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Abstract

Distributed real-time applications have presented
the need to extend the Object Management Group's
(OMG) Common Object Request Broker Architecture
(CORBA) standard to support real-time. The OMG
has formed a real-time special interest group (RT SIG)
to specify requirements for extending CORBA for real-
time. One of these requirements involves providing
global scheduling of all executions to support end-to-
end timing constraints in the real-time CORBA sys-
tem. This paper describes the design and implemen-
tation of a real-time scheduling service for a Dynamic
Real-Time CORBA system.

1 Introduction
Distributed object computing is becoming a widely

accepted programming paradigm for applications that
require seamless interoperability among heterogeneous
clients and servers. The Object Management Group
(OMG), an organization of over 700 distributed soft-
ware vendors and users, has developed the Common
Object Request Broker Architecture (CORBA) as a
standard software speci�cation for such distributed
environments. The CORBA speci�cation includes an
Object Request Broker (ORB), which is the middle-
ware that enables the seamless interaction between
distributed client objects and server objects; Object
Services, which facilitate standard client/server inter-
action with capabilities such as naming, event-based
synchronization, and concurrency control; and the In-
terface De�nition Language(IDL), that de�nes the ob-
ject interfaces within the CORBA environment.

Many distributed real-time applications, such as
command and control, automated manufacturing,
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telecommunications, and simulation, are embracing
the object-oriented paradigm and have a mandate to
use an open systems design. The designers of many
of these applications are considering CORBA for their
architecture, but are �nding it is currently inadequate
to support real-time requirements. CORBA contains
neither the services, nor the interface facilities to ex-
press and enforce end-to-end timing constraints on dis-
tributed client/server interactions.

The OMG has formed a Special Interest Group (RT
SIG) with the goal of extending the CORBA standard
with real-time extentions. One of the requirements
that has been established by the RT SIG involves pro-
viding global real-time scheduling to support the en-
forcement of end-to-end timing constraints on client-
server interactions.

We have developed a dynamic real-time CORBA
system prototype that meets many of the require-
ments speci�ed by the RT SIG [3], including a schedul-
ing service with that enforces a dynamic global prior-
ity ordering across the CORBA system. This paper
describes the design and prototype implementation
of our scheduling service. Section 2 presents back-
ground on CORBA, real-time CORBA and real-time
scheduling. It also describes related work in real-time
CORBA scheduling. Section 3 brie
y describes our
real-time CORBA system design, and goes on to de-
scribe in detail our scheduling service. Section 4 con-
cludes by summarizing what we have done so far and
by indicating areas for future work.

2 Background

This section provides background on the CORBA
architecture and on the OMG RT SIG's scheduling
requirements. The section also describes other related
work in real-time CORBA scheduling.
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Figure 1: CORBA System Components

2.1 CORBA

CORBA is designed to allow a programmer to con-
struct object-oriented programs without regard to tra-
ditional object boundaries such as address spaces or
location of the object in a distributed system. The
CORBA speci�cation includes: an Interface De�ni-
tion Language(IDL), that de�nes the object interfaces
within the CORBA environment; an Object Request
Broker (ORB), which is the middleware that enables
the seamless interaction between distributed client ob-
jects and server objects; and Object Services, which
facilitate standard client/server interaction with capa-
bilities such as naming, event-based synchronization,
and concurrency control.

Figure 1 illustrates the parts of a CORBA system.
The client stubs and the server skeletons are produced
by the IDL compiler. There is a stub and skeleton for
each method on a server's interface. The purpose of
these code segments is to hide the details of commu-
nication between the client and the server. Using the
stubs, the skeletons, the ORB, and a component called
the Basic Object Adapter, the CORBA system han-
dles all details of the distributed method invocation so
that the distribution is essentially transparent to the
client and server application developers.

The CORBA standard contains speci�cations for
Object Services that facilitate client/server interac-
tion. These services include a Naming Service for
binding a name to an object; an Event Service for
noti�cation of named events; and a Concurrency Con-
trol Service for locking of resources to maintain con-
sistency. A more complete list of the Object Services
can be found in [7]. In a real-time environment, a new
service (scheduling service) is necessary to provide for
the enforcement of client timing constraints across the
real-time CORBA system.

2.2 Real-Time Scheduling

Modes of Real-Time. The way in which schedul-
ing is performed in a real-time system depends upon
the urgency of the timing constraints in the system. A
hard real-time system involves timing constraints that
must be met in order to avoid catastrophic results. In
such a system, all timing constraints must be guaran-
teed to be met. Scheduling in a hard real-time system
involves analyzing the timing constraints of all tasks
a priori to determine if a feasible schedule of the tasks
exists. If so, priorities are assigned to all tasks before
execution of the system. This type of real-time sys-
tem is known as a static real-time system because all
executions that will occur in the system are known a
priori and they don't change. Soft real-time systems
involve timing constraints that are not as crucial as
those in hard real-time systems. In a soft real-time
system, a task whose timing constraint has been vi-
olated is usually completed anyway because it may
still provide some value to the system. Soft real-time
systems do not require guarantees about meeting tim-
ing constraints. Rather, they typically take a \best-
e�ort" approach towards meeting timing constraints.
Because soft real-time systems are more 
exible with
respect to meeting timing constraints, they tend to
be more dynamic in nature. That is, it is not neces-
sary to have full knowledge of all executions that will
occur. Scheduling decisions are made dynamically as
new tasks enter the system, and as system conditions
change.

Real-Time Scheduling

Algorithms. Most priority-based scheduling algo-
rithms for real-time systems are priority assignment
algorithms. That is, the algorithm takes the given
timing constraints and produces a priority for every
task. When executing, the highest priority task on a
particular node always executes until completion, or
until a higher priority task enters the system. In the
latter case the higher priority task preempts.

Real-time scheduling algorithms can be divided into
two types: �xed-priority and dynamic-priority. In a
�xed-priority algorithm, once a task is assigned a pri-
ority, it keeps the same priority throughout its execu-
tion. An example of a �xed-priority scheduling algo-
rithm is the rate-monotonic (RM) [5] which works for
periodic tasks. RM assigns highest priority to the task
with the shortest period. RM is usually used in a static
real-time system with hard timing constraints because
it can be fully analyzed for schedulability given a set
of tasks with timing constraints. A dynamic-priority
scheduling algorithm is one in which the priority of



a task may change based on changing system condi-
tions. Earliest deadline �rst (EDF) [5] is an example
of a dynamic-priority scheduling algorithm. EDF as-
signs the highest priority to the task with the closest
deadline. Clearly, as time progresses, the closeness of
a task's deadline changes, and so priority must be ad-
justed to re
ect this change. For instance, if a task
enters the system with a long deadline, it will be as-
signed a low priority. However, as time progresses, and
the task's deadline becomes closer, it may become nec-
essary to increase the priority of the task in order to
ensure that it will complete by its deadline.

2.3 Real-Time CORBA Scheduling Re-
quirements

The OMG's RT SIG has produced a whitepaper [6]
detailing the requirements that must be met in ex-
tending the CORBA standard for real-time. A full
description of these requirements and how they might
manifest themselves in a system can be found in [10].
The speci�c requirements for scheduling in real-time
CORBA involve the need for a global priority that
has meaning across the entire distributed system. A
scheduling service in a real-time CORBA system must
provide this global priority, based on the timing con-
straints expressed by the client's method invocations,
and on the server's own timing requirements. The ser-
vice must also ensure that the global priority can be
mapped to the scheduling environments of all local op-
erating systems involved in the execution. Finally, if
the real-time CORBA system is a dynamic system, the
scheduling service must ensure that the global prior-
ity correctly re
ects the requirements of the associated
execution for the duration of the execution. That is,
it may be necessary to modify the value of the global
priority based on changes that occur in the system.

2.4 Related Work

Other research has been done in the area of
scheduling for a real-time CORBA system. MITRE
has designed a system that provides a static dis-
tributed scheduling service supporting rate-monotonic
and deadline-monotonic techniques [4, 1]. At the
University of Washington in St. Louis, The ACE
ORB (TAO) has been developed [9]. TAO is a static
real-time CORBA system. The scheduling service
uses �xed-priority scheduling, such as rate-monotonic
scheduling. It performs o�-line feasibility analysis of
IDL operations, and it assigns priorities to threads
based on the timing constraints expressed on the IDL
operations. Static scheduling across the system, such
as those provided by the MITRE and TAO schedul-
ing services, are important steps toward supporting
hard real-time applications. Our scheduling service is
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Figure 2: Dynamic Real-Time CORBA System

designed for soft real-time applications and is imple-
mented in a dynamic real-time CORBA system, where
clients and servers can be added or removed, timing
constraints may change, and priorities are not �xed.

3 Global Scheduling in a Dynamic
Real-Time CORBA System

This section gives a brief overview of our Dynamic
Real-Time CORBA system. It then describes in detail
the scheduling service designed for the system. For a
full description of our Dynamic Real-Time CORBA
system, see [3, 10].

3.1 Dynamic Real-Time CORBA System

A depiction of our Dynamic Real-Time CORBA
system components is shown in Figure 2. The sys-
tem allows a client to add timing constraints to a
server method call through a construct called a Timed
Distributed Method Invocation (TDMI). In the TDMI,
timing information such as importance, and deadline,
is packed into a structure called the RT Environment

which is examined by the ORB and the object ser-
vices to enforce timing constraints. As Figure 2 shows,
along with the Scheduling Service, we have provided
several other extended object services to enforce the
timing constraints expressed by the client's TDMI.
The Global Time Service allows clients and servers to
get the current global time. It uses calls to the lo-
cal operating system that provide a time that is syn-
chronized with the time from all other nodes. The
Real-Time Event Service prioritizes delivery of events
and delivers the time that the event occurred. The
Real-Time Concurrency Control Service implements
priority inheritance [8] so that TDMIs with low pri-
orities do not block TDMIs with higher priority on a
server for extended periods of time. We also added
clock synchronization, bounded message delay, and a
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real-time exception handler to the CORBA system to
enforce real-time constraints.

The components of our Dynamic Real-Time
CORBA system are implemented as a Real-Time Dae-
mon process (RT Daemon) that executes on each real-
time POSIX operating system in the system, and as
a real-time library that provides type de�nitions, IDL
de�nitions, and code that is used to link in with client
and server code. The RT Daemon coordinates dy-
namic aspects of the system including changing global
priorities, time synchronization, and supporting real-
time events. The library code performs tasks such as
initial priority assignment, handling of real-time in-
formation that is associated with all execution in the
system, and handling of real-time exceptions.

3.2 Dynamic Scheduling Service

The Dynamic Scheduling Service performs three
major tasks: assignment of a global priority, mapping
of the global priority to local operating systems, and
global priority adjustment due to changes in the real-
time CORBA system. Figure 3 shows how the Dy-
namic Scheduling Service works. A client expresses
timing constraints such as importance and deadline.
The Priority Service (a part of the Dynamic Schedul-
ing Service) assigns a global priority to the client
call. And the RT Daemon (also part of the Dynamic
Scheduling Service) maps the priority to the priorities
available on the local operating system.

3.2.1 Global Priority Assignment

Dynamic real-time scheduling is done by establishing a
global priority assignment for all execution in the Dy-
namic Real-Time CORBA system. Each client com-
municates its scheduling parameters to a Global Pri-
ority Service, and in turn receives a global priority for
its execution. These priorities are dynamic and may
change over the lifetime of the execution. Figure 3
shows how the Global Scheduling Service works.

We call an execution's priority at an instant in time
its transient priority. A transient priority is an in-
teger that is derived by the Global Priority Service
based on the information in the RT Environment for
the execution. The Global Priority Service ensures
that the transient priority is meaningful relative to all
other transient priorities in our Dynamic Real-Time
CORBA system. That is, much like a single real-time
operating system assigning priorities within its local
domain, the Global Priority Service assigns priorities
that are meaningful across the real-time CORBA do-
main.

The Global Priority Service uses a uniform func-
tion for all clients and servers in the system to com-
pute transient priority using the attributes in the
RT Environment that is associated with the execu-
tion. Our prototype uses a global earliest-deadline-
�rst within importance priority assignment scheme.
That is, the prototype's transient priority function or-
ders priorities based on the importance attribute �rst,
and then based on the deadline attribute. A tran-
sient priority is a seven digit value, where the millions
digit represents importance, and the lower order digits
represent a time di�erence (multiplied by 100,000) be-
tween the maximum allowable deadline and the dead-
line speci�ed in the RT Environment for the execu-
tion. For instance, if the maximum deadline is 10
seconds, then execution with importance level 2 and
a deadline of 3 seconds has a transient priority of
2,700,000. Changing the calculation of transient prior-
ities based on other scheduling policies, such as global
rate-monotonic priority assignment, is facilitated by
the function's central implementation in the Global
Priority Service.

The implementation of the Global Priority Service
in our prototype is accomplished through code from
the RT Library. The library code calculates the initial
transient priority.

3.2.2 Priority Mapping

The Dynamic Scheduling Service maps the transient
priority to the priorities available on the local real-
time operating system, through the RT Daemon on
each node. The function that performs the mapping
must be written for each operating system individually
because of the variability in ranges of real-time prior-
ities present on di�erent systems (e.g., Solaris has 60
local priorities, and LynxOS has 256). In our proto-
type, which uses RT Solaris operating systems, the RT
Daemon must map the (wide) range of transient prior-
ities into the 60 local priorities. The mapping is done
by using a statistical model of the likely deadlines and



calculating transient priorities such that TDMIs are
probabalistically evenly distributed among the local
priorities. For example, if there were 60 executions to
be scheduled on a Solaris node, the mapping would re-
duce the probability that two executions would be at
the same priority. Unfortunately mapping of a large
range of transient priority values into a smaller range
of priorities can cause more than one transient prior-
ity to be mapped to a single local priority value, which
could cause some execution to be out of deadline or-
der.

3.2.3 Dynamic Change of Transient Priority

An execution may have di�erent transient priorities at
di�erent times during its lifetime. The RT Daemon is
responsible for implementing this part of the Dynamic
Scheduling Service. There are four reasons that an
execution's priority may be changed:

� Intermediate deadlines that are di�erent from a
client's overall deadline.

� Loss of time due to network delay and clock skew
when a call is made on a server on another node.

� Aging due to the use of a dynamic-priority
scheduling algorithm.

� Priority inheritance in the Real-Time Concur-
rency Control Service.

We describe each of these situations next.

Intermediate Deadlines. A real-time CORBA
client could have an initial transient priority based
solely on its importance with no deadline. It then
might enter phases of its execution that must be done
under deadlines. Thus, each time a new TDMI is
started, the RT Daemon recalculates the client's tran-
sient priority. Similarly, when a TDMI is complete,
the RT Daemon recalculates the client's transient pri-
ority using the deadline (if any) that was in e�ect be-
fore the TDMI was initiated.

Inter-node Communication. An-
other re-calculation of transient priority is done when
a client makes a TDMI to a server, to account for time
lost due to network communication. Assume that the
client's deadline constraint is dclient. This means that
the return message from the server with results for
the client must be received by the client by dclient as
measured on the client's clock. In our system, we as-
sume synchronized clocks with maximum skew �, and

assume maximum network message delay �. To cal-
culate the transient priority at which a server should
execute on behalf of the client, the server uses the
deadline dserver = dclient� � � � to pessimistically al-
low for � message delivery time back to the client and
an � clock skew between its clock and the client's clock.
Since this deadline is tighter than the client's deadline
on whose behalf the server is executing, the TDMI will
usually have a higher transient priority when execut-
ing in the server than it will while executing in the
client.

Transient Priority Aging. Another change in an
execution's transient priority is performed by the RT
Daemons in our Dynamic Real-Time CORBA system
enforcing aging of transient priorities. Aging is the
process of increasing priority as time goes on, which
is necessary in dynamic earliest-deadline-�rst schedul-
ing. Each RT Daemon keeps track of the transient pri-
orities on its node. A RT Daemon increases an execu-
tion's transient priority if, due to the passage of time,
the execution's transient priority is too low compared
to a newly-arrived execution on the node which the
RT Daemon controls. Note that in our prototype the
aging facility can be \turned o�" for real-time schedul-
ing policies that do not require aging, such as a static
rate-monotonic-based policy.

As an example of priority aging, suppose that three
TDMIs, T1, T2, and T3 enter the system at time 0 with
deadlines 17, 19 and 21 respectively. Considering that
these are all relatively long deadlines, the Global Pri-
ority Service using EDF assigns them relatively low
priorities: 20, 25 and 30 respectively (lower number
indicates higher priority). Then at time 15 (15 sec-
onds later), another TDMI T4 enters the system with
a deadline of 20. This deadline is close (5 seconds
to complete the TDMI), and so TDMI T4 must be
given a high priority. However, the deadlines of the
other TDMIs have also become tighter. The Dynamic
Scheduling Service, through the RT Daemon, recalcu-
lates the priorities of all TDMIs with shorter deadlines
than T4. Thus, we might have the following new pri-
ority assignments: T1: 3, T2: 5, T4: 7, T3: 30. Notice
that the priority of TDMI T3 does not change, but
that the relative positions of all priorities are correct.

Transient Priority Inheritance. Another source
of possible of transient priority change is due to prior-
ity inheritance in the Real-TimeCORBAConcurrency
Control Service. When a TDMI requests a lock on
a resource from the Real-Time Concurrency Control
Service, the TDMI's execution priority is compared to



those of all TDMIs holding con
icting locks on that re-
source. The Dynamic Scheduling Service (through the
RT Daemon) raises the priorities of con
icting TDMIs
with lower priorities to the requesting TDMI's prior-
ity, and the requesting TDMI is suspended. Whenever
a lock is released, the Dynamic Scheduling Service re-
sets the priority of the releasing TDMI to that of the
highest priority TDMI it still blocks. If it no longer
blocks any higher priority TDMIs, then the releasing
TDMI is reset to its original priority. Finally, the high-
est priority blocked TDMI that can now run is allowed
to obtain its lock and continue execution.

3.3 Performance Test Results

We have performed tests on the prototype imple-
mentation of our Dynamic Real-Time CORBA sys-
tem in order to determine how well it enforces ex-
pressed timing constraints. We measured the num-
ber of missed client deadlines in our prototype and in
a non-real-time CORBA environment (no scheduling
service). In general, the test results indicate that our
prototype, with an explicit scheduling service imple-
mented, misses fewer deadlines than a non-real-time
CORBA system with no scheduling service. A full de-
scription of the tests and their results can be found in
[3].

4 Conclusion
This paper has presented a Scheduling Service for

a Dynamic Real-Time CORBA System. The OMG's
RT SIG has speci�ed the need for a global priority for
every execution in the system. The Global Schedul-
ing Service provides this global priority, as well as the
maintenance of the global priority for the duration
of the execution. The Global Priority Service pro-
vides the initial transient priority for the execution
to ensure that all CORBA requests are scheduled at
all points in the distributed system according to the
same real-time policy. The Global Scheduling Service
then maps the transient priority to the possibly lim-
ited priority set of the server's local operating system.
The Global Scheduling Service is also responsible for
recalculating the transient priority for an execution to
re
ect changes in system conditions. These changes
in timing conditions can include new TDMI's, a call
to a server on another node, aging due to a dynamic-
priority scheduling algorithm, or priority inheritance
due to concurrency control.

The design of our Global Scheduling Service fa-
cilitates changes in the choice of scheduling algo-
rithm. Our prototype uses earliest-deadline-�rst, but
other algorithms, such as rate-monotonic or deadline-
monotonic can easily be used instead. While the cur-
rent prototype uses only importance and deadline, we

are investigating which other Quality of Service (QoS)
parameters can be factored in as scheduling parame-
ters and how to use them to generate transient prior-
ities.

We are using our experience in developing a dy-
namic scheduling service to design and build a schedul-
ing service for a static real-time CORBA system. The
scheduling service will involve using the PERTS [2]
real-time analysis tool o�-line to determine schedu-
lability of a real-time CORBA system of clients and
servers, and to assign priorities a priori to each execu-
tion in the system.
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