (sever2)
by deadline d11
sl->methodl
client code 11a.
| by deadline d12
s2->method1
| client code13...

node 1

26

Modeling Real-Time QoS Middleware
Application

Analysis: END-TO-END T1 fT2 T3]

— enablestask dependencies analysis
Priority assgnment mechanism: Deadline
Monotonic (DM)

— Shorter therelative deadline - higher thepriority.
Resour ce access protocol: DASPCP

— deadlock-free

— limited blocking time

— include network delay

Modeling Real-Time QoS Middleware
Application
Analysisassumesthat a system has 32K

priority levels (consistent with RT CORBA
standard).

Typical operating systems do not permit that
many priorities.

DRCS mapsthe priority system into the limited
priority systemson the network.

The mapping minimizes theresulting priority
inversions.

27

RT QoS Analysis

Modeling

W e mmmmmm oo I-___ — ——— -
1

RT QoS Middleware
I Real-Time Scheduling Analysis

i Collaborative
| Services, QoS
I Agents,

1 Transtion

i Programsand
\ Applications

0009

There are two
componentsto our
model. The task graph
identifies the tasks of
the system to be
modeled.

L IR S e

28

y o o=

BERE

Modeling: Resource Graph Editor

The resource
graph represents
the resourcesin
the system. Thisis
a distributed
system with global
shared resources.

Modeling: Schedulability Analyzer

The Scheduler tests
the system for
schedulability (all

tasks meet all their
deadlines). There are a
variety of scheduling
analysis algorithms in
the scheduler for
various system
architectures and

scheduling methods.

29

Modeling: End-to-End Analysis

End-to-End
Scheduling analyzes the
schedulability of a system
with one or more paths of
execution defined by a
series of dependencies
between tasks.

HHLUHY

RT UML Example: Run RMA
Analysis

vieilbini pn iwib e B Rire

30

RT UML Example: Analysis Results

switch=0 ms
rate=100.000%

prempt=true

R N\ util=82.936%
tele[pé(w§y§lemlnslance\ perUtil=82.936%
erfSorinstance, ¥ aperUtil=0.000%
isplayInstance globUtil=0.000%

diskinstance sched=true

_

\ el
N\ display
N

RT UML Example: Analysis Results
N BN

1: telemetryDisplay : updateTrigger ‘

=(rel)30 ms;10 ms;20 ms [exectime(1)=20 ms

ready=0 ms 1.2: : display
WwcResp=340 ms

pri=590

globalPri=590

localPri=590

spare=66 ms ~
utilBound=100.000% exectime(l)=45 ms
util=57.627%

workUtil=21.186%

higherUtil=0.000%

blkUtil=36.441%

sched=true

0 ms
deadline=590 ms : .

RT QoSI\/IiddIeware

Collaborative
Services, QoS
Agents,
Transition
Programs and
Applications

Dynamic RT QoS Middleware

Ar chitecture

32

Scheduling Service Architecture

Generate output file with global
priorities, local priorities, ceilings, etc.
Thisisthe Scheduling Service
configuration file.

D Library code linked with
every client and server

Shared Memory

Configuration file (global

prios, local prios, ceilings)
65

33

QoS Dynamic Binding Service

RT Tr Vi
Client and execution times

deadline, servicerequest
—eService keepsschedule

of servers
. .
with highest probability
that mythical next task
i : :

Network

Dynamic RT CORBA Sched Service

Client

Dynamic RT QoS Middleware Scheduling Service

RT Sched Service

- *Acceptsclient deadline
—andimportance

__ePerformsEDF
“admission control” and
global Prio assignment

*Adjusts EDF global
Priorities

Priority
- ;
[!euse_sas,nc gig. ERLions
for being shed after
_scheduled

Regular CORBA
Exception

Asynchronous Exception
“Not Schedulable” or

Tables: Missed Deadline

T1 - overall system repository Parameters:

T2 - schedulability analysis table| SChedUI | ng SerV| ce D — deadlineP — priority;

T3 - shedding analysis table | —importanceE — execution
T4 — shedding queue time

70

35

RT QoS Middlewar e Databases

Real-Time QoS Object-Oriented Database
Support

Share data among collaborating users
— possibly from remote sour ces

Replicate data on remote sites
Guar antee temporal validity of local copies of objects
Just-In-Time Real-Time Replication Algorithms

36

New Dynamic RT QoS Middleware Algorithms
L oad shedding (admission control) heuristics

*Dynamic priority mapping
*Affected Set Basic Priority Inheritance

« Just-in-time Data Replication

Distributed Affected Set Priority Ceiling Algorithm

The conflict priority celling of a method mis
the highest priority client that will ever lock
a method that is not compatible with m
where compatibility is defined by affected set
semantics.

Typical Priority Ceiling alg. steps used:

- grant lock if requesting priority > priority

ceillings of all held locks.

- usepriority inheritanceto reduce and bound
blocking of high priority clients
74

37

Distributed Affected Set Priority Celling Algorithm
Properties

Consistency - serializable object operations
Tight Priority Inversion Bound

- Proof similar to original Priority Ceiling results due to
structure of protocol being the same, but granularity and
conflict definition changed.

Deadlock prevention - similar to previous Priority Ceiling
results

Higher concurrency - lessblocking than in original Priority
Celling algorithms

Efficient Implementation - compatibility captured in
Priority Ceiling check!

Priority Mapping Problem Definition

Real-Time CORBA 1.0 standard allows 32,000+ “CORBA
priorities”

RT OS have limited number of priorities

— eg. VXWorks, Lynx have 256 local priorities; Solaris 60
RT middleware must map thislarge range of global
prioritiesto RT OS priorities on heter ogeneous nodes
Morethan one global priority mapped to alocal priority causes
priority inversion

Priority inversion must be accounted for as additional blocking
timefor task in analysis

38

Priority Mapping Algorithm
Solution

Algorithm identifies how many overlapping
priorities on each node

Startswith lowest global priority and triesto
“squeeze” it with next lowest.

Performs schedulability check that includes new
priority inversion blocking.

If schedulable, those two global priorities are
mapped to the same local priority. If not, then
next highest global priority is tried for “squeeze”

Priority Mapping Heuristics

We have proven Priority Mapping algorithm to be
optimal

However, solution is NP-hard and takes excessive
execution time

We have developed several heuristicsthat are fast
and near-optimal

39

Dynamic L oad Shedding Algorithm

Let j be the index of “new” (coming) task in the Analysis
Table (T2).

Let n be the number of entries in the Analysis Table (T2).
0 k = j..n compute slack time

ty=D-(t+Z, ER +B)
Blocking time B is essentially a place holder. It should be
considered later.

The entries in the analysis table above the new one (1.. j-1
are schedulable.

If ty is negative then task k is unschedulable.

JIT-RT Data Replication Algorithms

Static real-time environment
Replication transactions
— copy required data to local site

Deadline computation

— necessary and sufficient conditions for guaranteeing
all requests read temporally consistent data

Replicates at two levels:
— object level
— method level - affected set semantics

40

Collaborative
Services, QoS
Agents,
Transition
Programs and
Applications

QoS Negotiation

Analysistrades off real-
timefor quality in
middlewareand OS

Establishes middleware
and OSprioritiesusing
real-time analysis

Agents negotiate to
tradeoff application

quality for real-time . .
constraints
000

82

41

Distributed Real-time Collaborative
Environment Architecture- RT Agentsfor
QoS Negotiation

Real-Time Agents

Definition: A real-time agent isa flexible,
autonomous softwar e entity that must meet its
design objectives within specified timing
constraints.

— model

— architecture

— communication

— facilitation

— scheduling

42

Real-Time Agent M od€

RT Agent
— solvables with multiple execution strategies
— varying exec time and result quality

RT Agent Message
— deadline

— importance
—required quality

RT Agent Architecture

~—
RT ACL

RT Agent Scheduling

RT Scheduling Service

43

RT Agent Communication

Extend agent communication language
Express QoS within:

— agent capabilities

— agent requirements

RT Agent Communication Language

(ask-one
. sender User Agent
i receiver Tr endWat cher
: cont ent Wat ch(i nt er net)
: QoS requirenent (dl 15,inmp 4, acc 75))

(adverti se
. sender Buyer Sel | er
i receiver Faci litator
: cont ent Buy St ock(A)
: QoS _capabilities(
(ex 5, acc 85)
(ex 2, acc 65)))

RT Agent Scheduling

Extend RT CORBA Load Shedding scheduling
algorithm

Load Reduction

— if system of tasks cannot be scheduled

— reducein quality of one or moretasksto gain more
execution time for schedule

RT Agent Scheduling and Facilitation

Requesting Agent

execution
Strategies
Schedulability
Analyzer

2, priority
and QoS

ENEIETS
and load
reduction

45

Transitions

RT
1 Collaborative
Services, QoS
Agents,
v Trangtion
I Programs and
| Applications

Accomplishments

Implementation of the networ k-centric real-time QoS middlewar e algorithms
and mechanisms. (static scheduling, dynamic scheduling, load shedding/
reduction, dynamic binding, data replication)

Implementation of QoS model in International Standard Unified M odeling
Language (UML)

Implementation of real-time QoS analysis tool with input from UML model and
output to RT QoS middleware

Implementation of QoS negotiations among real-time agents. (Accuracy Vs
Real-Time)

Transitions:
Military programs (Coalition Forces, Virginia Class Sub, COF, Raytheon,
L ockheed/Martin, Boeing, Mitre, TRW)
International standards (RT CORBA 1.0, RT CORBA 2.0, UML)

Commercial products (Analysis Tool, Scheduling Service, UML tools, WindRiver
RTOS, Rational Softwaretools, Lineo Embedded Linux, OIS ORB

Academic publications (IEEE TDPS, 2 Real-Time Systems Journal, conferenceg)p

Oper ational Payoff

» The ability for combat systemsand C2 systemsto share
data and functionality under real-time QoS constraints.

» The ability to design and implement systemsusing a
COT S middlewar e approach that many programsare
adopting.

* New algorithms, mechanisms, and analysis techniques
for distributed real-time QoS middleware.

atticus.spawar .navy.mil/dhda

- _

ommn homepage.cs.uri.edu/research/rtsorac/
University

of Rhode”

" Island

|,-' WWW.Lripac.com

TrRiI-PACIFIC
SOQFTWARE. INC

a7

