
 1

I Introduction

This thesis provides contributions in real-time scheduling theory and tools for

distributed systems. In particular it addresses techniques to perform schedulability

analysis of Real-Time CORBA systems.

A real-time system is one in which some (or all) jobs have timing constraints.

By job we mean a basic unit of work to be scheduled and allocated resources. A

simple example of a job could be an I/O operation or a granule of computation. The

basic timing constraint is a deadline – a moment of time by which a job is required to

complete.

Traditionally, a real-time system developer starts with programming the

application software, and then validates timing constraints, often by using extensive

simulations. This approach is excessively time and resource consuming. Under this

approach, it is difficult to extend and maintain existing real-time systems: small

changes in the application software or underlying hardware can produce

unpredictable timing effects that can only be detected and corrected after exhaustive

testing. This problem demonstrates a need for automated tools that allow

schedulability analysis of a real-time system in the earliest stages of its design or

modification. Such a tool, called Prototyping Environment for Real-Time Systems

(PERTS), has been developed at the University of Illinois (Urbana, IL) and currently

is supported by Tri-Pacific Software division of the Tri-Pacific Consulting

 2

Corporation (Alameda, CA). The development of this tool became possible due to a

significant breakthrough in the solution of numerous schedulability problems [1].

PERTS is described in detail in Chapter II.

Distributed object computing has become a widely accepted programming

paradigm for applications that require seamless interoperability among heterogeneous

clients and servers. The Object Management Group (OMG) has developed the

Common Object Request Broker Architecture (CORBA) as a standard software

specification for such distributed environments. A great demand for Real-Time (RT)

CORBA has motivated the Real-Time Research group at the University of Rhode

Island to develop the first version of the RT CORBA in 1997 [2, 3]. Real-Time

CORBA is described in Chapter IV.

The possibility of preliminary schedulability analysis of the designed system

has a great value for the developers of distributed real-time applications.

Unfortunately, PERTS does not fully support the analysis of RT CORBA distributed

applications. After detailed analysis of PERTS capabilities, we have concluded that

the present PERTS version may be modified to model and analyze RT CORBA, as

we describe it in Chapter IV.

In Chapter V we discuss necessary PERTS modifications and describe the

implementation.

The test cases that demonstrate the correctness of the modified and new

PERTS components are presented in Chapter VI.

 3

Along with the goal of modeling RT CORBA and implementing necessary

PERTS modification, we have considered various theoretical issues. PERTS uses

two widely accepted schedulability criteria based on Liu-Layland’s and Lehoczky’s

conditions [1, 10]. In Section 2.3.3 we prove that the satisfaction of Liu-Layland’s

condition automatically guarantees the satisfaction of Lehoczky’s condition. We also

have considered the nontrivial case of a task system that contains harmonic tasks. In

Section 7.2.1 we demonstrate that, in this case, Lehoczky’s schedulability condition is

not necessary, but sufficient only. We present the modifications for the criterion to

make it necessary in the described case.

Thus, in this thesis we address techniques to perform schedulability analysis

of Real-Time CORBA systems. In addition, we discuss a list of various aspects of the

schedulability theory, including: modification of the Lehoczky’s schedulability

criterion for the systems containing harmonic tasks and for the RT systems built on

operating systems with limited available priorities; comparison of the Liu-Layland’s

and Lehoczky’s criteria for the systems with shared resources; description and

comparison of two resource access protocols.

 4

II PERTS

In this chapter we review PERTS 3.0 and its abilities to describe and analyze

real-time systems. For its complete description, we refer the reader to the PERTS

manual available on-line [4]. In this chapter we concentrate only on those PERTS

features that are important for its extension to analyze RT CORBA.

PERTS is a Prototyping Environment for Real-Time Systems. It contains

tools for the analysis, validation and evaluation of real-time systems. It includes an

extensible library of priority scheduling algorithms and resource access protocols.

In order to validate real-time system timing constraints and evaluate its

performance, the system parameters must be described. This description includes: the

workload to be executed, the resources available to support the workload, and the

algorithm used to assign priorities and allocate resources. PERTS provides such a

description environment through the Task Graph Editor, Resource Graph Editor, and

Schedulability Analyzer, described in the next three subsections.

2.1 Task Graph Editor

A Task Graph describes the application system, called the task system. It

includes a set of tasks of the system being modeled. The tasks could be periodic,

when time between two consecutive Ready Times is constant, or aperiodic, in other

 5

cases. Since aperiodic tasks go beyond the scope of our study, we will exclude from

future consideration in this project all features associated with them. The tasks may

be dependent on each other.

PERTS calls a collection of all tasks and their dependencies a Task Graph.

Every task and dependency is characterized by a set of parameters. To describe a

Task Graph, the user must provide a complete set of parameters for every task and

dependency in that Task Graph. The demand of a user-friendly interface to create

and edit Task Graphs has stimulated a development of PERTS Task Graph Editor.

Figure 2.1. Schematic view of the Task Graph Editor.

The Task Graph Editor, shown in Figure 2.1, enables the user to create and

update a Task Graph. It provides a graphical representation of the Task Graph. All

tasks of a Task Graph are represented by rectangular nodes, all dependencies are

presented by directed edges connecting the appropriate nodes. A description of a

Task Graph in this environment is performed by choosing an appropriate operation in

 6

a menu bar and clicking on the appropriate node or edge. To describe the set of

available in Editor operations/commands, we present them in groups, as they are

arranged in menu bar.

File Commands enable the user to create a new Task Graph (New), open an

existing Task Graph (Open), re-initialize already open Task Graph (Reopen), save

current Task Graph (Save), save a new copy of current Task Graph (Save As), print

current window (Print Entire Window), create a report of Task Graph information

(Generate Report), launch any of the other PERTS tools or exit the Task Graph

Editor (Quit).

Edit Commands enable user to manipulate task nodes and task dependencies.

User can add task node (Add Task), add dependency edge (Add Dependency), copy

task characteristics (Copy Task Parameters), move task nodes to the new position on

a screen (Move Task), delete task nodes or dependencies (Delete) or undo an

unintentional edit command (Undo (Add or Delete)).

Parameter Commands enable user to enter and change task parameters for

each task in the task graph. Since we are interested in the periodic tasks only, we

describe here only menu (and operations) for the periodic task parameters. It includes

the options to enter and edit the General Task Data, Optional Intervals, Non-

Preemptable Sections, Resource Requirements and User Specified Priorities.

By clicking on General Task Data menu bar, the user pops up an edit dialog

window, which enables input and edit of general task information for any task in the

open Task Graph. General Task Data include the following parameters (we omit here

some of the parameters irrelevant to our study):

 7

• Task Name,

• Ready Time – the earliest time instant at which the task may begin execution,

• Relative Deadline – time frame after Ready Time within which the task must

finish execution (reader can find in the literature a term Absolute Deadline, which

is a sum of Ready Time and Relative Deadline),

• Period – constant length of time between two consecutive Ready Times of the

task,

• Phase – the time at which the task starts its first period,

• Active Resource – the CPU the task should run on,

• Amount of Work – the execution time for the task.

The General Task Data Edit Dialog allows user to enter the appropriate task data in

the window, update the General Task Data (by clicking on OK), print the screen to a

file or to a printer (Print), cancel the update (Cancel) and view the help window

(Help).

In addition to the described General Task Data, every task is characterized by

a list of Optional Intervals, Non-Preemptable Sections and Resource Requirements.

Normally, a task, once scheduled, executes entirely. However, some tasks

contain optional parts, which are specified by means of Optional Intervals. They are

characterized by a Start and End Time. The task may contain more than one Optional

Interval.

 8

In a preemptive environment a task may be preempted by another task of

higher priority. Sometimes a task should not be preempted during some certain

sections of its execution called Non-Preemptable Sections. Similar to Optional

Intervals, they are characterized by a Start and End Time. A task may contain more

than one Non-Preemptable Section.

A task may require a use of one or more resources during its execution. The

resource requirements are described by Resource Name, Start Time and End Time.

 To edit one of the described objects (Optional Intervals, Non-Preemptable

Sections or Resource Requirements), the user clicks on appropriate menu bar to pop

up a corresponding Edit Dialog Window. Every Window contains the appropriate

fields for editing the object parameters, including summary on all objects of specified

type. User can enter the object parameters into the Window Dialog, add an

appropriate object (by clicking on Insert), remove an object (Delete), modify

parameters of an existing object (Modify), update the data (OK), cancel the update

(Cancel) and view the help window (Help).

2.2 Resource Graph Editor

The Resource Graph describes the physical and logical resources available to

the task system. It includes all the resources of the system and their “relationships”.

By relationship PERTS means that the resources may be included (a-part-of type) or

 9

accessed (accessible-from type) by another resources. A database residing at a Node

is an example of a-part-of relationship (where the database is a part of the Node). A

database accessible from another Node is an example of accessible-from relationship

(where a database is accessible from the Node).

To describe a Resource Graph, the user must provide a complete description

of every resource and its relationship with other resources. The demand of a user-

friendly interface to create and edit Resource Graph has stimulated a development of

the Resource Graph Editor.

Figure 2.2. Schematic view of the Resource Graph Editor.

 10

The Resource Graph Editor, shown in Figure 2.2, enables the user to create

and update the Resource Graphs. All resources of a Resource Graph are represented

by rectangular nodes, all relationships – by directed edges connecting the appropriate

nodes (solid red for a-part-of and dashed green for accessible-from). Similar to the

Task Graph Editor, the description of a Resource Graph in this environment is

performed by choosing an appropriate operation in a menu bar and clicking on the

appropriate node or edge.

2.3 Schedulability Analyzer

There are two complementary techniques in evaluation of the timing behavior

of a real-time system: 1) schedulability analysis based on theoretical calculations and

2) simulation. The schedulability analysis provides rigorously derived results on

whether timing constraints are met, but requires an analyzable model of the studied

system. On the other hand, the simulator provides no guarantees; it determines

whether timing constraints are violated, relying on user’s specification of the worst-

case configuration. However, the simulator can deal with a higher complexity model

of the system than the schedulability analysis. This project has concentrated on the

schedulability analyzer, which can guarantee system schedulability. We would like

to emphasize that since the schedulability analysis is based on sufficient (not

 11

necessary) criteria, it could not guarantee non-schedulability of a task system. If a

task system does not satisfy these criteria it does not mean that it is not schedulable,

but instead it means that theory is unable to guarantee its schedulability.

The Schedulability Analyzer is the last of the three PERTS key components.

It performs the schedulability analysis for the systems that have been described using

the Task Graph and Resource Graph. However, the system is not described

completely until the user specifies the Priority Assignment Mechanism and the

Resource Access Protocol for the system. Using the Schedulability Analyzer, a user

can choose the appropriate Priority Assignment Mechanism and Resource Access

Protocol.

2.3.1 Priority Assignment Mechanisms and Resource Access

Protocols

 The list on priority assignment mechanisms in the Schedulability Analyzer

includes:

• Rate Monotonic (RM) [1] - which assigns higher priority to a task executing at

higher rate,

• Deadline Monotonic (DM) [5] - which assigns higher priority to a task with

shorter relative deadline,

 12

• Earliest Deadline First (EDF) [1] - which assigns a higher priority to a task with

faster approaching deadline.

There are three other Priority Assignment Mechanisms currently supported by

PERTS, Cyclic Executive (CE), Harbour-Klien-Lehoczky (HKL) and Sun-Gardner-

Liu (SGL), not applicable for our study because of their limitations. CE is applicable

for a system containing harmonic tasks only, while HKL and SGL prohibit resource

accesses.

The list of available Resource Access Protocols includes:

• Priority Ceiling Protocol (PCP) [6,7,8] - which avoids deadlocks, limits blocking

time and guarantees that the blocking time is a function of duration of critical

sections only;

• Basic Inheritance Protocol (BIP) - which is similar to PCP. It is easier in

implementation than the latter, but does not limit the number of times a task may

be blocked and does not prevent deadlocks;

• Stack Based Protocol (SBP) [9] - which assigns a fixed preemption level to every

task inversely proportional to its relative deadline. It avoids deadlocks and

multiple blocking, but applicable only to Single-Node systems.

After a user specifies the Priority Assignment Mechanism and the Resource

Access Protocol and chooses the appropriate textual files with description of the Task

and Resource Graphs, the system is completely described.

 13

2.3.2 Schedulability Analysis Regimes

There are three different regimes of analysis provided by PERTS: Single-

Node, Multiple-Node and End-to-End.

Single-Node Analysis, shown in Figure 2.3, determines whether the node is

schedulable. A task is schedulable if it always completes its execution before its

deadline; a node is schedulable if all the tasks assigned to that node are schedulable.

In addition to the report on schedulability of the node, the Single-Node Analysis

reports the CPU utilization, and it provides the list of all tasks indicating their

schedulability. The user can modify the system parameters to allow “what if?”

modeling.

The title “Single-Node” can be misleading. This type of analysis may be used

for the systems consisting of a single node, as well as for multiple node systems. In

the latter case, the user should choose for analysis either Multiple-Node or End-to-

End Analysis, described below. However, to obtain details on the particular node of

the distributed system the user may use the Single Node Analysis.

Multiple-Node Analysis, shown in Figure 2.4, examines the schedulability of

multiple-node real-time systems. To allow “what if?” modeling, the Multiple-Node

Analysis interface enables modification of the binding of tasks and resources to

different system nodes. The binding may be either manual or automatic, using such

algorithms as best fit, first fit, next fit and worst fit.

 14

The benefit of being able to analyze system architectures that have more than

one node and share resources can be critical for distributed real-time system

developers. PERTS can help point out potential overhead problems and blocking

problems that may be introduced by sharing resources across the nodes. Individual

entities may be schedulable as stand-alone entities, but when put in a multiple-node

architecture with the resource sharing, they may become non-schedulable. Multiple-

Node Analysis reports the system schedulability and then user may select individual

nodes to analyze it with Single-Node Analyzer.

Figure 2.3. Schematic view of the Single Node Schedulability Analysis.

 15

Figure 2.4. Schematic view of the Multiple-Node Schedulability Analysis.

 16

Figure 2.5. Schematic view of the End-to-End Schedulability Analysis.

 17

Both Single-Node and Multiple-Node Analysis dialogs offer a node-

oriented view of the system under consideration. They do not perform any path

analysis in the systems with task dependencies.

End-to-End Analysis, shown in Figure 2.5, looks at the schedulability of a

system with one or more paths of execution defined by a series of task dependencies.

The End-to-End Analysis Window graphically represents all tasks and dependencies

(similar to Task Graph Editor). Specifying any path, the user obtains a schedulability

report on that particular path. The user may choose Single-Node Analysis for the

detailed information on the particular node.

2.3.3 Schedulability Analysis: How It Is Done.

The main feature of all three analysis regimes in PERTS is the ability to

guarantee the system schedulability. In this section we describe the theory underlying

this analysis. There are two sufficient conditions for the schedulability of a real-time

system. One of them is based on the concept of Processor Utilization Bound

introduced by Liu and Layland [1] and another – based on the concept of Processor

Time Demand introduced by Lehoczky et. al. [10].

The first criterion requires satisfaction of the following inequality:

 18

where tasks are indexed in the decreasing priority order (task T1 has the highest

priority on the considered node). Cj and Tj denote the worst-case execution time and

period of the task Tj. Bi is the worst-case blocking time potentially suffered by any

job in the task Ti due to resource contention or non-preemptive execution of lower-

priority tasks. If a task Ti satisfies this condition, it is schedulable by the RM or DM

and PCP or SBP. Schedulability of all tasks of the system means the system is

schedulable.

When a fixed-priority scheduling algorithm is used with a resource access

control protocol that effectively controls priority inversion, there is another more

accurate schedulability condition [7, 10, 11]. This condition is stated in terms of the

worst-case cumulative demand function Wi(t) for processor time in the interval

between the release time of a task Ti and the time t units after its release. The demand

function Wi(t) is given by

The demand function has three parts: the processor time demand by all tasks with

priorities equal or higher than Ti, the demand of Ti itself, and the worst-case blocking

time suffered by each job in Ti. The job released at time t0 completes at time t0+t, if

)12(...
1

2

2

1

1 −≤++++ ii
T

B

T

C

T

C

T

C

i

i

i

i

W t C t
T Ci j

jj

i

i i() =

+ +
=

−

∑
1

1

β

 19

Wi(t)=t. Consequently, whenever Wi(t)≤t for some t smaller than task Ti Relative

Deadline, the task Ti’s is schedulable.

The PERTS Schedulability Analyzer checks both criteria. Satisfaction of at

least one of them by all tasks guarantees schedulability of the system. This approach

should yield a correct schedulability result if both criteria are implemented correctly.

Unfortunately, we have detected some theoretical and implementation errors in the

present PERTS version, which yield the misleading results of the analysis. In Section

7.3.3 we summarize these errors, demonstrate counter-examples and provide the

solutions. To reduce the effect of the implementation errors we recommend using

only Lehoczky’s condition for the schedulability analysis. We prove below that the

satisfaction of the Liu-Layland’s condition automatically leads to the satisfaction of

the Lehoczky’s criterion.

Theorem 1: If any task system satisfies the schedulability criterion based on

Liu-Layland’s condition (called in future L-L) it also satisfies the schedulability

criterion based on Lehoczky’s condition (Leh).

Proof:

Since a task system is said to be schedulable if all of its tasks are schedulable,

the proof of the Statement for an arbitrary task proves it for a task system.

Let us consider an arbitrary task Ti, which does not use any shared resources.

We also assume, that L-L schedulability criterion is satisfied for this task:

 20

Since the L-L condition is sufficient [1] and the Leh condition is necessary [10]

(under the assumption that there are no shared resources used by the task) it follows

automatically, that satisfaction of the L-L condition leads to the satisfaction of the

Leh condition. Therefore there exists some value of time t, less than or equal to the

Relative Deadline of the task Ti, such that

The theorem has been proven for the tasks without shared resources.

Let us assume now that the task Ti uses shared resources. It leads to some potential

blocking Bi of the task Ti. Under these circumstances the Leh condition is not

necessary anymore. In this case we can not use the same approach as in previous one.

Introduction of the shared resources (and therefore blocking Bi) modifies the L-L and

Leh conditions to be read

)12(...
1

2

2

1

1 −≤+++ ii
T

C

T

C

T

C

i

i

tCT
tCtW i

i

j j
ji ≤+

= ∑

−

=

1

1

)(

)12(...
1

2

2

1

1 −≤++++ ii
T

B

T

C

T

C

T

C

i

i

i

i

tBCT
tCtW ii

i

j j
ji ≤++

= ∑

−

=

1

1

)(

 21

respectively. Let us consider now another task T’i, which has identical to the task Ti

parameters, but does not use shared resources and its execution time C’i is equal to

Ci+Bi. Let us also assume that task T’i satisfies the L-L condition:

As it was proven in the first part of this proof, the satisfaction of the L-L condition for

a task that does not use shared resources automatically leads to the satisfaction of the

Leh criterion:

Replacing C’i by its equivalent Ci+Bi in both conditions, we obtain that

satisfaction of L-L criterion for a task, using shared resources,

automatically leads to the satisfaction of the Leh criterion

It proves the Statement for the remaining case of tasks, using shared

resources. The Theorem is proven. ■

)12(
’

...
1

2

2

1

1 −≤+++ ii
T

C

T

C

T

C

i

i

tCT
tCtW i

i

j j
ji ≤+

= ∑

−

=

’)(
1

1

)12(...
1

2

2

1

1 −≤++++ ii
T

B

T

C

T

C

T

C

i

i

i

i

tBCT
tCtW ii

i

j j
ji ≤++

= ∑

−

=

1

1

)(

 22

III Real-Time CORBA Systems

3.1 CORBA

The Common Object Request Broker Architecture (CORBA) is an answer to

the need for interoperability among the rapidly proliferating number of hardware and

software products available today. Simply stated, CORBA allows applications to

communicate with one another no matter where they are located or what underlying

system they use. CORBA provides a uniform way for any object to receive and

respond to a request from any requester (client).

 The Object Request Broker (ORB), CORBA’s key component, is the

middleware that establishes the client-server relationships between objects. Using an

ORB, a client can transparently invoke a method on a server object, which can be on

the same machine or across a network. The ORB intercepts the call and is

responsible for finding an object that can implement the request, pass it the

parameters, invoke its method, and return the results. The ORB facilitates the

processing of client requests. A client does not have to be aware of where the object

is located, its programming language, its operating system, or any other system

aspects that are not part of an object's interface. In so doing, the ORB provides

interoperability between applications on different machines in heterogeneous

distributed environments and seamlessly interconnects multiple object systems.

 23

To provide these capabilities, the CORBA specification defines an

architecture of interfaces that may be implemented in different ways by different

vendors. The architecture was specifically designed to separate the concerns of

interfaces and implementations. The architecture, shown in Figure 3.1, has been

described in detail [12].

Figure 3.1. Schematic view of the CORBA.

3.2 Real-Time CORBA

Real-Time distributed applications such as automated factory control, avionic

navigation and simulation have demonstrated the need to extend the CORBA

standard to support real-time. The Real-Time Research group at the University of

 24

Rhode Island has developed the first version of RT CORBA. The group was

concentrated on CORBA/RT desired capabilities involving object services and

features for handling real-time client/server interaction and addressed object services

desired capabilities that are essential for expressing and enforcing timing constraints.

These desired capabilities are expressing and enforcing timing constraints on CORBA

method invocations, synchronized clocks, Global Time Service, and Real-Time Event

Service, shown in Figure 3.2.

Figure 3.2. Schematic view of the RT CORBA.

A RT CORBA client contains a set of requests to RT CORBA servers

(method calls) intermixed with its local code. In addition to its final timing constraint

(deadline) a client may contain a series of intermediate timing constraints

(Intermediate Deadlines), associated with different method calls, calculations and

 25

data manipulations. The Intermediate Deadline is a crucial RT CORBA feature that

PERTS 3.0 does not currently support. An Intermediate Deadline is specified by

three time parameters: Start Time and End Time and Deadline. The Start Time and

End Time describe the beginning and end of the portion of the client code to be

completed by the Deadline.

main

every p1 units of time do

{

client code11...

s1 = bind (server1)

s2 = bind (sever2)

by deadline d11

s1->method1

client code 12...

by deadline d12

s2->method1

client code13…

}

client

node 1

node 2

method1

method N

server 1

other

server

node 3

method1

method M

server 2

other

client

other

client
Task1

Task2

Task3

Figure 3.3. Example of the RT CORBA System.

 26

We illustrate a typical RT CORBA client in Figure 3.3. This client (residing

on node 1) has a period of P1 units of time during which it makes two CORBA calls

to remote CORBA servers (s1->method1 and s2->method1). Each CORBA call has

its own pre-period deadline, shown by horizontal line (d11 for s1->method1 and d12

for s2->method1). Note that there is also some local client code before, after, and

between CORBA method calls. The figure shows remote servers only, while in

general some or all servers could reside on the client’s node.

The distributed CORBA architecture causes network communication between

clients and servers residing on different nodes. The time that clients spend sending

requests to remote servers (Network Delay), may be significant enough to make the

clients non-schedulable. This demonstrates the need to take the Network Delay into

account in the schedulability analysis, as shown in the next chapter.

To enable the analytical schedulability analysis by PERTS, Real-Time

Research group is currently modifying the existing Dynamic RT CORBA software

(Orbix on Solaris) to handle Static RT CORBA. It involves a transition from

currently supported by RT CORBA dynamic Earliest Deadline First (EDF) priority

assignment (which does not allow an analytical schedulability analysis) to the

Deadline Monotonic (DM). The latter enables preliminary priority assignment and

use of the Distributed Priority Ceiling Protocol improving the worst case priority

inversion bound relative to currently supported Basic Priority Inheritance (BPI).

 27

IV Modeling RT CORBA with PERTS

4.1 Problem Domain

We are interested in end-to-end analysis of RT CORBA clients making

distributed method calls to CORBA servers over a network. That is, client(s) and

server(s) are potentially on different nodes in a distributed system. For this project,

the clients will be periodic, with known execution times and we will allow multiple

intermediate (pre-period) deadlines within the clients. The server methods will have

known execution times, but will get their timing constraints and the basis of their

priorities from the clients that invoke them.

The goal of PERTS analysis of RT CORBA is to determine whether all clients

meet their timing constraints (final and all, if any, intermediate deadlines).

4.2 Mapping RT CORBA to PERTS

The RT CORBA system components are mapped to the PERTS primitives as

follows:

 28

4.2.1 CORBA Servers

All CORBA Servers, as well as CORBA ORB and Services, are represented

by PERTS resources. For example, each server in Figure 3.3 would be modeled as a

PERTS resource.

4.2.2 CORBA Clients

The PERTS does not support the schedulability analysis of Intermediate

Deadlines. Thus, the PERTS analysis for RT CORBA requires nontrivial client

modeling.

Each client with N intermediate deadlines will be modeled as N+1 PERTS

tasks. For example, the detailed client in Figure 3.3 would be modeled as three tasks:

• Task1: includes: the bind calls, “client code11”, “s->method1”, and “client

code12.

• Task2: includes: “s->method2”.

• Task 3: includes: “client code13”.

We must emphasize that Task2 may start its execution only after Task1

completes, and Task3 – only after Task2 completes. Thus the analysis must find for

each task a Ready Time (the earliest time instant at which a task may start execution),

that guarantees serialization of the tasks and correctly describes their dependencies.

 29

We have considered two different approaches to specify task dependencies

within a client.

The first approach is based on modeling the task dependencies by timing

constraints, having the release time of task i be the deadline of task i-1. This is a

pessimistic way to model dependencies for two reasons. First, the deadline of the

previous task may have much greater value than its Completion Time (the time it

takes to finish execution in the worst case), which means that a task i will be idle for a

long time after the previous task i-1 completed its execution. In this situation the task

i more likely will miss its deadline. Second, all the tasks generated by the same client

are harmonic and have different release times. These conditions guarantee that the

“worst phasing condition” (when all tasks are ready for execution at the same time)

will never happen. Unfortunately, neither schedulability theory nor PERTS consider

this case, and as a result it leads to an overpessimistic evaluation of the system

schedulability. We present corrections need to be made to the Lehoczky’s condition

to account for this harmonic tasks case in Section 7.3.1.

The second approach to specify the task dependencies within a client is by

modeling them as real dependencies, which are analyzable by PERTS, by having task

i dependent on task i-1, and task i+1 dependent on task i. PERTS End-to-End

analysis calculates the worst-case Completion Time of a task and assigns this value to

the Ready Time of a consequent (in dependency) task. This approach guarantees the

serializability and minimizes the idle time of the dependent tasks. For this reason, we

choose to use PERTS dependencies to model client tasks.

 30

However the dependency approach is also pessimistic. The PERTS analyzer

assumes that a task may be blocked and preempted by the tasks that depend on it,

which introduces a delay in the completion time of the task i and delay in the release

of the tasks i+1 and all subsequent tasks.

Client Period Ready

Time

Relative

Deadline

Execution

Time

Node Resource Intermediate

Deadline

Client1 1000 0 1000 500 1 Server1

[100-150]

Server2

[200-250]

[0->200] by 300

[200->250]by 700

Table 4.1. Time parameters of the client from Figure 3.3.

We present here a model for the client introduced in the example of Figure 3.3

using the dependencies approach. For simplicity, but without loss of generality, we

consider here only one client. The main parameters of the client are presented in the

Table 4.1. It is a periodic client with the Period of 1000, Ready Time of 0, Relative

Deadline of 1000 and Execution of 500 time units. It is residing on Node 1. It

requires use of two resources, server1 and server2, during the periods of time from

100 to 150, and from 200 to 250 units of time, respectively. It also has two

intermediate deadlines: the portion of the code from 0 to 200 units of time must be

completed by the time of 300 units and the portion of the code from 200 to 250 units

of time must be completed by the time of 700 units. For simplicity, we assume in this

 31

example that Phasing value is 0 and the client does not have any Non-Preemptable

Sections or Optional Intervals, described in Chapter II.

To model this client in the PERTS environment we introduce three tasks

Task1, Task2 and Task3, as shown in Table 4.2. Most of the task parameters, such as

Period, Ready Time, Phasing, Node, are common for all tasks inherited from the

client. The relative deadlines are specified by the intermediate deadlines and relative

deadline of the original client. The Execution Time of the task i is calculated as the

difference between the End Times of the Intermediate Deadlines i and i–1. The list of

required resources is split between the tasks depending on the time intervals specified

by the resource requirement and intermediate deadline. Since Server1 needs to be

used during the [100-150] time interval, it fits into the time interval specified by the

first intermediate deadline ([0-200]), and therefore is assigned to the Task1. The time

interval of Server2 is [200-250], which belongs to the time interval of the second

intermediate deadline ([200-250]), and therefore belongs to the Task2. Note that the

time interval of this resource requirement has been modified to [0-50]. After

separation of the first part of the code between 0 and 200 time units into separate task

(Task1), the remaining code starts from the 0 time mark. This leads to modification

of all time intervals, including resource requirements, Non-Preemptable Sections,

Optional Intervals and remaining Intermediate Deadlines, as well as Execution Time,

described above. The last column of Table 4.1 shows the dependence of the Task2 on

Task1 and Task3 on Task2. Note that if the original client itself depends on some

other task, then this dependency is inherited by the first generated task (Task1). If

 32

some other task depends on the original client, then this dependency is inherited by

the last generated task (Task3).

Task Period Ready

Time

Relative

Deadline

Execution

Time

Node Resource Depends on

Task1 1000 0 300 200 1 Server1 [100-150]

Task2 1000 0 700 50 1 Server2 [0- 50] Task1

Task3 1000 0 1000 250 1 Task2

Table 4.2. Time parameters of the three tasks generated form client from Figure 3.3.

While the original version of PERTS can not analyze clients with intermediate

deadlines, it may analyze the system of dependent tasks presented in Table 4.2.

Using End-to-End analysis, described in Chapter II, the PERTS engine performs

schedulability analysis based on described dependencies. The engine calculates the

worst-case completion times for all tasks and modifies the Ready Times and Relative

Deadlines of the tasks, as shown in Table 4.3. Here, for simplicity and easy

visualization of the process, we assume that there is no blocking and preemption

involved in the example and therefore every task completes in “Execution Time”

units after its Ready Time.

 33

Task Period Ready

Time

Relative

Deadline

Execution

Time

Node Resource

Task1 1000 0 300 200 1 Server1 [100-150]

Task2 1000 200 500 50 1 Server2 [0- 50]

Task3 1000 250 750 250 1

Table 4.3. Time parameters of the three tasks generated form client (from Figure

3.3) produced by the End-to-End PERTS analyzer.

4.3 Network Delay

As previously stated, it is necessary to account for network delay in the

analysis of distributed real-time systems and PERTS does not directly support it.

Note that we are not trying to analyze the network traffic control, but instead we let

CORBA developers estimate the worst case Network Delay and input it to the task

description. Our goal is to include the Network Delay into consideration in the

schedulability analysis. The Network Delay is the worst case time that a task spends

traveling from one node to another without holding original and destination CPUs.

This specific feature (that original and destination CPUs are not hold by the task)

excludes the possibility to use PERTS “acquisition/de-acquisition time” option. The

acquisition/de-acquisition time is "charged" against the CPU utilization for the task

that is acquiring/de-acquiring. This is too pessimistic since the task is not using its

local CPU when it is using the network.

 34

Introduction of the Network Delay into schedulability analysis inserts an

additional term, 2 * N * delta, into the time demand function Wi(t) in the Lehoczky

schedulability criterion:

Here N stands for the number of remote (remote means residing on different than task

node) resource requests, generated by a task within one period, delta is the worst case

time, that request spends traveling from one node to another one. Factor of 2 is

attributed to the “round trip” of the resource request.

4.4 Priority Assignment

Task priority assignment will be done using Deadline Monotonic (DM)

Mechanism, described in Chapter II.

To make the system analyzable we had to choose a static priority assignment

mechanism usable on distributed systems and allowing use of local and global

resources. There are two mechanisms, RM and DM, satisfying these conditions. We

chose DM since RT CORBA tasks have pre-period deadlines.

deltaNCT
tCtW ii

i

j j
ji **2)(

1

1

+++

= ∑

−

=

β

 35

4.5 Resource Access Protocol

To control the resource accesses we choose the Distributed Priority Ceiling

Protocol (DPCP) [8], which was derived from PCP and extended for the distributed

systems, as described in Section 7.2.1. Our choice is based on two main features of

the resource access protocol, making system predictable: deadlock free and limited

blocking time. These both requirements are satisfied by DPCP.

4.6 Schedulability Analysis

We have chosen the End-to-End Schedulability Analysis Mode, the only

Mode that handles task dependencies. In performing a system schedulability

analysis, the Analyzer generates a report that describes system parameters, including

task priorities and resource priority ceilings.

 36

V. Implementation

This chapter presents the implementation of the new and modified PERTS

components. The implementation has been performed in C++ on a Sun Spark5 work

station running Sun’s Solaris 2.5.

5.1 Implementation Plan

To incorporate the new features, described in the previous chapter, we address

three different issues:

1. Modification of the Graphic User Interface (GUI) for the Task Graph Editor to

enable input of the Intermediate Deadlines and Network Delay.

2. Implementation of the Client->Task Translator, performing the split of a client

into set of dependent tasks, based on the client’s intermediate deadlines,

described in Section 4.2.2.

3. Modification of the Schedulability Analyzer to account for the Network

Delay, described in Section 4.3.

5.1.1 Modification of the Task Graph Editor GUI

To enable an input of the Network Delay value, we have added a box

"Network QoS Parameter" to the General Task Data Edit Dialog, located at

 37

"Parameters"/"Task Parameters"/"General Task Data" menu option. It allows

specification of the Network QoS Parameter (or Network Delay) for every task along

with previously presented in the dialog parameters. It is set to 0 (zero) by default. By

clicking on "OK" button the Network QoS Parameter is saved (along with other task

parameters). Option "Help" has been slightly modified to incorporate a description of

the "Network QoS Parameter".

To enable an input of the Intermediate Deadline parameters, we have

introduced a new Intermediate Deadline Edit Dialog. To call this Dialog we

introduce a new option "Intermediate Deadlines" to the "Parameters"/"Task

Parameters" menu bar. By clicking on this button user pops up the "Intermediate

Deadline Edit Dialog" Window, consisting of four fields:

• Start Time - specifying the beginning of the portion of the task that needs to

complete execution by some intermediate deadline (Start Time is not used in the

schedulability analysis in the current project, since the task (client) is split into set

of dependent tasks based on End Time. We have input Start Time field for

possible future applications);

• End Time - specifying the end of the portion of the task that needs to complete

execution by some intermediate deadline;

• Deadline - the intermediate deadline itself;

• List of all previously specified intermediate deadlines.

The Intermediate Deadline Dialog Window contains 6 buttons:

 38

• Insert - inserts new set of parameters into the list of Intermediate Deadlines;

• Delete - deletes selected (one or more) Intermediate Deadlines from the list;

• Modify - modifies the parameters of a specified Intermediate Deadline;

• OK - saves current list of Intermediate Deadlines in the increasing End Time

order;

• Cancel - closes the Intermediate Deadline Dialog Window;

• Help - pops up the window describing features of the Intermediate Deadline

Dialog Window.

5.1.2 Client->Task Translator Implementation

As discussed in Section 4.2.2, every client, containing at least one

Intermediate Deadline, is split into N + 1 tasks (where N is a number of Intermediate

Deadlines). The tasks generated from the same client have in common most of the

parameters inherited from the client. Here we list the modified parameters and

describe the modifications themselves.

• X coordinate (a parameter describing task position in a graphical representation of

the Task Graph in the Task Graph Editor and End-to-End Schedulability

Analyzer) is incremented by 100 for every new task generated from the same

client. Thus the task number i has X coordinate equal to the original client X

coordinate plus (i-1)*100. If the X coordinate exceeds a value of 1200 it is set to

50 along with an increase of Y coordinate by 50. Under this modification, all the

 39

tasks generated from the same client are located on the same horizontal line (have

the same Y coordinate) in increasing order left to right. If they do not fit on one

line being visible in the end-to-end analysis, they are moved to the next horizontal

line.

• Y coordinate is incremented by 50 units if X coordinate has exceeded value of

1200 for the reason described above.

• Relative Deadline of the task i is set to the Intermediate Deadline number i after

checking that Intermediate Deadline is stricter (smaller) than the original client

Relative Deadline. If not, then the task Relative Deadline is equal to the client’s

Relative Deadline.

• Execution Time of the task i is equal to the End Time of the Intermediate Deadline

number i minus the End Time of the Intermediate Deadline number i-1.

Reminder: the Intermediate Deadlines are arranged in the End Time increasing

order.

• Name of the first task of the client keeps the client name. Names of all other tasks

have an index attached to the original client name, such as NAME_2, NAME_3,

... NAME_(n+1), where n is the number of intermediate deadlines.

• Optional Interval List, Resource Requirement List and Non-Preemptable Section

List of the task i include only those intervals (or resource requirements) that fit

into the range between the End Time of the Intermediate Deadline number i and

the End Time of the Intermediate Deadline number i-1. If the interval

(corresponding to the Optional Interval or Resource Requirement) belongs to the

 40

described range only partially (i.e. Start Time is in that range but End Time is not

and vice versa) then the list contains only the corresponding part.

• List of Intermediate Deadlines is absent in the new tasks.

• Identification (id, PERTS internal unique task characteristic) is assigned after all

clients have been split.

According to the client model described in Section 4.2.2, task dependencies

are represented by PERTS dependencies. Every Task Graph, as described in Section

2.1, contains a list of dependencies. The Client->Task Translator modifies this list as

follows.

If two tasks are generated from the same client and their numbers in sequence

are i and i+1, then the task i+1 is dependent on task i and this dependency is added to

the list.

If a source of a dependency (a client/task, on which some other client/task

depends) was a client, then the source of this dependency is modified and the new

source is the last task generated from this client.

If a destination of a dependency (a client/task, which depends on some other

client/task) was a client, then the destination of this dependency is modified and the

new destination is the first task generated from this client.

The PERTS schedulability analyzer calls Client->Tasks Translator before it

performs any analysis. By doing so, it guarantees that all intermediate deadlines will

be translated into dependent tasks and thus will be taken into account in the analysis.

 41

5.1.3 Modification of the Schedulability Analyzer to incorporate the

Network Delay

The modification to allow PERTS to incorporate worst case Network Delay is

the first time that we modify the PERTS schedulability analysis engine. It involves

two ideologically different parts. The first part is based on the statement, proven in

Section 2.3.3, that satisfaction of the schedulability criterion based on the Liu-

Layland’s condition guarantees satisfaction of the criterion based on Lehoczky’s

condition. Based on this, we conclude that PERTS engine should check the latter

criterion only. We eliminate Liu-Layland’s criterion from the schedulability analysis.

In the second part, we modify the schedulability criterion based on the Lehoczky’s

condition to incorporate the total network delay, as described in Section 4.3.

5.2 Graphic User Interface (GUI) Modifications Implementation

As was pointed out in Section 5.1.1, the existing GUI had to be modified to

accommodate the new parameters of tasks (clients), Network QoS Parameter and

Intermediate Deadlines.

The implementation of the semantics of the set of Intermediate Deadline

parameters was encapsulated in a base C++ class called IntermediateDeadline.

class IntermediateDeadline : public PObject {

public:

 42

PTime start, end;

PTime iDeadline;

IntermediateDeadline(PTime from, PTime to, PTime by)

{start = from; end = to; iDeadline = by}

 ~IntermediateDeadline(){};

 };

Three members of the class, start, end and iDeadline, specify the Start and

End Times of the Intermediate Deadline, and the Intermediate Deadline, respectively.

Since each task may have multiple Intermediate Deadlines we used a linked list

containing pointers to the objects of class IntermediateDeadline. Instead of

implementing a new class supporting this linked list and the basic operations, such as

Delete_Element, Insert_Element, First, Last, Next, Previous and others, we have used

the class List (previously implemented in PERTS), supporting all listed features. The

class List contains a linked list of pointers to the objects of general class PObject. To

enable use of the class List, our class IntermediateDeadline is inherited from general

class PObject.

The complete description of the task parameters is encapsulated in the class

Task. We have introduced two new members into this class:

List *Intermediate_List,

PTime networkDelay.

The first member, Intermediate_List, is a pointer to an object of class List,

containing the list of the pointers to the objects of class IntermediateDeadline. The

second member, networkDelay, contains a value of the Network QoS Parameter.

 43

Along with two new members of the class Task we have introduced the

method:

void DefineIntermediateList(PTime start, PTime end, PTime deadline).

It inserts a new set of Intermediate Deadline parameters into List of

Intermediate Deadlines, sorting it in the increasing End Time order. If two or more

sets of Intermediate Deadline parameters have the same End Time, then the list keeps

only one of those sets with the earliest Intermediate Deadline.

To maintain all existing GUI operations after introduction of the new

parameters, we have introduced some modifications/additions to methods of different

classes, which we briefly describe here.

To save (Save/ Save As) the new Network Delay and list of Intermediate

Deadlines parameters into a textual file containing Task Graph parameters, we have

modified the format of this file, changing the save method (in gtaskgraph.cc)

static void write_task(ofstream &, GTask *, int).

To maintain the Open/Reopen operation, we have modified the PERTS

Compiler to read the new fields from the textual file. We have modified (in

tg_compile.cc) method

int TG_Compiler::TaskDataItem(Task * t),

and introduced a new method

int TG_Compiler::Intermediate_List(Task * t).

To incorporate the new parameters into the report (Generate Report) we have

modified (in gtaskgraph.cc)

 44

static void generate_report_task(Widget, void *, void *).

To copy new (along with original) task parameters (Copy Task Parameters)

we have modified (in gtask.cc) method

void Task::CopyTaskParameters(Task *src).

The appropriate description of the new parameters has been added to the

help.h and help.cc files.

5.3 Client->Tasks Translator Implementation

To implement the Client->Task Translator described in Section 5.1.2, we have

introduced the set of new methods described below. The first method

TaskGraph::Translate()

scans through the list of tasks of the Task Graph, searching for the clients with

Intermediate Deadlines. As soon as an Intermediate Deadline is found, the Translate()

method

• creates a new task;

• inserts a new task into the task list before the client under consideration;

• inserts a new dependency into dependency list and modifies the existing

dependencies, as described in Section 5.1.2;

• adjusts the parameters of the new task using method:

Task::Modify_new_task(Task* cur_task, PTime cur_start, PTime cur_end, PTime cur_deadline);

 45

• adjusts the parameters of the client using method:

Task::Modify_Task (PTime cur_end, int counter).

These two methods are similar in implementation. The first method copies all

parameters from the original client and then deletes all events coming after the End

Time of the Intermediate Deadline. The second method deletes all events before the

End Time of the Intermediate Deadline under consideration. These methods perform

the parameter adjustments using the following methods.

Task::Modify_optionalIntervalList(PTime cur_end, int i)

and

Task::Modify_NPSList(PTime cur_end, int i)

which delete all intervals after the End Time of the Intermediate Deadline for the new

task and before it - for the client.

The method

Task::Modify_resRequirementList(PTime cur_end, int i)

deletes all Resource Requirements after the End Time of the Intermediate Deadline

for the new task and before it for the client.

The method

Task::Modify_IntermediateList(PTime cur_end)

deletes the first Intermediate Deadline in the client’s list of Intermediate Deadlines.

The method

Task::Modify_name(int counter)

increments the index attached to the client name (to indicate sequence of the tasks

generated from the same client).

 46

Taking into consideration the new amount of work to be performed by the

client all these methods modify the appropriate client parameters.

After all clients have been split into tasks the method

TaskGraph::Reorder()

is called to reassign task id’s to all tasks.

5.4 Schedulability Analyzer Modifications Implementation

To include the Network Delay into PERTS analysis, we have incorporated

into class SA_Task (sa_task.h) a new member

 _total_Network_Delay

containing a value of the Total Network Delay experienced by a task during one

period, 2 * N * delta, as described in Section 4.3. We also introduce new member

methods

Ptime SA_Task::network_Delay ()

Ptime SA_Task::total_Network_Delay()

void SA_Task::set_Total_Network_Delay ()

 returning the Network Delay, Total Network Delay of the task and assigning value of

the Total Network Delay, respectively.

We have modified the

 PTime PCP_Node::worst_Blocking_Time(SA_Task *inTask)

 47

method (in pcp_node.cc), which besides blocking time also calculates and sets the

value of the Total Network Delay.

To incorporate the Total Network Delay into calculation of the Lehoczky’s

demand method we have modified method

BOOLEAN SA_Node::time_Demand_Test(SA_Task *inTask)

reporting system schedulability.

To eliminate Liu-Layland’s condition from schedulability analysis, we have

excluded the call for the Liu-Layland’s test and test of the system schedulability

before calling the Lehoczky’s test (Note: the original code performed the Liu-

Layland’s analysis and called the Lehoczky’s test only if previous result was “non-

schedulable”).

To include task total network delay into calculations of its completion time we

have modified method

void SA_Node::build_Time_Demand_Line(SA_Task *inTask, int instance)

in sa_node.cc.

We have modified the format of the reports in all three regimes of the

Schedulability Analyzer introducing Network QoS Parameter and Total Network

Delay.

 48

VI. Evaluation

After the implementation of the modifications to the GUI for the Task Graph

Editor, the implementation of the Client->Task Translator, and the modification of

the Schedulability Analyzer were completed, several tests were done to demonstrate

the implementation correctness.

6.1 Task Graph Editor GUI Tests

Tests of the modified Task Graph Editor GUI have demonstrated presence and

correctness of all desired features.

The General Task Data Edit Window contains a new box "Network QoS

Parameter". The introduction of the new field did not affect others. A user can

specify the Network QoS Parameter (along with previously presented in the dialog

parameters). If the Network QoS Parameter is not specified, it contains a 0 (zero)

value. By clicking on "OK" button the Network QoS Parameter is saved (along with

other task parameters). It was tested by opening General Task Data Edit Window of a

task, containing a non-zero value of the Network QoS Parameter assigned in advance.

Option "Help" contains a description of the "Network QoS Parameter".

 49

We have tested the "Intermediate Deadline Edit Dialog", which enables an

edit of the Intermediate Deadline parameters. The "Intermediate Deadline Edit

Dialog" properly inserts a new set of parameters into the list of Intermediate

Deadlines, deletes selected (one or more) Intermediate Deadlines from the list,

modifies the parameters of a specified Intermediate Deadline, saves the current list of

Intermediate Deadlines in the increasing End Time order, closes the Intermediate

Deadline Dialog Window and pops up the Help window, describing features of the

Intermediate Deadline Dialog Window.

Using a task with known values of the Network QoS Parameter and

Intermediate Deadlines parameters, we have performed the “Copy Task Parameters”

operation to assure its correctness.

Generating the report we have confirmed presence of the new parameters and

the correct fit into report format.

By saving a Task Graph containing clients with some Intermediate Deadlines

and Network QoS Parameter, we have tested the modified “Save” function. We have

checked the textual file generated by “Save” function for presence of the new

parameters. As a continuation of this test and as a test for “Open” operation, we have

opened previously saved file with Intermediate Deadlines and Network QoS

Parameter. Using the appropriate dialogs in the Task Graph Editor Window we have

checked previously saved parameters and confirmed “Save” and “Open” operations.

 50

6.2 Client->Task Translator Tests

To perform the Client->Tasks Translator tests we have built various Task

Graphs, containing clients with and without intermediate deadlines. Using the

Translator we have performed the translation of the original Task Graphs (with

clients, containing Intermediate Deadlines). The ability of Schedulability Analyzer to

save modified Task Graphs allowed us to save the translated Task Graph as a textual

file of standard format. Comparing the translated Task Graph with theoretical

expectations confirmed Translator correctness.

Intermediate Deadlines were chosen to test all possible situations, including

such non-trivial as “Intermediate Deadline is less strict than the original client

Relative Deadline” or “Intermediate Deadline End Time is later than client entire

Execution Time”. In the tests we have adjusted parameters of Optional Intervals (or

Resource Requirements) so that the Intervals belong completely or partially to a new

task generated from a client. One of the tests, in which we have tried to combine all

mentioned aspects, is presented in Appendix A.

The task parameters, specifying geometrical location of the tasks on screen in

End-to-End Analysis and in Task Graph Editor, have been tested visually. We have

introduced large number of intermediate deadlines to “saturate” the screen with tasks

(generated from the same client) not fitting on one line. The Translator has

performed a correct assignment of these parameters by moving exceeding tasks to the

next line. We also have checked visually the presence of the dependencies between

generated tasks and the original clients.

 51

6.3 Schedulability Analyzer Tests

 The testing of accounting for the Network Delay in the Schedulability Analyzer

consisted of two different parts. In the first part we confirmed that schedulability

report depends on Lehoczky’s (not Liu-Layland’s) criterion, and that Single-Node

Analysis takes into account the Network Delay.

To do so, we have built a Task Graph containing a task, which barely meets

its deadline (introduction of one more unit of time delay makes the task non-

schedulable). At that stage, the Network QoS Parameter of the task was set to zero.

After running the Schedulability Analyzer and confirming that the system is

schedulable, we have set the Network Delay parameter of the described task to one.

All other parameters were kept unchanged. Running the Schedulability Analyzer we

have confirmed that the system is not schedulable. These tests have proven that the

Network Delay is taken into account.

The original Schedulability Analyzer performed tests of the Liu-Layland’s

condition and, only if it has not been satisfied, it then checked Lehoczky’s criterion.

Since we have modified code for the Lehoczky’s criterion only, the report of the

system non-schedulability in our test proves that schedulability report is based on the

Lehoczky’s criterion only.

The second part of the test aimed to confirm correctness of the End-to-End

Schedulability Analysis that we modified to incorporate Network Delay. The purpose

of this part was to demonstrate that the Network Delay is taken into account in the

 52

calculation of the Completion Time of a task from the path of dependent tasks. This

value is crucial for assignment of the Ready Time for the successor in that path. We

built a Task Graph that contains a path of dependent tasks with Network QoS

Parameters set to zero. Running the End-to-End Schedulability Analyzer, we

obtained and saved Ready Times of all tasks in the Task Graph. Then we set some

non-zero values to the Network QoS Parameters of all tasks in the original Task

Graph. Running the End-to-End Schedulability Analyzer, we confirmed that Ready

Times of each task in the path had been shifted (relative to the value from the

previous run) by the sum of all Total Network Delays of the predecessors in the path.

This proves the correctness of End-to-End Schedulability Analysis incorporating

Network Delay.

In the tests we also have checked the presence of the Network QoS Parameter

and Total Network Delay values in the generated report.

 53

VII. Limitations and Future Work

This project has been a first and necessary step towards creating analysis

theory and tools for distributed real-time systems such as RT CORBA–based

applications. However, further steps are necessary before PERTS can fully analyze

RT CORBA systems. In this chapter we describe the further necessary steps.

7.1 Effects of Limited Priorities

RT CORBA implemented on commercial real-time operating systems (RTOS)

may face the problem of the RTOS providing fewer priorities than the RT CORBA

system requires, particularly under DPCP which has its own range of (very high)

priorities for tasks executing global critical sections (see Section 7.2.1). For instance,

a Solaris RTOS provides only 60 local RT priorities, while the RT CORBA system

may need more than 60 priorities assigned. We suggest to modify the PERTS

Resource Graph Editor interface to allow specification of the number of priorities on

each node.

To further define the problem, let a node have N tasks (representing parts of

CORBA clients) C global critical sections (executing on CORBA servers) under the

DPCP protocol, and P local priorities. If N+C ≤ P, then there is no problem - an

enforceable priority assignment can be done and PERTS can analyze it. However, if

 54

N+C > P, then either the resulting priority assignment is not enforceable, or several

entities will need to be at the same priority. PERTS can not currently handle this

situation.

We present here one possibility to assign available priorities and analyze a

schedulability in the described situation. We split P available priorities into two

partitions, that are proportional to N and C. The first partition, Ptask, is serving tasks,

and the second partition, Pgcs, is serving global critical sections on the particular node.

Then we assign Ptask–1 highest priorities to the Ptask–1 highest priority tasks and Pgcs–

1 highest priorities to the Pgcs–1 highest priority gcs’s. Then we assign the lowest

task priority to the remaining N-(Ptask–1) tasks and the lowest gcs priority to the

remaining C-(Pgcs–1) gcs’s. This algorithm may not guarantee the best schedulability

results (other combinations of split of available priorities and their distributions

among the tasks and gcs’s are possible). We have chosen this algorithm to simplify

the illustration of the problem.

To analyze the schedulability of a system in the described situation, we check

how the limited priorities affect the time demand function introduced by the

Lehoczky’s schedulability criterion. We assume FIFO scheduling of tasks with the

same local priority and make the worst case assumption that each task or global

critical section falls at the end of the FIFO queue for its priority. The demand

function should be modified as follows

 55

Here Cl represents an Execution Time of the task Tl, Bi - blocking time of task Ti. Mk

is a factor defined as

where ng is a number of remote global critical sections executed by task Ti. The

origin of this factor is in the fact that the task Ti may be waiting for an end of the

same priority task execution. It may be waiting once, when the task Ti is initialized,

and every time when it releases its CPU for an execution of the remote global critical

section, since a task of the same priority may get the CPU at that time period. At the

same time it may not happen more often than frequency of the same priority task

Despite this obvious modification of the demand function, there is also a

hidden modification of the blocking time Bi. This modification is due to the new

feature of the global blocking

where

 W t C t T C M C B ti j j K k i i

j Alltasksof
higherpriority

k Alltasksof
thesamepriority

() / (*)= + + + ≤
= =

∑ ∑

 }1,/min{ += gkk nTtM

kT
t

ggbnGB ’=

∑
=

+=
prioritiessamethe

ofsgcsAllk
kgg CSbb

__
’

’

 56

Before a global critical section could be blocked for a duration of the longest

lower priority global critical section, bg. Now along with this blocking it may be

blocked by the duration of all global critical sections, CS, of the same priority.

The described modifications should be incorporated into the PERTS

Schedulability Analyzer engine.

7.2 On possibility of Using DASPCP

We speculate that URI’s Distributed Affected Set Priority Ceiling Protocol

(DASPCP), which has been shown to improve concurrency in object oriented systems

[13], can be incorporated into PERTS analysis. The DASPCP is a relatively new

resource access protocol developed at URI particularly for RT object-oriented

software [13]. It incorporates two protocols: DPCP [8] and ASPCP [14]. In Section

7.2.1 we prove its deadlock free property and tight Priority Inversion bound. The

main idea behind DASPCP is to consider particular methods of a CORBA server (not

the entire server) as a PERTS resources and assign each method its own priority

ceiling based on other methods of the server with which it conflicts. In Section 7.2.1

we describe the DPCP and DASPCP and show that latter increases concurrency.

 57

Introduction of the DASPCP slightly modifies the mapping of the RT

CORBA to PERTS, described in Chapter IV. Namely, PERTS resources do not

represent whole CORBA servers, instead they represent the methods of the servers.

The necessity to specify a set of conflicting methods [13, 14] (resources) for each

method would need to be added to the PERTS Resource Graph Editor interface and

the revision of the calculation of the priority ceiling in PERTS Schedulability

Analyzer.

7.2.1 DPCP versus DASPCP

In this section we describe the Distributed Priority Ceiling Protocol (DPCP)

and Distributed Affected Set Priority Ceiling Protocol (DASPCP). We compare the

concurrency under these protocols and prove that DASPCP is deadlock free and has a

limited blocking time.

The DPCP [8] handles a synchronization of task method calls, executing on

distributed systems. Before we start the description of the protocol we must introduce

the following definitions:

• A semaphore that is accessed by tasks allocated to different processors (a single

processor) is referred to as a global (local) semaphore.

• A critical section guarded by a global (local) semaphore is referred to as a global

(local) critical section, gcs (lcs).

 58

First, all tasks must be bound to processors. A task T executes its non-critical-

section code and lcs’s on its host processor, while its gcs’s may be bound and

executed on a processor(s) different than the T’s host processor. All gcs’s controlled

by the same semaphore SG, and the semaphore SG itself, are bound to the same

synchronization processor. A gcs, generated by task T, is assigned a priority equal to

the sum of the base priority ceiling PG (a fixed priority, higher than the priority

assigned to the highest priority task in the system) and P, the priority of task T. Each

processor runs the priority ceiling protocol on the gcs’s (considering each thread of

execution for executing a gcs as a “task”), the set of application tasks (if any), and the

set of global and local semaphores bound to the processor. DPCP prohibits a mixed

nesting of lcs’s and gcs’s.

The following example is not an exhaustive demonstration of possible

situations (of blocking, preemption etc.), that may occur under DPCP. Our goal is a

simplest possible example, demonstrating benefits of DASPCP relative to DPCP. For

more detailed example of application of DPCP we refer reader to the original

Rajkumar’s work [8].

Example 7.1. Consider a distributed system with 2 nodes. The application

consists of 3 tasks and 2 databases (Otrack1 and Otrack2), guarded by 2 semaphores (S1 and

S2). Task T3 is bound to the Node 1, while tasks T1 and T4 are bound to the Node 2.

T1 S2

Node 1

T3

Node 2
T4

S1

 59

Tasks T1, T3 and T4 execute the following sequence of steps.

T1: ...O_track2.read_speed...

T3: ...O_track1.write_speed...

T4: ...O_track1.read_altitude...O_track2.read_depth

Note: in our system the priority of task Ti, p(Ti), is assumed to be lower than that of

Ti+1.

The semaphores S1 and S2 are bound to the Nodes 1 and 2 respectively. The

priority ceilings of each semaphore, and the normal execution priority of each critical

section thread are listed in Tables 7.1 and 7.2, respectively.

Priority Ceiling Of Semaphores

Semaphore Priority Ceiling
S1 (Global) p(T4) + PG
S2 (Local) p(T4)

Table 7.1. The priority ceilings of Semaphores in Example 7.1 under DPCP.

Normal Execution Priorities of Critical Sections
Task Critical Section

Guarded by
Execution Priority

T1 S2 p(T1)
T3 S1 p(T3) + PG
T4 S1

S2
p(T4) + PG

p(T4)

Table 7.2. The Normal Execution Priority of Critical Sections in Example 7.1
under DPCP.

 60

The following example demonstrates the sequence of events in the system

under DPCP, presented graphically in Figure 7.1:

• At time t0, task T1 arrives on Node 2 and begins its execution. Similarly, task T3

begins execution on Node 1.

• At time t1, task T1 locks the local semaphore S2 on Node 2 and begins execution of

lcs at its normal execution priority of p(T1). Task T3 locks the global semaphore S1

on Node 1 and begins execution of gcs at its normal execution priority of p(T3) +

PG.

• At time t2, task T4 arrives on Node 2 and preempts T1. Task T3 continues its

execution of gcs on Node 2.

• At time t3, task T4 requests a lock on global semaphore S1. However, the

semaphore is currently locked by a lower priority gcs, p(T3) + PG. Hence T4 is

blocked and T3 continues its gcs execution at the inherited priority of p(T4) + PG.

Task T1 resumes its execution of lcs at Node 2.

• At time t4, task T3 completes the execution of its gcs and releases the lock on

global semaphore S1 and resumes its own priority. Task T4 locks the global

semaphore S1 on Node 1 and begins execution of gcs at its normal execution

priority of p(T4) + PG. Task T3 is preempted by higher priority T4’s gcs. Task T1

continues the execution of its lcs at Node 2.

• At time t5, task T4 completes the execution of its gcs and releases lock on global

semaphore S1. T3 resumes its execution on Node 1. T4 attempts to get a lock on

semaphore S2. However, the semaphore is currently locked by a lower priority

 61

task T1. Hence T4 is blocked and T1 continues its execution with inherited priority

of p(T4).

• At time t6, task T1 completes the execution of its lcs and releases the lock on

semaphore S2 and resumes its own assigned priority. Task T4 locks the local

semaphore S2 on Node 2 and begins its execution.

• On completion of execution of T4 at t9, task T1 resumes its execution. T1 and T3

complete their executions at some later times.

To increase the concurrency of the task method calls in a distributed system

we propose to incorporate DPCP with ASPCP [14] into DASPCP. The DASPCP

copies all characteristics of the DPCP except the resource access control protocol at a

processor level. While under DPCP each processor runs PCP on the gcs’s, the set of

application tasks, and the set of global and local semaphores bound to the processor,

the DASPCP uses ASPCP.

The following example illustrates the application of DASPCP and

demonstrates an increased concurrency compared to application of DPCP. Here we

consider the system of tasks identical to one described in Example 7.1. Also we have

the same databases, but instead of associating a semaphore with each database we

provide one semaphore per each method of a database [13, 14].

The priority ceilings of each semaphore, and the normal execution priority of

each critical section thread are listed in Tables 7.3 and 7.4 respectively.

 62

Priority Ceiling Of Semaphores
Semaphore Priority Ceiling

S1 write_speed (Local) p(T3)
S1 read_altitude (Global) 0
S2 read_speed (Local) 0
S2 read_depth (Local) 0

Table 7.3. The priority ceilings of Semaphores in Example 7.1 under DASPCP.

Normal Execution Priorities of Critical Sections
Task Critical Section

Guarded by
Execution Priority

T1 S2 read_speed p(T1)
T3 S1 write_speed p(T3)
T4 S1 read_altitude

S2 read_depth
p(T4) + PG

p(T4)

Table 7.4. The Normal Execution Priority of Critical Sections in Example 7.1
under DASPCP.

Following example demonstrates the sequence of events in our system under

DASPCP, illustrated in Figure 7.1:

• At time t0, task T1 arrives on Node 2 and begins its execution. Similarly, task T3

begins execution on Node 1.

• At time t1, task T1 locks the local semaphore S2 read_speed on Node 2 and begins

execution of lcs at its normal execution priority of p(T1). Task T3 locks the local

semaphore S1write_speed on Node 1 and begins execution of lcs at its normal execution

priority of p(T3).

• At time t2, task T4 arrives on Node 2 and preempts T1. Task T3 continues its

execution of lcs.

 63

• At time t3, task T4 requests a lock on global semaphore S1 read_altitude. Since its gcs’s

priority, p(T4) + PG, is higher than the priority ceiling of S1 write_speed, p(T3), it gets lock

on S1 read_altitude and preempts T3’s lcs. Task T1 continues the execution of its lcs at

Node 2.

• At time t4, task T4 completes the execution of its gcs and releases the lock on

global semaphore S1 read_altitude. Task T3 resumes the execution of its lcs at S1 write_speed. Task

T4 requests a lock on local semaphore S2 read_depth. Since its priority, p(T4), is higher

than the priority ceiling of S2 read_speed, 0, it gets lock on S2 read_depth and preempts T1.

• At time t5, task T3 completes the execution of its lcs. No changes on Node 2.

• At time t7, task T4 completes its execution, as well as the execution of its lcs on

S2read_depth and releases the lock. T1 resumes its execution of lcs on S2 read_speed on Node 2.

T1 and T3 complete their executions at some later times.

The main advantage of the DASPCP compared to the DPCP may be seen in

Figure 7.1 and two considered sequences of events: under DASPCP there were no

blocking, while running it under DPCP, T4 was blocked twice, ones at global and ones

at local resource.

To conclude the discussion of the DASPCP we state and proof its main

properties, using Rajkumar’s approach [8].

1. Under DASPCP deadlocks are avoided.

Proof: A task can deadlock with other tasks only, since, by assumption, it

cannot deadlock with itself. Since, by assumption, nesting of gcs’s and lcs’s is

 64

prohibited, access to gcs’s and lcs’s cannot occur within the same critical section.

Since each global and local semaphore is accessed only by a single processor,

deadlocks can’t occur across processor boundaries. The only possibility, we have not

considered yet, is a deadlock within a processor. The ASPCP used on each processor

excludes this, last, possibility of deadlock [13,14]. Therefore, under DASPCP

deadlocks are avoided.

2. Maximum blocking time is finite under DASPCP.

Proof: There are 3 possible types of blocking. The limitation of blocking

time in each type guarantees the finite total blocking time.

• Satement1: a task T can be blocked for the duration of at most nG+1 local critical

sections of lower priority tasks bound to the same processor as T. Here nG is a

number of gcs’s executed by T at remote processors during on period.

Proof: Task T can be considered to be suspending itself nG times during one

period, when it attempts to execute gcs at remote processors. Every time, when

task T tries to resume its execution after suspension, it may be blocked on local

resource by a lower priority task. It may happen once more, when task T arrives

on a processor. Under the ASPCP the blocking time is limited by a longest

critical section of a low priority task. Statement1 follows from here.

• Statement2: for every outermost gcs that T enters at remote processor, the task T

can be blocked for the duration of one longest global critical section of a lower

priority tasks, executing their gcs’s at the same remote processor.

 65

Proof: This statements follows from the consideration of the gcs’s as a tasks at

the remote processor accessing resource on the same processor, and the fact that

under ASPCP the blocking time is limited by a longest critical section of a low

priority task.

• Statement3: a task T can be preempted by any task Ti residing at the remote node

and accessing T’s host node, as well as by higher priority tasks Ti executing their

gcs’s at the same remote nodes as used by T’s gcs’s., for a finite amount of time.

Proof: The execution times of gcs’s of tasks Ti are finite quantities. Number of

tasks is also finite. Periods of tasks Ti and T are also finite, and therefore there

may not be an infinite repetition of a task Ti during one period of T. Statement3 is

proven.

Since all three types of blocking are finite under DASPCP the total one is also

finite.

3. Introduction of DASPCP never can decrease concurrency of the

system in comparison with DPCP.

Proof: Replacement of PCP by ASPCP at a processor level may never

increase the priority ceiling of any semaphore (it may introduce additional

semaphores controlling particular methods, but their priority ceilings may not be

higher than a priority ceiling of the original semaphore controlling the entire

database). Therefore under DASPCP the blocking time may never increase and

concurrency may never decrease.

 66

.

Figure 7.1. Time diagram for the task system, described in Example 7.1

under DPCP (top) and DASPCP (bottom).

7.3 Possible Improvements of the Schedulability Analyzer

We consider here three different aspects that will improve the schedulability

analysis.

The first issue addresses the problem of schedulability analysis of the

Harmonic Tasks. In Section 7.3.1 we describe this problem and suggest the

modification of the Lehoczky’s schedulability criterion. In Section 7.3.2 we discuss a

possible way to make the End-to-End schedulability analysis less pessimistic.

Otrack1

T3

T3

T4
T1

T4
T1

1 2 3 4 5 6 7 8 9 100 Execution of a non-
critical-section code

Blocked by a lower
priority task

Execution of a lcs

Execution of a gcs

T3 T4

T4 T1

T4

T4

T1

T3

DPCP

DASPCP

Otrack2

Otrack1

Otrack2

Ti Object is accessed by TI

 67

Finally, we describe a need to eliminate the detected mistakes in the schedulability

theory and PERTS implementation for systems under DPCP. These problems are

summarized in Section 7.3.3 along with suggested ways to correct them.

7.3.1 Necessary Schedulability Criterion for the task systems with

harmonic tasks

An existence of the harmonic tasks in a task system requires modifications to

the original Lehoczky’s necessary and sufficient schedulability criterion. In this

section we present the original Lehoczky’s condition. We demonstrate a counter-

example, demonstrating that the original criterion is not necessary. Finally, we

present necessary modifications to the criterion to guarantee its necessity.

The original Lehoczky’s criterion states following [10]:

If for every i-th task in a system of n tasks that do not use shared resources and do not

contain Non-Preemptable Sections there exists a value of t such, that

and

then the system is schedulable.

0 < ≤t di

W t ti () ≤

 68

Here

di is a relative deadline of the task i, Cj and Tj are the Execution Time and Period of

the task j. The tasks are numbered in the decreasing priority order (the first task has

the highest priority). This criterion indeed is necessary and sufficient in case of

worst-case phasing, when all tasks are ready to start their executions at the same time.

We have found that the worst-case phasing may never occur in the set of

harmonic tasks with different Release Times (in terms of the task timing parameters,

introduced in Chapter II, task Release Time is a sum of its Phase and Ready Time).

Here we present a counter-example demonstrating that the Lehoczky’s criterion is not

necessary in the described situation.

Example 7.2. Let us consider two tasks, Task1 and Task2, residing on a

single node system without shared resources. We present the tasks timing parameters

in Table 7.5.

 Task1 Task2

Relative Deadline 1 3

Release Time 3 0

Execution Time 1 3

Period 5 10

Table 7.5. Timing parameters of the tasks from the Example 7.2.

W t C t
Ti j

jj

i

() =

=

∑
1

 69

Using RM priority assignment Task1 has a higher priority. Following the Lehoczky’s

schedulability criterion we obtain that

and

Under this criterion the Task1 is schedulable since at t=1 function W1(t)=1 which is

equal to the deadline d1=1. Task2 is not schedulable since the function Wi(t) is

monotonically increasing and its smallest value of 1+3=4 is greater than its deadline

d2=3.

Analysis of the time diagram, shown in Figure 7.2, demonstrates that this

system is schedulable.

Figure 7.2. Time diagram of the task system described in Example 7.2. The top

line corresponds to the Task1, the bottom one - to the Task2.

0 3 4 8 95 10

W C d1 1 11 1() = = =

W t t
T C C C C d2

1
1 2 1 2 21 3 3() =

+ ≥ + = + ≥ =

 70

At time t=0 Task2 is the only one ready to start execution. It gets the CPU,

runs until t=3, completes its execution and meets the deadline d2=3. At the time t=3

Task1 gets the CPU, runs until t=4, completes its execution and meets its timing

constraint d1=1. It also runs between t=7 and t=8 and meets its deadline. Figure 7.2

represents one cycle (period) of the Task2. Since the two tasks are harmonic and

their Release Times are separated by the same time period in every cycle, the time

diagram will be repeated as time goes on.

The original Lehoczky’s condition would yield correct result if the tasks have

the same Release Time (indeed, in this case the Task2 would miss its deadline). The

crucial point in the considered example is that two tasks never interfere with each

other, which may happen only in case of harmonic tasks with different Release

Times.

Concluding that Lehoczky’s condition is sufficient but not necessary, we

present here our modifications to correct this drawback. We modify the calculation

of the time demand function Wi(t). Note that the original description of the function

Wi(t) includes the execution times of all higher than the task i priority tasks. In our

approach we separate these tasks into two different sets: the set of tasks that are

harmonic with task i and the set of tasks that are non-harmonic with i. To exclude the

execution time of the harmonic tasks that never “interfere” with task i, we introduce a

new function Lk that characterizes the time period between the Release Time of the

task i and harmonic task k. This function is formally defined as

 71

Lk = Release_Timei - Release_Timek - N * Tk

where N is a maximum whole number guaranteeing positive Lk value.

 Lehoczky’s demand function after we exclude the execution of the non-interfering

tasks has the following form:

where k and j represent the set of higher priority harmonic and non-harmonic tasks,

respectively.

This improved criterion is necessary and sufficient in two extreme cases: the

case of worst-case phasing and the case of “non-interfering” harmonic tasks.

However, it is not valid in case of “partial harmonic task interference”. This case

occurs when a task i is released after the harmonic task k has completed some, but not

all, of its execution. Under these circumstances, the task i is not blocked by entire

execution time of task k (Ck), but only by the part of task k that has not been

completed by the Release Time of task i. To incorporate this case into Lehoczky’s

schedulability criterion, we introduce the function Mk that represents the time period

necessary to complete the execution of task k after task i has been released. Function

Mk is formally defined as:

Mk = 0 if Wk(t) ≤ t, for 0 ≤ t ≤ Lk

Mk = Wk(t) - Lk otherwise.

The first condition corresponds to the case when harmonic task k completes its

execution before task i is released and therefore Mk = 0, while the second one

∑ ∑ +

 +−
+

=

j k
i

k

kk
k

j
ji C

T

LTt
CT

tCtW)(

 72

calculates the time period necessary to complete the execution of task k after task i

has been released.

 The final form of the Lehoczky’s demand function, after we exclude the

execution of the non-interfering tasks and incorporate the execution of the “partially

interfering tasks”, has the following form:

This final form of the time demand function corresponds to the necessary and

sufficient schedulability condition. It is necessary only for the task systems that do

not use shared resources.

To analyze the task systems that use shared resources, one need to add the

blocking time of task i to the time demand function. Since schedulability theory does

not calculate the exact blocking time, but only its upper bound, no schedulability

criterion for the systems with shared resources may be necessary, but sufficient only.

7.3.2. Modification of the End-to-End Schedulability Analysis

Unfortunately, the schedulability analysis assumption of worst-case phasing

drastically affects the End-to-End analysis, since in a path of the dependent harmonic

tasks all their Ready Times are different. The schedulability criterion for harmonic

∑ ∑ +

+

 +−
+

=

j k
ik

k

kk
k

j
ji CM

T

LTt
CT

tCtW)(

 73

tasks developed in Section 7.3.1 does not support analysis of systems with task

dependencies. The reason for this is that in the End-to-End analysis, a task Ready

Time is modified, while our schedulability criterion strongly depends on its value.

This issue is important for the analysis of the RT CORBA. Since every client with

Intermediate Deadlines is modeled as a path of dependent tasks, these tasks never

interfere (preempt or block each other). A new schedulability criterion needs to be

developed to exclude the described problem with the analysis of the dependent tasks.

We propose that, until this criterion is developed, the PERTS End-to-End analysis use

the following modification to the Lehoczky’s criterion to make it less pessimistic:

When calculating the demand function Wi(t) of a task i, do not include Execution

Times and blocking due to the tasks from the same path (regardless of their priority)

if they have hard deadlines, the same Periods, the same Phases and for each such task

the sum of its Ready Time and Relative Deadline is not greater than its Period. These

conditions guarantee that next cycle of the path execution never starts until the

previous is completed. Furthermore, a successor task never starts its execution before

its predecessor completes. Thus, tasks of the same path that satisfy these conditions

never interfere. The described modification will make the analysis of the RT

CORBA systems less pessimistic because tasks that are generated from the CORBA

clients always satisfy the described conditions.

The proposed schedulability criterion modification is not the final solution for

the analysis of the dependent tasks, but it does allow making less pessimistic analysis

of RT CORBA systems.

 74

7.3.3 Concerns with PERTS Analysis of DPCP

We have identified some concerns with the current PERTS analysis of

systems under DPCP. We consider two categories of concerns: dangerous (when

PERTS reports task sets schedulable while they are not schedulable) and pessimistic

(when PERTS reports tasks sets non-schedulable when they are actually schedulable).

For each concern, we show an illustrative example complete with full PERTS

parameters (that we have run through PERTS), an explanation as to why the improper

behavior occurred, and in most cases suggested solutions. All concerns are numbered

(D1-D3 for dangerous and P1-P6 for pessimistic concerns).

Notations:

In all examples we are considering distributed systems with RM algorithm

and DPCP.

Our examples include two tasks T_high and T_low with higher and lower

priorities, respectively. Global_i and Local_i stand for the global and local resources

(as specified in Section 7.2.1) residing at Node i.

 75

B.1 Dangerous Concerns

D1) GCS’s of lower priority tasks at the “processor of interest” are not detected.

Example:

Task Period Phasing Ready
Time

Relative
Deadline

Execution
Time

Node Resources

High 10 0 0 10 7 1
Low 100 0 0 100 50 2 Global_1 [0->50]

This system of tasks is reported by PERTS to be schedulable, while one can see that it

is not: T_low executes its GCS at the Node_1 and preempts task T_high for 50 units

of time. This causes T_high to miss its deadline five times before it starts its

execution. Thus, the system is not schedulable.

Solution: Let us take a look at the schedulability criterion

T_high

Global_1

Node 1

T_low

Node 2

W t C t
T Ci j

jj

i

i i() =

+ +
=

−

∑
1

1

β

 76

The first term in the schedulability criterion includes executions of higher priority

tasks residing on the same node and all GCS’s of higher priority tasks that reside at

remote processors and access the host processor for GCS execution. The solution is to

include executions of all GCS’s of all tasks residing at remote processors and

accessing the host processor for GCS execution, not only executions of GCS’s of

higher priority tasks.

D2) Global blocking: GCS’s of lower priority tasks at remote processors are not

detected.

T_high

Global_2

Node 1

T_low

Node 3

Node 2

Example:

Task Period Phasing Ready
Time

Relative
Deadline

Execution
Time

Node Resources

High 10 0 0 10 10 1 Global_2 [1->2]
Low 100 0 0 100 50 3 Global_2 [0->2]

 77

This system of tasks is reported by PERTS to be schedulable, while one can see that it

is not: Task T_low executes its GCS at the Node_2 and blocks (Globally) task T_high

for 1 unit of time. This causes task T_high to miss its deadline at time 10 since it has

to execute 10 units before time 10. Thus, the system is not schedulable.

Solution: Redondo’s [11] and Rajkumar’s [8] schedulability theory is correct for this

case, so the implementation in PERTS must be wrong.

D3) Local blocking: GCS’s of lower priority tasks at host processor are not

detected properly.

Global_1

Node 1

T_high

T_low

Example:

Task Period Phasing Ready
Time

Relative
Deadline

Execution
Time

Node Resources

High 10 1 0 10 7 1
Low 100 0 0 100 25 1 Global_1 [0->5]

This system of tasks is reported to be schedulable by PERTS, while one can see that it

is not: Task T_low executes its GCS at Node_1 and blocks task T_high for 4 units of

 78

time when it is ready to run ([1->5]). T_high starts to run only after task T_low

releases Global_1 at time 5. Task T-high finishes its execution at time 12, missing its

deadline at time 11. Thus, the system is not schedulable.

Solution: This type of error is due to a mistake in the schedulability theory behind it.

Namely, the Local Blocking is said to be N+1 times the longest execution times of

local critical section, bl , which may block the task; where N is the number of GCS’s

executed by the task. We claim, that bl should be replaced by max{ bl , bgl }, where

bgl is the longest execution time of a GCS executed at the host processor by lower

priority tasks residing at that host processor.

B.2 Overly Pessimistic Cases

P1) Harmonic tasks with different Release Times

Example:

Task Period Phasing Ready
Time

Relative
Deadline

Execution
Time

Node Resources

High 5 3 0 1 1 1
Low 10 0 0 3 3 1

This system of tasks is reported to be non-schedulable by PERTS, while one can see

that it is schedulable.

 79

Task T_low runs at the Node_1 first because task T_high is not available yet due to

task T_high’s phasing. The task T_low finishes its job at time 3. The task T_high

becomes ready at the same time and runs its execution for 1 unit of time, and also

meets its deadline. Task T_high also executes between time 8 and time 9. The

situation is identical during all future periods of time: [10->20], [20->30].... Thus, the

system is schedulable.

Solution: This type of error is due Lehoczky's schedulability condition being designed

to guarantee the schedulability of the worst phasing case. However, in the systems

with harmonic tasks with staggered phasing, the worst phasing case occurs either

every time or never. We have modified the original version of the Lehoczky’s

criterion to analyze the systems with harmonic tasks and presented it in Section 7.2.1.

P2) Including execution time of high priority tasks while they are executing

GCSs at other processors.

T_high Global_2

Node 1

T_low

Node 2

 80

Example:

Task Period Phasing Ready
Time

Relative
Deadline

Execution
Time

Node Resources

High 10 0 0 10 8 1 Global_2 [1->8]
Low 11 0 0 11 4 1

This system of tasks is reported by PERTS to be non-schedulable, while one can see

that it is schedulable. Consider the worst case phasing: Task T_high starts its

execution and after 1 unit of time starts the execution of its GCS at Node_2 and

relinquishes the CPU on Node_1. At this tine, task T_low executes on the Node_1

and finishes its execution at time 5 (before its deadline). At time 8, task T_high

finishes its execution (also before the deadline). Since we have considered the worst

case phasing case, the system is always schedulable.

Solution: The calculation of the processor time demand function for a task i should

not include the total execution times of the higher priority tasks, but only their

execution times at the host processor - excluding the time spent by higher priority

tasks while executing GCSs at other nodes.

 81

P3) Local blocking: wrong number of GCS’s used

Local

Node 1

T_high

T_low Global_1

Example:

Task Period Phasing Ready
Time

Relative
Deadline

Execution
Time

Node Resources

High 10 0 0 10 9 1 Global_1 [1->8]
Local_1 [0->1]

Low 1000 0 0 1000 9 1 Local_1[0->1]

This system of tasks is reported by PERTS to be non-schedulable, while one can see

that it is schedulable.

Solution: The problem here is that task T_high accesses the same Local resource as

task T_low and may be blocked by task T_low on that Local resource. This blocking

is for the longest duration of the Local Critical Section (LCS) of task T_low. The

schedulability theory assumes that the blocking may happen n+1 times, where n is the

number of GCSs executed by task T_high. We claim that n should be the number of

GCS’s executed by task T_high at other than the host processor.

 82

P4) Global blocking: reports a false blocking when GCS is bound to a processor

with Local resource in use.

T_high

Node 1

T_low

Node 2
Global_2

Local_2

Example:

Task Period Phasing Ready
Time

Relative
Deadline

Execution
Time

Node Resources

High 10 0 0 10 9 1 Global_2 [1->2]
Low 100 0 0 100 11 2 Local_2[0->11]

This system of tasks is reported by PERTS to be non-schedulable, while one can see

that it is schedulable.

Solution: This appears to be an implementation mistake in PERTS. The problem here

is that PERTS wrongly reports the blocking of the GCS that is initiated by task

T_high by the LCS of the task Low. This blocking by the LCS can never happen

because under the DPCP all GCSs execute at the higher priorities than any LCS. This

means that the LCS of task T_low will be preempted by the GCS of task T_high.

 83

P5) Remote blocking: reports false blocking by all GCS’s of higher priority tasks

that are accessing the processor used by lower priority GCSs even if not all of

these higher priority tasks are accessing the processor used by lower priority

GCS’s.

T_low

Node 1

T_high

Node 2

Node 3

Global_2

Node 4

Global_4

Example:

Task Period Phasing Ready
Time

Relative
Deadline

Execution
Time

Node Resources

High 10 0 0 10 10 3 Global_2 [0->1]
Global_4 [1->2]

Low 100 0 0 100 90 1 Global_2 [0->5]

This system of tasks is reported to be non-schedulable by PERTS, while one can see

that it is schedulable.

Solution: The problem is the PERTS implementation. PERTS assumes that, since

task T_low accesses the same node as task T_high, T_low may be blocked for the

duration of all global critical sections of task T_high, which is wrong. PERTS should

 84

check conflicts only at nodes that are accessed by the task T_low’s GCSs. In the

example above, T_low does not access Node_4, and therefore T_low should not be

blocked by task T_high’s GCS on Node_4.

P6) The priority ceilings of global resources are assigned to zero.

Solution: This appears to be an error in the implementation of PERTS. Redondo’s and

Rajkumar’s DPCP definition clearly state that the priority ceiling of global resources

is the highest priority of the task accessing this resource plus the base priority ceiling,

defined in the Section 7.2.1. This error unnecessarily increases blocking time in

PERTS analysis.

 85

VIII. Conclusion

In this thesis we have presented our contributions to real-time scheduling

theory for distributed systems. We concentrated on techniques to perform

schedulability analysis of Real-Time CORBA systems. On the basis of PERTS 3.0,

we have developed an automated schedulability analysis tool for RT CORBA

systems. We have discussed various aspects of the schedulability theory, including:

modification of the Lehoczky’s schedulability criterion for the systems containing

harmonic tasks and for the RT systems built on operating systems with limited

available priorities; comparison of the Liu-Layland’s and Lehoczky’s criteria for the

systems with shared resources; description and comparison of two resource access

protocols, DPCP and DASPCP.

This thesis has presented the ability of the PERTS to describe real-time

systems and analyze their schedulability. We have modeled RT CORBA systems

using PERTS primitives, such as resources, tasks and their dependencies. To

support the schedulability analysis of the RT CORBA systems we have modified

PERTS.

We have introduced new task parameters: Intermediate Deadline and Network

QoS Parameter. It involved modification of the Task Graph Editor GUI to enable

user to specify these new task parameters.

 86

Since the original PERTS version could not support the schedulability

analysis of a system of clients with intermediate deadlines, we have designed and

implemented the Client->Tasks Translator. The Translator is called prior to the

schedulability analysis to translate the RT CORBA clients into set of dependent tasks,

based on clients intermediate deadlines, according to our model.

In order to take into account the Network Delay (a time that a remote service

request spends travelling through the network) we have modified the Lehoczky’s

schedulability criterion. Based on this new criterion, we have modified PERTS

schedulability analysis

We have performed the exhaustive testing of the new and modified PERTS

components and demonstrated their correctness and proper behavior.

A significant part of our project addressed the problems of the schedulability

analysis theory.

We have considered a potential problem when a real-time operating system

provides less priorities than the task system requires (schedulability theory always

assumes unlimited available priorities). Under these circumstances, a system that is

predicted to be schedulable in practice might appear to be non-schedulable. In our

study we have suggested one possible mapping of tasks to limited priorities. Under

this approach, the priorities are not unique, so we have modified the Lehoczky’s

schedulability criterion to account for this situation in analysis.

We have detected a set of concerns in schedulability analysis under DPCP.

We considered two categories of concerns: dangerous (when PERTS reports a task

system schedulable while it is not schedulable) and pessimistic (when PERTS reports

 87

a tasks system non-schedulable when it is schedulable). Along with the examples

demonstrating the misleading results of the schedulability analysis we suggest the

solutions to these problems.

We have demonstrated that the Lehoczky’s schedulability criterion is not

necessary (but sufficient only) in the analysis of a system with harmonic tasks. We

have eliminated an overly pessimistic assumption of “worth phasing case” made by

Lehoczky et. al. [10]. If the harmonic tasks have different Ready Times then the

“worth phasing case” will never occur. We have modified the Lehoczky’s criterion to

make it necessary in the case of harmonic tasks.

We have pinpointed that the End-to-End analysis of the dependent tasks is

overly pessimistic. We have described a modification that could be used until a

general criterion is developed for the schedulability analysis of the dependent tasks.

In the RT CORBA systems clients are represented by the set of dependent tasks. All

of the tasks generated from the same CORBA client never interfere (preempt or

block) with each other. Eliminating these tasks in the calculation of the processor

demand function in the Lehoczky’s schedulability criterion, we make it less

pessimistic.

We have compared Liu-Layland’s and Lehoczky’s schedulability criteria and

have proven that the satisfaction of the first guarantees satisfaction of the latter one in

all real-time systems. Based on it we have eliminated the first one from the

schedulability analysis for PCP-DM and recommend the same changes for all

combinations of the priority assignment mechanisms and resource access protocols

supported by the Lehoczky’s criterion.

 88

We have described DPCP and DASPCP and have proven that the latter one is

deadlock free and has a limited blocking time. We have compared concurrency in the

real-time systems under DPCP and DASPCP. While it indicated the advantage of the

DASPCP, we suggest to incorporate DASPCP into PERTS and CORBA only after

previously described drawbacks are fixed.

This project is a first and necessary step towards creating analysis theory and

tools for distributed real-time systems such as RT CORBA–based applications. On

the basis of the PERTS 3.0 we have developed an automated schedulability analysis

tool for RT CORBA systems. However, further steps are necessary before PERTS

can fully analyze RT CORBA systems. Based on our modifications to the analysis

theory for the distributed real-time systems, we have proposed the continuation of the

project. The aspects to be addressed in the nearest future include: modification of the

PERTS engine to account for the effect of limited available priorities in RTOS;

improvement of the schedulability analysis of the system of harmonic and dependent

tasks; elimination of the mistakes in the schedulability theory and PERTS

implementation in analysis of the systems under DPCP; incorporation of the

schedulability analysis of systems under DASPCP into PERTS and replacement of

the DPCP by DASPCP in RT CORBA systems.

 89

References

[1] Liu, C.L. and J,W,Layland, “Scheduling Algorithms for Multiprogramming in a

Hard-Real-Time Environment”, Journal of the Association for Computing

Machinery, Vol. 20, No.1, pp. 46-61, January 1973.

Mok, A.K., “Fundamental Design Problems of Distributed Systems for Hard

Real-Time Environment”, Ph.D. Thesis, MIT, 1983.

Sprunt, B., Sha, L. and Lehoczky J.P., “Aperiodic Task Scheduling for Hard Real-

Time Systems”, Journal of Real-Time Systems, pp.27-60, 1989.

Chen, M.I. “Schedulability Analysis of Resource Access Control Protocols in

Real-Time Systems”, Ph.D. thesis, UIUC, 1991.

[2] Expressing and Enforcing Timing Constraints in a Dynamic Real-time CORBA

System. Victor Fay Wolfe, Lisa Cingiser DiPippo, Roman Ginis, Michael

Squadrito, Steven Wohlever, Igor Zykh and Russell Johnston.

[3] Real-Time CORBA. Victor Fay Wolfe, Lisa Cingiser DiPippo, Roman Ginis,

Michael Squadrito, Steven Wohlever, Igor Zykh and Russell Johnston.

[4] http://www.tripac.com

[5] Leung, J. and Whitehead, J., “On the Complexity of Fixed-Priority Scheduling of

Periodic, Real-Time Tasks”, Performance Evaluation, 2, pp.237-250, 1982.

[6] Rajkumar, R., Sha, L. and Lehoczky, J.P., “Real-Time Synchronization of

Multiprocessors”, Proceedings of the 9th Real-Time System Symposium, pp.259-

269, December 1988.

 90

[7] Sha, L., Rajkumar, R. and Lehoczky, J.P., “Priority-Inheritance Protocols: An

Approach to Real-Time Synchronization”, IEEE Transactions on Computers, 39

(9), pp.1175-1185, September 1990.

[8] Rajkumar, R., “Synchronization in Real-Time Systems: A Priority Inheritance

Approach”, Kluwer Academic Publishers, 1991.

[9] Baker, T.P., “A Stack-Based Allocation Policy for Real-Time Processes”,

Proceedings of IEE 11th Real-Time Systems Symposium, pp. 191-200, December

1990.

[10] Lehoczky, J.P., Sha, L. and Ding, Y., “The Rate Monotonic Scheduling

Algorithm: Exact Characterization and Average Case Behavior”, Proceedings of

the 10th Real-Time Systems Symposium, December 1989.

[11] Redondo, J.L., “Schedulability Analyzer Tool”, Technical Report No.

UIUCDCS-R-93-1791, Department of Computer Science, University of Illinois,

February 1993.

[12] http://www.infosys.tuwien.ac.at./Research/Corba/OMG/arch2.htm#446864

http://www.omg.org

[13] "Concurrency Control in Real-Time Object-Oriented Systems: The Affected Set

Priority Ceiling Protocols" by Squadrito, DiPippo, Cooper, Esibov and Wolfe.

To appear in proceedings of the First IEEE Symposium on Real-Time Object-

Oriented Computing, Kyoto, Japan, April 1998.

[14] Michael A. Squadrito, “Extending the Priority Ceiling Protocol Using

Read/Write Affected Sets”, M.S.Thesis, URI, 1996.

