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Abstract. A real-time database is a database in which both the data
and the operations upon the data may have timing constraints. We
have integrated real-time, object-oriented, semantic and active database
approaches to develop a formal model called RTSORAC for real-time
databases. This paper describes the components of the RTSORACmodel
including objects, relationships, constraints, updates, and transactions.

1 Introduction

A real-time database is a database in which both the data and the transactions
may have timing constraints. Typically, a real-time database manages data from
the environment, processes environmental information in the context of previ-
ously acquired information and provides a timely response to transactions that
use the data [7]. Much of the current research has been directed towards develop-
ing relational real-time databases [7, 8]. Although the relational model is useful
for many applications, we believe that it is not as well-suited as an object-oriented

database model (OODM) for applications that require complex data, complex
relationships among data, �rst-class support for timing constraints, and more
scheduling exibility than serializability can provide. RTSORAC (Real-Time
SemanticObjects RelationshipsAnd Constraints) is a real-time object-oriented
database model that incorporates these concepts.

The RTSORAC model is based upon an earlier model called SORAC [5]. The
SORAC data model combines features of the object-oriented [13] and semantic
data models [6]. The prototype implementation of the SORAC model trans-
lates object and relationship de�nitions into code that executes on a commercial
object-oriented database system. In SORAC, enforcement rules specifying the
explicit means for maintaining interobject constraints are directly speci�able by
the database designer.

This paper represents an extension of the SORAC model for real-time appli-
cations. We have drawn from our experience in the design and implementation of
the RTC real-time programming language constructs [11] and SORAC to iden-
tify the basic research issues involved in the design of real-time object-oriented
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databases (RTOODBs). The next section of the paper provides background in-
formation on real-time databases, and summarizes the properties that are unique
to real-time databases. The third section describes the RTSORAC model, and
the last section describes the ongoing implementation of the RTSORAC model.
Issues for future investigation are also briey mentioned.

2 Real-Time Databases

A real-time database system has two distinguishing features: the notion of tem-
porally consistent data, and the ability to place real-time constraints on transac-
tions. These features are useful to time critical applications that need to collect,
modify, and retrieve shared data. Since the data used by these applications must
closely reect the current state of the application environment, we need mecha-
nisms for measuring this closeness. These measures are based upon time intervals
that specify the temporal consistency of the data. Temporal consistency can be
measured in two ways: absolute consistency and relative consistency [7]. A piece
of data is considered absolutely consistent with respect to time as long as the
age of a data value is within a given interval. For example, in a radar system,
the data corresponding to a contact, such as its speed, should be updated often,
(e.g. every �ve seconds). Hence, the value of the speed is temporally consistent
as long as it is no more than �ve seconds old. Relative consistency is of inter-
est when multiple values are used in computations. It provides a mechanism for
checking the ages of the multiple data values with respect to each other. For
example, if the radar system computes the new location of a contact using the
speed and bearing, it would be important that the ages of the speed and bearing
be relatively close to one another (e.g. within two seconds).

Timing constraints on transactions come from one of two sources. First, tem-
poral consistency requirements of the data impose timing constraints on a trans-
action. For instance, the period of a sensor transaction is dictated by the valid
time of the sensor data that it writes. The second source of timing constraints on
transactions is system or user requirements on reaction time. There are typically
two types timing constraints on transactions: absolute timing constraints (i.e.
earliest start time, latest �nish time) and periodic timing constraints. Given the
added dimension of time on transactions, one of the interesting areas of study in
real-time databases is that of transaction scheduling [2, 12]. Not only must the
schedules meet timing constraints, they must also maintain the logical consis-
tency of the data in the database. An additional challenge is to provide a strategy
for recovery that adheres to the temporal and logical consistency requirements
of the system.

Hence, a real-time database system should provide support for specifying:

� the absolute validity interval of a data value
� relative temporal consistency among a set of data values
� absolute timing constraints on transactions
� periodic timing constraints on transactions
� recovery from violations of timing constraints



Object = hN;A;M;C;CF i
N = UniqueID

A = fa1; a2; :::; amg where attribute ai = hNa; V; T; Ii
M = fm1;m2; :::;mng where method mi = hNm;Arg; Exc;Op; OCi
C = fc1; c2; :::; csg where constraint ci = hNc;AttrSet; Pred;ERi
CF = compatibility function

Fig. 1. Object characteristics in RTSORAC

3 The RTSORAC Model

RTSORAC has three components that model the properties of a real-time object-
oriented database: objects, relationships and transactions. Objects represent data-
base entities. Relationships represent associations among the database objects.
Transactions are executable entities that access the objects and relationships in
the database.

3.1 Objects

An object (Figure 1) consists of �ve components, hN;A;M;C;CF i, where N is
a unique name or identi�er, A is a set of attributes, M is a set of methods, C
is a set of constraints, and CF is a compatibility function. Attributes, methods,
constraints, and the compatibility function are described below. Figure 2 illus-
trates an example of a Train object (adapted from [1]) for storing information
about a railroad engine in a database.

Attributes. A is set of attributes for the object, where each attribute is char-
acterized by hNa; V; T; Ii. Na is the name of the attribute. The second �eld, V ,
is used to store the value of the attribute, and may be of some complex data
type. The next �eld, T is used to store the timestamp of the attribute, and is
of some data type capable of expressing a time. Access to the timestamp of an
attribute is necessary for determining temporal consistency of the attribute. For
example, in the Train object, there is an attribute for storing the oil pressure
called OilPressure to which a sensor regularly provides readings. This update
is expected every thirty seconds, thus the OilPressure attribute is considered
temporally inconsistent if the update does not occur within that time frame. The
timestamp value of the OilPressure attribute must be utilized by the system
to determine that the update did not occur as expected.

The last �eld I is used to store the amount of imprecision associated with the
attribute, and is of the same type as the value �eld V . In order to meet real-time
constraints it may not be possible to maintain precise data values. Furthermore,
many real-time control applications allow a certain amount of imprecision. For
instance, within the Train object, the value of OilPressure attribute may not
have to be precise.
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Fig. 2. Example of Train object

Methods. The third component of an object, M , is a set of methods, where
each method is of the form hNm; Arg;Exc;Op;OCi. Nm is the name of the
method. Arg is a set of arguments for the method, where each argument has
the same components as an attribute, and is used to pass information in and/or
out of the method. Exc is a set of exceptions that may be raised by the method
to signal that the method has terminated abnormally. Op is a set of operations
which represent the implementation of the method. These operations include
statements for conditional branching, looping, I/O, and reads and writes to an
attribute's value, time, and imprecision �elds.

The last characteristic of a method, OC, is a set of operation constraints.
An operation constraint is of the form hNoc; OpSet; Pred;ERi where Noc is the
name of the operation constraint, OpSet is a subset of the operations in Op,
Pred is a Boolean expression, and ER is an enforcement rule. The predicate
is speci�ed over OpSet to express precedence constraints, execution constraints,
and timing constraints [11]. The enforcement rule is used to express the action
to take if the predicate evaluates to false. A more complete description of an
enforcement rule can be found in the next section on constraints.

Here is an example of an operation constraint predicate in the Train object:

Pred : complete(Put OilPressure) < NOW + 5*seconds

A deadline of NOW + 5*seconds has been speci�ed for the completion of the
Put OilPressure method. Note the use of a special atom complete(e), which
represents the completion time of the executable entity e. Other atoms that are
useful in the expression of timing constraints include start(e), wcet(e), and
request(e)which represent the execution start time, worst case execution time,
and the execution request time of entity e respectively.

Constraints. The fourth component of an object is a set of constraints, C,
which permits the the speci�cation of correct object state. Each constraint is of
the form hNc; AttrSet; P red;ERi. Nc is the name of the constraint. AttrSet is a
subset of attributes of the object. Pred is a Boolean expression that is speci�ed
using attributes from the AttrSet. The predicate can be used to express the



logical and temporal consistency requirements of the data stored in the object
by referring to the value, time, and imprecision �elds of the attributes in the set.

The enforcement rule (ER) is executed when the predicate evaluates to false,
and is of the form hExc;Op;OCi. As with methods, Exc is a set of exceptions
that the enforcement rule may signal,Op is a set of operations that represent the
implementation of the enforcement rule, and OC is a set of operation constraints
on the execution of the enforcement rule.

Logical and temporal consistency constraints on data require two distinct
methodologies for evaluation. Predicates based upon logical consistency require-
ments are evaluated when write operations are performed on the attributes in
AttrSet. All writes in the database are the result of a transaction which may be
either user initiated or system initiated. Hence an enforcement rule associated
with such a predicate will always be executed in the context of a transaction.
This execution may be synchronous or asynchronous and may involve signaling
an exception that is propagated back to the transaction. Predicates based upon
temporal consistency requirements may be violated simply due to the passage
of time and the semantics of predicate evaluation can vary. Once a constraint
violation has been detected, the corresponding enforcement rule is executed. It
is possible that there is no context (such as a transaction) for the execution
of the enforcement rule. In this case the implementation must provide a means
of handling exceptions raised outside of the context of a transaction, perhaps
through the use of a monitor that can detect and act upon signaled exceptions.

For example, as mentioned earlier, the Train object has an oil pressure at-
tribute that is updated with the latest sensor reading every thirty seconds. To
maintain the temporal consistency of this attribute, the following constraint is
de�ned:

N : OilPressure avi

AttrSet : fOilPressureg
Pred : OilPressure.time <= Now - 30*seconds

ER : if Missed <= 2 then

OilPressure.time = Now

Missed = Missed + 1

signal OilPressure Warning

else signal OilPressure Alert

The enforcement rule speci�es that if only one or two of the readings have been
missed, a counter is incremented indicating that a reading has been missed and a
warning is signaled using the exception OilPressure Warning. If more than two
readings have been missed, then an exception OilPressure Alert is signaled,
which might lead to a message being sent to the train operator. The counter
Missed is reset to zero whenever a new sensor reading is written to attribute
OilPressure.

Compatibility Function. The last component of an object, CF , is a compati-
bility function that expresses the semantics of simultaneous execution of each or-
dered pair of methods in the object. For each ordered pair of methods, (mi;mj),



Relationship = hN;A;M;C;CF;P; ICi
N = UniqueID

A = fa1; a2; :::; amg where attribute ai = hNa; V; T; Ii
M = fm1;m2; :::;mng where method mi = hNm;Arg; Exc;Op;OCi
C = fc1; c2; :::; crg where constraint ci = hNc;AttrSet; Pred;ERi
CF = compatibility function
P = fp1; p2; :::; psg where participant pi = hNp;OT; Cardi
IC = fic1; ic2; :::; ictg where interobject constraint

ici = hNic; PartSet; Pred; ERi

Fig. 3. Relationship characteristics in RTSORAC

a Boolean expression (BEi;j) is de�ned. BEi;j is evaluated to determine whether
or not mi and mj can execute concurrently. In many object-oriented systems,
the execution of a single method of an object prevents any other methods of
the object from being executed, i.e. the entire object is locked upon invocation
of a single method. Through the use of the compatibility function, the designer
of an object can allow more exibility by de�ning the semantics of the com-
patibility of each pair of methods. By allowing a higher degree of concurrent
access to the object through its methods, perhaps even relaxing serializability,
the a�ected data may become imprecise. An in depth discussion of the semantic
locking technique that utilizes the compatibility function to provide concurrency
control to an object in RTSORAC can be found in [4].

Consider the following examples of compatibility function speci�cations:

CF(Get OilPressure(), Get OilTemp()) = TRUE

CF(Put OilPressure(OP reading), ShowLog(Log)) = (Log <> "OilPressure")

In the �rst example, the compatibility function is used to specify that the meth-
ods Get OilPressure and Get OilTemp of the Train object can always run con-
currently (always TRUE). This is appropriate since these two methods operate on
di�erent attributes, OilPressure and OilTemp. The second example speci�es
that Put OilPressure and ShowLog can run concurrently as long as the log to
be displayed is not \OilPressure". If the requested log is \OilPressure", then the
execution of the ShowLog method may be delayed or aborted.

3.2 Relationships

Relationships represent aggregations of two or more objects. In the RTSORAC
model, a relationship (Figure 3) consists of hN;A;M;C;CF; P; ICi. The �rst
�ve components of a relationship are identical to the same components in the
de�nition of an object. In addition, objects that can participate in the relation-
ship are speci�ed in the participant set P , and a set of interobject constraints is
speci�ed in IC.

Figure 4 illustrates an example of a Energy Management relationship for
relating a Train object with a Track object. The Track object stores infor-
mation such as track pro�le and grade, speed limits, maximum load, and power
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Fig. 4. Example of Energy Management relationship

available. The energy management relationship uses both train and track infor-
mation to determine fuel e�cient throttle and brake settings.

Participants. P is a set of participants in the relationship, each participant is of
the form hNp; OT;Cardi.Np is the name of the participant. OT is the type of the
object participating in the relationship.Card is the cardinality of the participant,
which is either single or multi [3]. Constraints can be used to express cardinality
requirements of the relationship, such as minimum and maximum cardinality of
the participants. In Figure 4, Train and Track are single cardinality participants.

Interobject Constraints. IC is a set of interobject constraints placed on ob-
jects in the participant set, and is of the form hNic; PartSet; P red;ERi. Nic,
Pred, and ER are as in object constraints, and PartSet is a subset of the rela-
tionship's participant set P . The predicate is expressed using objects from the
PartSet, allowing the constraint to be speci�ed over multiple objects participat-
ing in the relationship. Enforcement rules are de�ned as before by hExc;Op;OCi,
however the operations Op can now include invocations of methods of the objects
participating in the relationship.

As an example of an interobject constraint, consider the Energy Manage-

ment relationship in Figure 4. A Train object will be on one speci�c segment
of track, represented by the Track object participating in the relationship. The
train should obey the speed limits set on the track, so the following interobject
constraint predicate could be speci�ed:

Pred : Train.Get Speed() < Track.Speed Limit(Train.Get Location())

If the speed of the train exceeds the speed limit posted at the train's location on
the track, then the corresponding enforcement rule signals SpeedLimitExceeded.



3.3 Transactions

A transaction has six components, hNt; O;OC; PreCond;PostCond;Resulti,
where Nt is a unique name or identi�er, O is a set of operations, OC is a set of
operation constraints, PreCond is a precondition, PostCond is a postcondition,
and Result is the result of the transaction. Each of these components is briey
described below.

Operations. O is set of operations that represent the implementation of the
transaction. These operations may include method invocations (MI), initiations
of subtransactions, commit or abort statements, and statements for conditional
branching, looping, and reads/writes on local variables. A subtransaction ini-
tiation allows for transactions to appear within the scope of other transac-
tions. Method invocations (MI) are of the form hMN;ArgInfoi, where MN

is the method name (prepended with the appropriate object id) and ArgInfo

is a set of tuples containing argument information. Each tuple is of the form
haa;maximp; tcri where aa is the actual argument to the method, maximp is
the maximum allowable imprecision of the argument, and tcr is the temporal
consistency requirement of the argument. The �elds maximp and tcr are speci-
�ed only for arguments that are used to return information to the transaction.
These �elds allow the transaction to specify requirements that di�er from those
de�ned on the data in the objects. For example, the transaction might be willing
to accept a value whose temporal consistency requirements have been violated
so as to meet other timing constraints. The data may still be useful to the trans-
action because of other available information (for example, it may be able to
do some extrapolation). A transaction may also specify that data returned by a
method invocation must be precise (maximp is zero).

Operation Constraints. OC is a set of constraints on operations of the trans-
action. These constraints are of the same form as the operation constraints speci-
�ed for methods, hNc; OpSet; Pred;ERi. As with methods, these constraints can
be used to express precedence constraints, execution constraints, and timing con-
straints. For example, a transaction may require that a sensor reading which has
been stored in the database be returned within two seconds.

Precondition, Postcondition, Result. PreCond represents preconditions
that must be satis�ed before a transaction is made ready for execution. For
example, it may be appropriate for a transaction to execute only if some speci�ed
event has occurred. The event may be the successful termination of another
transaction, or a given clock time. PostCond represents postconditions that
must be satis�ed upon completion of the operations of the transaction. The
postconditions can be used to specify the semantics of what constitutes a commit

of a transaction containing subtransactions. Result represents information that
is returned by the transaction. This may include values read from objects as well
as values computed by the transaction.
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Fig. 5. Mapping of the models to database systems

4 Implementation

As mentioned in the introduction of this paper, RTSORAC is based upon an
earlier model called SORAC. Figure 5 illustrates the prototype implementation
of the SORAC model, and shows the parallel implementation of RTSORAC.
The implementation of SORAC provides a data de�nition language called OIL
(Object Interaction Language), which allows the speci�cation of objects and
relationships, as well as interobject constraints [5]. These speci�cations are com-
piled into standard C++ object de�nitions with calls to the underlying ONTOS
object-oriented database system.

A similar approach is proposed for implementation of RTSORAC. There are
two main e�orts involved with this implementation. First is the extension of
Open OODB [9] to support objects and transactions that have real-time charac-
teristics. Thus, the real-time version of Open OODB will replace ONTOS as the
underlying database system. Second is the real-time extension of OIL (RTOIL)
to support characteristics of the RTSORAC model that do not appear in SO-
RAC. These characteristics include the compatibility function for concurrency
control, extended data types to support time, and the incorporation of time into
the speci�cation of constraints upon objects and relationships. RTOIL must
automate the mapping of each component of an object or relationship to the
attributes and methods of standard C++ objects with library calls to real-time
version of Open OODB.

The e�ort to extend Open OODB for real-time will involve modi�cation
or replacement of many of the components of Open OODB. As an alpha site
for Open OODB, we have had an opportunity to gain a full understanding of
its modular implementation structure. Open OODB is organized as a series of
replaceable policy managers such as the Transaction Policy Manager, and the
Persistence Policy Manager. We have recently implemented a prototype Object
Policy Manager capable of supporting a RTSORAC object. Details on the design
of our real-time extensions to Open OODB can be found in [10].

5 Conclusions

This paper has provided a general model for real-time object-oriented databases.
The model combines features of object-oriented databases, semantic data models,



real-time databases, and active databases. Our current implementation experi-
ences using Open OODB indicate the applicability of the RTSORAC model.

As the design and implementation of the RTSORAC model progresses, a
number of issues related to the RTSORAC model will be investigated. These
have been identi�ed and include inheritance, query language support, recovery
techniques, and necessary operating system support. While these represent a
diverse set of database issues, we have discovered that none can be investigated
in isolation. Thus, of particular interest will be the unique interaction among
these constructs that arise in the real-time environment.
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