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I Introduction 

 

This thesis provides contributions in real-time scheduling theory and tools for 

distributed systems.  In particular it addresses techniques to perform schedulability 

analysis of Real-Time CORBA systems. 

 

A real-time system is one in which some (or all) jobs have timing constraints.  

By job we mean a basic unit of work to be scheduled and allocated resources.  A 

simple example of a job could be an I/O operation or a granule of computation.  The 

basic timing constraint is a deadline – a moment of time by which a job is required to 

complete. 

 

Traditionally, a real-time system developer starts with programming the 

application software, and then validates timing constraints, often by using extensive 

simulations.  This approach is excessively time and resource consuming.  Under this 

approach, it is difficult to extend and maintain existing real-time systems: small 

changes in the application software or underlying hardware can produce 

unpredictable timing effects that can only be detected and corrected after exhaustive 

testing.  This problem demonstrates a need for automated tools that allow 

schedulability analysis of a real-time system in the earliest stages of its design or 

modification.  Such a tool, called Prototyping Environment for Real-Time Systems 

(PERTS), has been developed at the University of Illinois (Urbana, IL) and currently 

is supported by Tri-Pacific Software division of the Tri-Pacific Consulting 
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Corporation (Alameda, CA).  The development of this tool became possible due to a 

significant breakthrough in the solution of numerous schedulability problems [1].  

PERTS is described in detail in Chapter II. 

 
Distributed object computing has become a widely accepted programming 

paradigm for applications that require seamless interoperability among heterogeneous 

clients and servers.  The Object Management Group (OMG) has developed the 

Common Object Request Broker Architecture (CORBA) as a standard software 

specification for such distributed environments.  A great demand for Real-Time (RT) 

CORBA has motivated the Real-Time Research group at the University of Rhode 

Island to develop the first version of the RT CORBA in 1997 [2, 3].  Real-Time 

CORBA is described in Chapter IV. 

The possibility of preliminary schedulability analysis of the designed system 

has a great value for the developers of distributed real-time applications. 

Unfortunately, PERTS does not fully support the analysis of RT CORBA distributed 

applications.  After detailed analysis of PERTS capabilities, we have concluded that 

the present PERTS version may be modified to model and analyze RT CORBA, as 

we describe it in Chapter IV. 

In Chapter V we discuss necessary PERTS modifications and describe the 

implementation. 

The test cases that demonstrate the correctness of the modified and new 

PERTS components are presented in Chapter VI. 
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Along with the goal of modeling RT CORBA and implementing necessary 

PERTS modification, we have considered various theoretical issues.  PERTS uses 

two widely accepted schedulability criteria based on Liu-Layland’s and Lehoczky’s 

conditions [1, 10].  In Section 2.3.3 we prove that the satisfaction of Liu-Layland’s 

condition automatically guarantees the satisfaction of Lehoczky’s condition.  We also 

have considered the nontrivial case of a task system that contains harmonic tasks.  In 

Section 7.2.1 we demonstrate that, in this case, Lehoczky’s schedulability condition is 

not necessary, but sufficient only.  We present the modifications for the criterion to 

make it necessary in the described case. 

 

Thus, in this thesis we address techniques to perform schedulability analysis 

of Real-Time CORBA systems. In addition, we discuss a list of various aspects of the 

schedulability theory, including: modification of the Lehoczky’s schedulability 

criterion for the systems containing harmonic tasks and for the RT systems built on 

operating systems with limited available priorities; comparison of the Liu-Layland’s 

and Lehoczky’s criteria for the systems with shared resources; description and 

comparison of two resource access protocols. 
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II PERTS 

 

In this chapter we review PERTS 3.0 and its abilities to describe and analyze 

real-time systems.  For its complete description, we refer the reader to the PERTS 

manual available on-line [4].  In this chapter we concentrate only on those PERTS 

features that are important for its extension to analyze RT CORBA. 

 

PERTS is a Prototyping Environment for Real-Time Systems.  It contains 

tools for the analysis, validation and evaluation of real-time systems.  It includes an 

extensible library of priority scheduling algorithms and resource access protocols. 

 

In order to validate real-time system timing constraints and evaluate its 

performance, the system parameters must be described.  This description includes: the 

workload to be executed, the resources available to support the workload, and the 

algorithm used to assign priorities and allocate resources. PERTS provides such a 

description environment through the Task Graph Editor, Resource Graph Editor, and 

Schedulability Analyzer, described in the next three subsections. 

 

2.1   Task Graph Editor 

 

A Task Graph describes the application system, called the task system.  It 

includes a set of tasks of the system being modeled.  The tasks could be periodic, 

when time between two consecutive Ready Times is constant, or aperiodic, in other 
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cases.  Since aperiodic tasks go beyond the scope of our study, we will exclude from 

future consideration in this project all features associated with them.  The tasks may 

be dependent on each other. 

PERTS calls a collection of all tasks and their dependencies a Task Graph.  

Every task and dependency is characterized by a set of parameters.  To describe a 

Task Graph, the user must provide a complete set of parameters for every task and 

dependency in that Task Graph.  The demand of a user-friendly interface to create 

and edit Task Graphs has stimulated a development of PERTS Task Graph Editor. 

 

 

 

 

 

 

 

 

Figure 2.1. Schematic view of the Task Graph Editor. 

 

The Task Graph Editor, shown in Figure 2.1, enables the user to create and 

update a Task Graph.  It provides a graphical representation of the Task Graph.  All 

tasks of a Task Graph are represented by rectangular nodes, all dependencies are 

presented by directed edges connecting the appropriate nodes.  A description of a 

Task Graph in this environment is performed by choosing an appropriate operation in 
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a menu bar and clicking on the appropriate node or edge.  To describe the set of 

available in Editor operations/commands, we present them in groups, as they are 

arranged in menu bar. 

File Commands enable the user to create a new Task Graph (New), open an 

existing Task Graph (Open), re-initialize already open Task Graph (Reopen), save 

current Task Graph (Save), save a new copy of current Task Graph (Save As), print 

current window (Print Entire Window), create a report of Task Graph information 

(Generate Report), launch any of the other PERTS tools or exit the Task Graph 

Editor (Quit). 

Edit Commands enable user to manipulate task nodes and task dependencies.  

User can add task node (Add Task), add dependency edge (Add Dependency), copy 

task characteristics (Copy Task Parameters), move task nodes to the new position on 

a screen (Move Task), delete task nodes or dependencies (Delete) or undo an 

unintentional edit command (Undo (Add or Delete)). 

Parameter Commands enable user to enter and change task parameters for 

each task in the task graph.  Since we are interested in the periodic tasks only, we 

describe here only menu (and operations) for the periodic task parameters.  It includes 

the options to enter and edit the General Task Data, Optional Intervals, Non-

Preemptable Sections, Resource Requirements and User Specified Priorities. 

By clicking on General Task Data menu bar, the user pops up an edit dialog 

window, which enables input and edit of general task information for any task in the 

open Task Graph.  General Task Data include the following parameters (we omit here 

some of the parameters irrelevant to our study): 
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• Task Name, 

• Ready Time – the earliest time instant at which the task may begin execution, 

• Relative Deadline – time frame after Ready Time within which the task must 

finish execution (reader can find in the literature a term Absolute Deadline, which 

is a sum of Ready Time and Relative Deadline), 

• Period – constant length of time between two consecutive Ready Times of the 

task, 

• Phase – the time at which the task starts its first period, 

• Active Resource – the CPU the task should run on, 

• Amount of Work – the execution time for the task. 

 

The General Task Data Edit Dialog allows user to enter the appropriate task data in 

the window, update the General Task Data (by clicking on OK), print the screen to a 

file or to a printer (Print), cancel the update (Cancel) and view the help window 

(Help). 

 

In addition to the described General Task Data, every task is characterized by 

a list of Optional Intervals, Non-Preemptable Sections and Resource Requirements. 

Normally, a task, once scheduled, executes entirely.  However, some tasks 

contain optional parts, which are specified by means of Optional Intervals.  They are 

characterized by a Start and End Time.  The task may contain more than one Optional 

Interval. 
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In a preemptive environment a task may be preempted by another task of 

higher priority.  Sometimes a task should not be preempted during some certain 

sections of its execution called Non-Preemptable Sections.  Similar to Optional 

Intervals, they are characterized by a Start and End Time.  A task may contain more 

than one Non-Preemptable Section. 

A task may require a use of one or more resources during its execution.  The 

resource requirements are described by Resource Name, Start Time and End Time. 

 

 To edit one of the described objects (Optional Intervals, Non-Preemptable 

Sections or Resource Requirements), the user clicks on appropriate menu bar to pop 

up a corresponding Edit Dialog Window.  Every Window contains the appropriate 

fields for editing the object parameters, including summary on all objects of specified 

type.  User can enter the object parameters into the Window Dialog, add an 

appropriate object (by clicking on Insert), remove an object (Delete), modify 

parameters of an existing object (Modify), update the data (OK), cancel the update 

(Cancel) and view the help window (Help). 

 

 

2.2  Resource Graph Editor 

 

The Resource Graph describes the physical and logical resources available to 

the task system.  It includes all the resources of the system and their “relationships”.  

By relationship PERTS means that the resources may be included (a-part-of type) or 
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accessed (accessible-from type) by another resources.  A database residing at a Node 

is an example of a-part-of relationship (where the database is a part of the Node).  A 

database accessible from another Node is an example of accessible-from relationship 

(where a database is accessible from the Node). 

To describe a Resource Graph, the user must provide a complete description 

of every resource and its relationship with other resources.  The demand of a user-

friendly interface to create and edit Resource Graph has stimulated a development of 

the Resource Graph Editor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Schematic view of the Resource Graph Editor. 
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The Resource Graph Editor, shown in Figure 2.2, enables the user to create 

and update the Resource Graphs. All resources of a Resource Graph are represented 

by rectangular nodes, all relationships – by directed edges connecting the appropriate 

nodes (solid red for a-part-of and dashed green for accessible-from).  Similar to the 

Task Graph Editor, the description of a Resource Graph in this environment is 

performed by choosing an appropriate operation in a menu bar and clicking on the 

appropriate node or edge. 

 

 

 

2.3  Schedulability Analyzer 

 

There are two complementary techniques in evaluation of the timing behavior 

of a real-time system: 1) schedulability analysis based on theoretical calculations and 

2) simulation.  The schedulability analysis provides rigorously derived results on 

whether timing constraints are met, but requires an analyzable model of the studied 

system.  On the other hand, the simulator provides no guarantees; it determines 

whether timing constraints are violated, relying on user’s specification of the worst-

case configuration.  However, the simulator can deal with a higher complexity model 

of the system than the schedulability analysis.  This project has concentrated on the 

schedulability analyzer, which can guarantee system schedulability.  We would like 

to emphasize that since the schedulability analysis is based on sufficient (not 
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necessary) criteria, it could not guarantee non-schedulability of a task system.  If a 

task system does not satisfy these criteria it does not mean that it is not schedulable, 

but instead it means that theory is unable to guarantee its schedulability. 

 

The Schedulability Analyzer is the last of the three PERTS key components.  

It performs the schedulability analysis for the systems that have been described using 

the Task Graph and Resource Graph.  However, the system is not described 

completely until the user specifies the Priority Assignment Mechanism and the 

Resource Access Protocol for the system.  Using the Schedulability Analyzer, a user 

can choose the appropriate Priority Assignment Mechanism and Resource Access 

Protocol. 

 

 

2.3.1 Priority Assignment Mechanisms and Resource Access 

Protocols 

 

 The list on priority assignment mechanisms in the Schedulability Analyzer 

includes: 

• Rate Monotonic (RM) [1] - which assigns higher priority to a task executing at 

higher rate, 

• Deadline Monotonic (DM) [5] - which assigns higher priority to a task with 

shorter relative deadline, 
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• Earliest Deadline First (EDF) [1] - which assigns a higher priority to a task with 

faster approaching deadline. 

There are three other Priority Assignment Mechanisms currently supported by 

PERTS, Cyclic Executive (CE), Harbour-Klien-Lehoczky (HKL) and Sun-Gardner-

Liu (SGL), not applicable for our study because of their limitations.  CE is applicable 

for a system containing harmonic tasks only, while HKL and SGL prohibit resource 

accesses. 

 

The list of available Resource Access Protocols includes: 

• Priority Ceiling Protocol (PCP) [6,7,8] - which avoids deadlocks, limits blocking 

time and guarantees that the blocking time is a function of duration of critical 

sections only; 

• Basic Inheritance Protocol (BIP) - which is similar to PCP. It is easier in 

implementation than the latter, but does not limit the number of times a task may 

be blocked and does not prevent deadlocks; 

• Stack Based Protocol (SBP) [9] - which assigns a fixed preemption level to every 

task inversely proportional to its relative deadline.  It avoids deadlocks and 

multiple blocking, but applicable only to Single-Node systems. 

 

After a user specifies the Priority Assignment Mechanism and the Resource 

Access Protocol and chooses the appropriate textual files with description of the Task 

and Resource Graphs, the system is completely described. 
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2.3.2 Schedulability Analysis Regimes 

 

There are three different regimes of analysis provided by PERTS: Single-

Node, Multiple-Node and End-to-End. 

 

Single-Node Analysis, shown in Figure 2.3, determines whether the node is 

schedulable.  A task is schedulable if it always completes its execution before its 

deadline; a node is schedulable if all the tasks assigned to that node are schedulable.  

In addition to the report on schedulability of the node, the Single-Node Analysis 

reports the CPU utilization, and it provides the list of all tasks indicating their 

schedulability.  The user can modify the system parameters to allow “what if?” 

modeling. 

The title “Single-Node” can be misleading.  This type of analysis may be used 

for the systems consisting of a single node, as well as for multiple node systems.  In 

the latter case, the user should choose for analysis either Multiple-Node or End-to-

End Analysis, described below.  However, to obtain details on the particular node of 

the distributed system the user may use the Single Node Analysis. 

 

Multiple-Node Analysis, shown in Figure 2.4, examines the schedulability of 

multiple-node real-time systems.  To allow “what if?” modeling, the Multiple-Node 

Analysis interface enables modification of the binding of tasks and resources to 

different system nodes.  The binding may be either manual or automatic, using such 

algorithms as best fit, first fit, next fit and worst fit. 
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The benefit of being able to analyze system architectures that have more than 

one node and share resources can be critical for distributed real-time system 

developers.  PERTS can help point out potential overhead problems and blocking 

problems that may be introduced by sharing resources across the nodes.  Individual 

entities may be schedulable as stand-alone entities, but when put in a multiple-node 

architecture with the resource sharing, they may become non-schedulable.  Multiple-

Node Analysis reports the system schedulability and then user may select individual 

nodes to analyze it with Single-Node Analyzer.  

 
 
 
 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3. Schematic view of the Single Node Schedulability Analysis. 
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Figure 2.4. Schematic view of the Multiple-Node Schedulability Analysis.
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Figure 2.5. Schematic view of the End-to-End Schedulability Analysis.
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Both Single-Node and Multiple-Node Analysis dialogs offer a node-

oriented view of the system under consideration.  They do not perform any path 

analysis in the systems with task dependencies. 

 

End-to-End Analysis, shown in Figure 2.5, looks at the schedulability of a 

system with one or more paths of execution defined by a series of task dependencies.  

The End-to-End Analysis Window graphically represents all tasks and dependencies 

(similar to Task Graph Editor).  Specifying any path, the user obtains a schedulability 

report on that particular path.  The user may choose Single-Node Analysis for the 

detailed information on the particular node. 

 

 

2.3.3 Schedulability Analysis: How It Is Done. 

 

The main feature of all three analysis regimes in PERTS is the ability to 

guarantee the system schedulability.  In this section we describe the theory underlying 

this analysis.  There are two sufficient conditions for the schedulability of a real-time 

system.  One of them is based on the concept of Processor Utilization Bound 

introduced by Liu and Layland [1] and another – based on the concept of Processor 

Time Demand introduced by Lehoczky et. al. [10]. 

 

The first criterion requires satisfaction of the following inequality: 
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where tasks are indexed in the decreasing priority order (task T1 has the highest 

priority on the considered node). Cj and Tj denote the worst-case execution time and 

period of the task Tj.  Bi is the worst-case blocking time potentially suffered by any 

job in the task Ti due to resource contention or non-preemptive execution of lower-

priority tasks.  If a task Ti satisfies this condition, it is schedulable by the RM or DM 

and PCP or SBP.  Schedulability of all tasks of the system means the system is 

schedulable. 

 

When a fixed-priority scheduling algorithm is used with a resource access 

control protocol that effectively controls priority inversion, there is another more 

accurate schedulability condition [7, 10, 11].  This condition is stated in terms of the 

worst-case cumulative demand function Wi(t) for processor time in the interval 

between the release time of a task Ti and the time t units after its release.  The demand 

function Wi(t) is given by 

 

The demand function has three parts: the processor time demand by all tasks with 

priorities equal or higher than Ti, the demand of Ti itself, and the worst-case blocking 

time suffered by each job in Ti.  The job released at time t0 completes at time t0+t, if 
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Wi(t)=t.  Consequently, whenever Wi(t)≤t for some t smaller than task Ti Relative 

Deadline, the task Ti’s is schedulable. 

 

The PERTS Schedulability Analyzer checks both criteria.  Satisfaction of at 

least one of them by all tasks guarantees schedulability of the system.  This approach 

should yield a correct schedulability result if both criteria are implemented correctly.  

Unfortunately, we have detected some theoretical and implementation errors in the 

present PERTS version, which yield the misleading results of the analysis. In Section 

7.3.3 we summarize these errors, demonstrate counter-examples and provide the 

solutions.  To reduce the effect of the implementation errors we recommend using 

only Lehoczky’s condition for the schedulability analysis.  We prove below that the 

satisfaction of the Liu-Layland’s condition automatically leads to the satisfaction of 

the Lehoczky’s criterion.   

 

Theorem 1: If any task system satisfies the schedulability criterion based on 

Liu-Layland’s condition (called in future L-L) it also satisfies the schedulability 

criterion based on Lehoczky’s condition (Leh). 

 

Proof:  

Since a task system is said to be schedulable if all of its tasks are schedulable, 

the proof of the Statement for an arbitrary task proves it for a task system. 

Let us consider an arbitrary task Ti, which does not use any shared resources.  

We also assume, that L-L schedulability criterion is satisfied for this task: 
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Since the L-L condition is sufficient [1] and the Leh condition is necessary [10] 

(under the assumption that there are no shared resources used by the task) it follows 

automatically, that satisfaction of the L-L condition leads to the satisfaction of the 

Leh condition.  Therefore there exists some value of time t, less than or equal to the 

Relative Deadline of the task Ti, such that  

 

The theorem has been proven for the tasks without shared resources. 

 

Let us assume now that the task Ti uses shared resources.  It leads to some potential 

blocking Bi of the task Ti.  Under these circumstances the Leh condition is not 

necessary anymore.  In this case we can not use the same approach as in previous one.  

Introduction of the shared resources (and therefore blocking Bi) modifies the L-L and 

Leh conditions to be read 
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respectively.  Let us consider now another task T’i, which has identical to the task Ti 

parameters, but does not use shared resources and its execution time C’i  is equal to 

Ci+Bi.  Let us also assume that task T’i satisfies the L-L condition: 

 

As it was proven in the first part of this proof, the satisfaction of the L-L condition for 

a task that does not use shared resources automatically leads to the satisfaction of the 

Leh criterion: 

 

Replacing C’i by its equivalent Ci+Bi in both conditions, we obtain that 

satisfaction of L-L criterion for a task, using shared resources,  

 

automatically leads to the satisfaction of the Leh criterion 

 

It proves the Statement for the remaining case of tasks, using shared 

resources.  The Theorem is proven. ■ 
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III  Real-Time CORBA Systems 

 
 

3.1 CORBA 

The Common Object Request Broker Architecture (CORBA) is an answer to 

the need for interoperability among the rapidly proliferating number of hardware and 

software products available today.  Simply stated, CORBA allows applications to 

communicate with one another no matter where they are located or what underlying 

system they use.  CORBA provides a uniform way for any object to receive and 

respond to a request from any requester (client). 

 

    The Object Request Broker (ORB), CORBA’s key component, is the 

middleware that establishes the client-server relationships between objects.  Using an 

ORB, a client can transparently invoke a method on a server object, which can be on 

the same machine or across a network.  The ORB intercepts the call and is 

responsible for finding an object that can implement the request, pass it the 

parameters, invoke its method, and return the results. The ORB facilitates the 

processing of client requests.  A client does not have to be aware of where the object 

is located, its programming language, its operating system, or any other system 

aspects that are not part of an object's interface.  In so doing, the ORB provides 

interoperability between applications on different machines in heterogeneous 

distributed environments and seamlessly interconnects multiple object systems. 
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To provide these capabilities, the CORBA specification defines an 

architecture of interfaces that may be implemented in different ways by different 

vendors.  The architecture was specifically designed to separate the concerns of 

interfaces and implementations.  The architecture, shown in Figure 3.1, has been 

described in detail [12]. 

 

 

 
Figure 3.1.  Schematic view of the CORBA. 

 

 

3.2 Real-Time CORBA 

 

Real-Time distributed applications such as automated factory control, avionic 

navigation and simulation have demonstrated the need to extend the CORBA 

standard to support real-time.  The Real-Time Research group at the University of 
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Rhode Island has developed the first version of RT CORBA.  The group was 

concentrated on CORBA/RT desired capabilities involving object services and 

features for handling real-time client/server interaction and addressed object services 

desired capabilities that are essential for expressing and enforcing timing constraints.  

These desired capabilities are expressing and enforcing timing constraints on CORBA 

method invocations, synchronized clocks, Global Time Service, and Real-Time Event 

Service, shown in Figure 3.2. 

 

 

Figure 3.2.  Schematic view of the RT CORBA. 
 

 

A RT CORBA client contains a set of requests to RT CORBA servers 

(method calls) intermixed with its local code.  In addition to its final timing constraint 

(deadline) a client may contain a series of intermediate timing constraints 

(Intermediate Deadlines), associated with different method calls, calculations and 
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data manipulations.  The Intermediate Deadline is a crucial RT CORBA feature that 

PERTS 3.0 does not currently support.  An Intermediate Deadline is specified by 

three time parameters: Start Time and End Time and Deadline.  The Start Time and 

End Time describe the beginning and end of the portion of the client code to be 

completed by the Deadline. 

 

main

every p1 units of time do

{

client code11...

s1 = bind (server1)

s2 = bind (sever2)

by deadline d11

s1->method1

client code 12...

by deadline d12

s2->method1

client code13…

}

client

node 1

node 2

method1

method N

server 1

other

server

node 3

method1

method M

server 2

other

client

other

client
Task1

Task2

Task3

 

Figure 3.3.  Example of the RT CORBA System. 
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We illustrate a typical RT CORBA client in Figure 3.3.  This client (residing 

on node 1) has a period of P1 units of time during which it makes two CORBA calls 

to remote CORBA servers (s1->method1 and s2->method1).  Each CORBA call has 

its own pre-period deadline, shown by horizontal line (d11 for s1->method1 and d12 

for s2->method1).  Note that there is also some local client code before, after, and 

between CORBA method calls.  The figure shows remote servers only, while in 

general some or all servers could reside on the client’s node.  

 

The distributed CORBA architecture causes network communication between 

clients and servers residing on different nodes.  The time that clients spend sending 

requests to remote servers (Network Delay), may be significant enough to make the 

clients non-schedulable.  This demonstrates the need to take the Network Delay into 

account in the schedulability analysis, as shown in the next chapter. 

 

To enable the analytical schedulability analysis by PERTS, Real-Time 

Research group is currently modifying the existing Dynamic RT CORBA software 

(Orbix on Solaris) to handle Static RT CORBA.  It involves a transition from 

currently supported by RT CORBA dynamic Earliest Deadline First (EDF) priority 

assignment (which does not allow an analytical schedulability analysis) to the 

Deadline Monotonic (DM).  The latter enables preliminary priority assignment and 

use of the Distributed Priority Ceiling Protocol improving the worst case priority 

inversion bound relative to currently supported Basic Priority Inheritance (BPI). 
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IV Modeling RT CORBA with PERTS 

 

4.1 Problem Domain  

 

We are interested in end-to-end analysis of RT CORBA clients making 

distributed method calls to CORBA servers over a network.  That is, client(s) and 

server(s) are potentially on different nodes in a distributed system.  For this project, 

the clients will be periodic, with known execution times and we will allow multiple 

intermediate (pre-period) deadlines within the clients. The server methods will have 

known execution times, but will get their timing constraints and the basis of their 

priorities from the clients that invoke them. 

 

The goal of PERTS analysis of RT CORBA is to determine whether all clients 

meet their timing constraints (final and all, if any, intermediate deadlines). 

 

 

4.2 Mapping RT CORBA to PERTS  

 

The RT CORBA system components are mapped to the PERTS primitives as 

follows: 
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4.2.1 CORBA Servers 

 

All CORBA Servers, as well as CORBA ORB and Services, are represented 

by PERTS resources.  For example, each server in Figure 3.3 would be modeled as a 

PERTS resource. 

 

 

4.2.2 CORBA Clients 

 

The PERTS does not support the schedulability analysis of Intermediate 

Deadlines.  Thus, the PERTS analysis for RT CORBA requires nontrivial client 

modeling. 

Each client with N intermediate deadlines will be modeled as N+1 PERTS 

tasks.  For example, the detailed client in Figure 3.3 would be modeled as three tasks:  

• Task1: includes: the bind calls, “client code11”, “s->method1”, and “client 

code12. 

• Task2: includes: “s->method2”. 

• Task 3: includes: “client code13”. 

 

We must emphasize that Task2 may start its execution only after Task1 

completes, and Task3 – only after Task2 completes.  Thus the analysis must find for 

each task a Ready Time (the earliest time instant at which a task may start execution), 

that guarantees serialization of the tasks and correctly describes their dependencies. 
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We have considered two different approaches to specify task dependencies 

within a client. 

The first approach is based on modeling the task dependencies by timing 

constraints, having the release time of task i be the deadline of task i-1.  This is a 

pessimistic way to model dependencies for two reasons.  First, the deadline of the 

previous task may have much greater value than its Completion Time (the time it 

takes to finish execution in the worst case), which means that a task i will be idle for a 

long time after the previous task i-1 completed its execution.  In this situation the task 

i more likely will miss its deadline.  Second, all the tasks generated by the same client 

are harmonic and have different release times.  These conditions guarantee that the 

“worst phasing condition” (when all tasks are ready for execution at the same time) 

will never happen.  Unfortunately, neither schedulability theory nor PERTS consider 

this case, and as a result it leads to an overpessimistic evaluation of the system 

schedulability.  We present corrections need to be made to the Lehoczky’s condition 

to account for this harmonic tasks case in Section 7.3.1. 

 

The second approach to specify the task dependencies within a client is by 

modeling them as real dependencies, which are analyzable by PERTS, by having task 

i dependent on task i-1, and task i+1 dependent on task i.  PERTS End-to-End 

analysis calculates the worst-case Completion Time of a task and assigns this value to 

the Ready Time of a consequent (in dependency) task.  This approach guarantees the 

serializability and minimizes the idle time of the dependent tasks.  For this reason, we 

choose to use PERTS dependencies to model client tasks. 
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However the dependency approach is also pessimistic.  The PERTS analyzer 

assumes that a task may be blocked and preempted by the tasks that depend on it, 

which introduces a delay in the completion time of the task i and delay in the release 

of the tasks i+1 and all subsequent tasks. 

 

Client Period Ready 

Time 

Relative 

Deadline 

Execution 

Time 

Node Resource Intermediate 

Deadline 

Client1 1000 0 1000 500 1 Server1 

[100-150] 

Server2 

[200-250] 

[0->200] by 300 

[200->250]by 700 

 

Table 4.1.  Time parameters of the client from Figure 3.3. 

 

We present here a model for the client introduced in the example of Figure 3.3 

using the dependencies approach.  For simplicity, but without loss of generality, we 

consider here only one client.  The main parameters of the client are presented in the 

Table 4.1.  It is a periodic client with the Period of 1000, Ready Time of 0, Relative 

Deadline of 1000 and Execution of 500 time units.  It is residing on Node 1.  It 

requires use of two resources, server1 and server2, during the periods of time from 

100 to 150, and from 200 to 250 units of time, respectively.  It also has two 

intermediate deadlines: the portion of the code from 0 to 200 units of time must be 

completed by the time of 300 units and the portion of the code from 200 to 250 units 

of time must be completed by the time of 700 units.  For simplicity, we assume in this 
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example that Phasing value is 0 and the client does not have any Non-Preemptable 

Sections or Optional Intervals, described in Chapter II. 

 

To model this client in the PERTS environment we introduce three tasks 

Task1, Task2 and Task3, as shown in Table 4.2.  Most of the task parameters, such as 

Period, Ready Time, Phasing, Node, are common for all tasks inherited from the 

client.  The relative deadlines are specified by the intermediate deadlines and relative 

deadline of the original client.  The Execution Time of the task i is calculated as the 

difference between the End Times of the Intermediate Deadlines i and i–1.  The list of 

required resources is split between the tasks depending on the time intervals specified 

by the resource requirement and intermediate deadline.  Since Server1 needs to be 

used during the [100-150] time interval, it fits into the time interval specified by the 

first intermediate deadline ([0-200]), and therefore is assigned to the Task1.  The time 

interval of Server2 is [200-250], which belongs to the time interval of the second 

intermediate deadline ([200-250]), and therefore belongs to the Task2.  Note that the 

time interval of this resource requirement has been modified to [0-50].  After 

separation of the first part of the code between 0 and 200 time units into separate task 

(Task1), the remaining code starts from the 0 time mark.  This leads to modification 

of all time intervals, including resource requirements, Non-Preemptable Sections, 

Optional Intervals and remaining Intermediate Deadlines, as well as Execution Time, 

described above.  The last column of Table 4.1 shows the dependence of the Task2 on 

Task1 and Task3 on Task2.  Note that if the original client itself depends on some 

other task, then this dependency is inherited by the first generated task (Task1).  If 
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some other task depends on the original client, then this dependency is inherited by 

the last generated task (Task3). 

 

Task Period Ready 

Time 

Relative 

Deadline 

Execution 

Time 

Node Resource Depends on 

Task1 1000 0 300 200 1 Server1 [100-150]  

Task2 1000 0 700 50 1 Server2 [ 0- 50] Task1 

Task3 1000 0 1000 250 1  Task2 

 

Table 4.2.  Time parameters of the three tasks generated form client from Figure 3.3. 

 

While the original version of PERTS can not analyze clients with intermediate 

deadlines, it may analyze the system of dependent tasks presented in Table 4.2.  

Using End-to-End analysis, described in Chapter II, the PERTS engine performs 

schedulability analysis based on described dependencies.  The engine calculates the 

worst-case completion times for all tasks and modifies the Ready Times and Relative 

Deadlines of the tasks, as shown in Table 4.3.  Here, for simplicity and easy 

visualization of the process, we assume that there is no blocking and preemption 

involved in the example and therefore every task completes in “Execution Time” 

units after its Ready Time. 
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Task Period Ready 

Time 

Relative 

Deadline 

Execution 

Time 

Node Resource 

Task1 1000 0 300 200 1 Server1 [100-150] 

Task2 1000 200 500 50 1 Server2 [ 0- 50] 

Task3 1000 250 750 250 1  

 

Table 4.3.  Time parameters of the three tasks generated form client (from Figure 

3.3) produced by the End-to-End PERTS analyzer. 

 

 

4.3 Network Delay 

 

As previously stated, it is necessary to account for network delay in the 

analysis of distributed real-time systems and PERTS does not directly support it.  

Note that we are not trying to analyze the network traffic control, but instead we let 

CORBA developers estimate the worst case Network Delay and input it to the task 

description.  Our goal is to include the Network Delay into consideration in the 

schedulability analysis.  The Network Delay is the worst case time that a task spends 

traveling from one node to another without holding original and destination CPUs.  

This specific feature (that original and destination CPUs are not hold by the task) 

excludes the possibility to use PERTS “acquisition/de-acquisition time” option.  The 

acquisition/de-acquisition time is "charged" against the CPU utilization for the task 

that is acquiring/de-acquiring.  This is too pessimistic since the task is not using its 

local CPU when it is using the network. 
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Introduction of the Network Delay into schedulability analysis inserts an 

additional term, 2 * N * delta, into the time demand function Wi(t) in the Lehoczky 

schedulability criterion: 

 

Here N stands for the number of remote (remote means residing on different than task 

node) resource requests, generated by a task within one period, delta is the worst case 

time, that request spends traveling from one node to another one.  Factor of 2 is 

attributed to the “round trip” of the resource request.  

 

 

4.4 Priority Assignment 

 

Task priority assignment will be done using Deadline Monotonic (DM) 

Mechanism, described in Chapter II. 

To make the system analyzable we had to choose a static priority assignment 

mechanism usable on distributed systems and allowing use of local and global 

resources.  There are two mechanisms, RM and DM, satisfying these conditions.  We 

chose DM since RT CORBA tasks have pre-period deadlines. 
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4.5 Resource Access Protocol 

 

To control the resource accesses we choose the Distributed Priority Ceiling 

Protocol (DPCP) [8], which was derived from PCP and extended for the distributed 

systems, as described in Section 7.2.1.  Our choice is based on two main features of 

the resource access protocol, making system predictable: deadlock free and limited 

blocking time.  These both requirements are satisfied by DPCP. 

 

 

4.6 Schedulability Analysis 

 

We have chosen the End-to-End Schedulability Analysis Mode, the only 

Mode that handles task dependencies.  In performing a system schedulability 

analysis, the Analyzer generates a report that describes system parameters, including 

task priorities and resource priority ceilings. 
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V. Implementation 

 

This chapter presents the implementation of the new and modified PERTS 

components.  The implementation has been performed in C++ on a Sun Spark5 work 

station running Sun’s Solaris 2.5. 

 

5.1 Implementation Plan 

 

To incorporate the new features, described in the previous chapter, we address 

three different issues: 

1. Modification of the Graphic User Interface (GUI) for the Task Graph Editor to 

enable input of the Intermediate Deadlines and Network Delay. 

2. Implementation of the Client->Task Translator, performing the split of a client 

into set of dependent tasks, based on the client’s intermediate deadlines, 

described in Section 4.2.2. 

3. Modification of the Schedulability Analyzer to account for the Network 

Delay, described in Section 4.3. 

 

 

5.1.1 Modification of the Task Graph Editor GUI 

 

To enable an input of the Network Delay value, we have added a box 

"Network QoS Parameter" to the General Task Data Edit Dialog, located at 
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"Parameters"/"Task Parameters"/"General Task Data" menu option.  It allows 

specification of the Network QoS Parameter (or Network Delay) for every task along 

with previously presented in the dialog parameters.  It is set to 0 (zero) by default.  By 

clicking on "OK" button the Network QoS Parameter is saved (along with other task 

parameters).  Option "Help" has been slightly modified to incorporate a description of 

the "Network QoS Parameter". 

 

To enable an input of the Intermediate Deadline parameters, we have 

introduced a new Intermediate Deadline Edit Dialog.  To call this Dialog we 

introduce a new option "Intermediate Deadlines" to the "Parameters"/"Task 

Parameters" menu bar.  By clicking on this button user pops up the "Intermediate 

Deadline Edit Dialog" Window, consisting of four fields: 

• Start Time - specifying the beginning of the portion of the task that needs to 

complete execution by some intermediate deadline (Start Time is not used in the 

schedulability analysis in the current project, since the task (client) is split into set 

of dependent tasks based on End Time.  We have input Start Time field for 

possible future applications); 

• End Time - specifying the end of the portion of the task that needs to complete 

execution by some intermediate deadline; 

• Deadline - the intermediate deadline itself; 

• List of all previously specified intermediate deadlines. 

 

The Intermediate Deadline Dialog Window contains 6 buttons: 
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• Insert - inserts new set of parameters into the list of Intermediate Deadlines; 

• Delete - deletes selected (one or more) Intermediate Deadlines from the list; 

• Modify - modifies the parameters of a specified Intermediate Deadline; 

• OK - saves current list of Intermediate Deadlines in the increasing End Time 

order; 

• Cancel - closes the Intermediate Deadline Dialog Window; 

• Help - pops up the window describing features of the Intermediate Deadline 

Dialog Window. 

 

 

5.1.2 Client->Task Translator Implementation 

 

As discussed in Section 4.2.2, every client, containing at least one 

Intermediate Deadline, is split into N + 1 tasks (where N is a number of Intermediate 

Deadlines).  The tasks generated from the same client have in common most of the 

parameters inherited from the client.  Here we list the modified parameters and 

describe the modifications themselves. 

• X coordinate (a parameter describing task position in a graphical representation of 

the Task Graph in the Task Graph Editor and End-to-End Schedulability 

Analyzer) is incremented by 100 for every new task generated from the same 

client.  Thus the task number i has X coordinate equal to the original client X 

coordinate plus (i-1)*100.  If the X coordinate exceeds a value of 1200 it is set to 

50 along with an increase of Y coordinate by 50.  Under this modification, all the 
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tasks generated from the same client are located on the same horizontal line (have 

the same Y coordinate) in increasing order left to right.  If they do not fit on one 

line being visible in the end-to-end analysis, they are moved to the next horizontal 

line. 

• Y coordinate is incremented by 50 units if X coordinate has exceeded value of 

1200 for the reason described above. 

• Relative Deadline of the task i is set to the Intermediate Deadline number i after 

checking that Intermediate Deadline is stricter (smaller) than the original client 

Relative Deadline.  If not, then the task Relative Deadline is equal to the client’s 

Relative Deadline. 

• Execution Time of the task i is equal to the End Time of the Intermediate Deadline 

number i minus the End Time of the Intermediate Deadline number i-1.  

Reminder: the Intermediate Deadlines are arranged in the End Time increasing 

order.  

• Name of the first task of the client keeps the client name.  Names of all other tasks 

have an index attached to the original client name, such as NAME_2, NAME_3, 

... NAME_(n+1), where n is the number of intermediate deadlines. 

• Optional Interval List, Resource Requirement List and Non-Preemptable Section 

List of the task i include only those intervals (or resource requirements) that fit 

into the range between the End Time of the Intermediate Deadline number i and 

the End Time of the Intermediate Deadline number i-1.  If the interval 

(corresponding to the Optional Interval or Resource Requirement) belongs to the 
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described range only partially (i.e. Start Time is in that range but End Time is not 

and vice versa) then the list contains only the corresponding part. 

• List of Intermediate Deadlines is absent in the new tasks. 

• Identification (id, PERTS internal unique task characteristic) is assigned after all 

clients have been split. 

 

According to the client model described in Section 4.2.2, task dependencies 

are represented by PERTS dependencies.  Every Task Graph, as described in Section 

2.1, contains a list of dependencies.  The Client->Task Translator modifies this list as 

follows. 

If two tasks are generated from the same client and their numbers in sequence 

are i and i+1, then the task i+1 is dependent on task i and this dependency is added to 

the list. 

If a source of a dependency (a client/task, on which some other client/task 

depends) was a client, then the source of this dependency is modified and the new 

source is the last task generated from this client. 

If a destination of a dependency (a client/task, which depends on some other 

client/task) was a client, then the destination of this dependency is modified and the 

new destination is the first task generated from this client. 

 

The PERTS schedulability analyzer calls Client->Tasks Translator before it 

performs any analysis.  By doing so, it guarantees that all intermediate deadlines will 

be translated into dependent tasks and thus will be taken into account in the analysis. 
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5.1.3 Modification of the Schedulability Analyzer to incorporate the 

Network Delay 

 

The modification to allow PERTS to incorporate worst case Network Delay is 

the first time that we modify the PERTS schedulability analysis engine.  It involves 

two ideologically different parts.  The first part is based on the statement, proven in 

Section 2.3.3, that satisfaction of the schedulability criterion based on the Liu-

Layland’s condition guarantees satisfaction of the criterion based on Lehoczky’s 

condition.  Based on this, we conclude that PERTS engine should check the latter 

criterion only.  We eliminate Liu-Layland’s criterion from the schedulability analysis.  

In the second part, we modify the schedulability criterion based on the Lehoczky’s 

condition to incorporate the total network delay, as described in Section 4.3. 

 

 

5.2 Graphic User Interface (GUI) Modifications Implementation 

 

As was pointed out in Section 5.1.1, the existing GUI had to be modified to 

accommodate the new parameters of tasks (clients), Network QoS Parameter and 

Intermediate Deadlines. 

The implementation of the semantics of the set of Intermediate Deadline 

parameters was encapsulated in a base C++ class called IntermediateDeadline. 

class IntermediateDeadline : public PObject { 

public: 
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PTime         start, end; 

PTime         iDeadline; 

IntermediateDeadline(PTime from, PTime to, PTime by)  

{start = from; end = to; iDeadline = by} 

 ~IntermediateDeadline(){}; 

 }; 

 

Three members of the class, start, end and iDeadline, specify the Start and 

End Times of the Intermediate Deadline, and the Intermediate Deadline, respectively.  

Since each task may have multiple Intermediate Deadlines we used a linked list 

containing pointers to the objects of class IntermediateDeadline.  Instead of 

implementing a new class supporting this linked list and the basic operations, such as 

Delete_Element, Insert_Element, First, Last, Next, Previous and others, we have used 

the class List (previously implemented in PERTS), supporting all listed features.  The 

class List contains a linked list of pointers to the objects of general class PObject.  To 

enable use of the class List, our class IntermediateDeadline is inherited from general 

class PObject. 

 

The complete description of the task parameters is encapsulated in the class 

Task.  We have introduced two new members into this class: 

List       *Intermediate_List, 

PTime       networkDelay. 

The first member, Intermediate_List, is a pointer to an object of class List, 

containing the list of the pointers to the objects of class IntermediateDeadline.  The 

second member, networkDelay, contains a value of the Network QoS Parameter. 
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Along with two new members of the class Task we have introduced the 

method: 

void DefineIntermediateList(PTime start, PTime end, PTime deadline). 

It inserts a new set of Intermediate Deadline parameters into List of 

Intermediate Deadlines, sorting it in the increasing End Time order.  If two or more 

sets of Intermediate Deadline parameters have the same End Time, then the list keeps 

only one of those sets with the earliest Intermediate Deadline. 

 

To maintain all existing GUI operations after introduction of the new 

parameters, we have introduced some modifications/additions to methods of different 

classes, which we briefly describe here. 

To save (Save/ Save As) the new Network Delay and list of Intermediate 

Deadlines parameters into a textual file containing Task Graph parameters, we have 

modified the format of this file, changing the save method (in gtaskgraph.cc) 

static void write_task(ofstream &, GTask *, int). 

To maintain the Open/Reopen operation, we have modified the PERTS 

Compiler to read the new fields from the textual file. We have modified (in 

tg_compile.cc) method 

int TG_Compiler::TaskDataItem(Task * t), 

and introduced a new method 

int TG_Compiler::Intermediate_List(Task * t). 

 

To incorporate the new parameters into the report (Generate Report) we have 

modified (in gtaskgraph.cc) 
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static void generate_report_task(Widget, void *, void *). 
 

To copy new (along with original) task parameters (Copy Task Parameters) 

we have modified (in gtask.cc) method 

void Task::CopyTaskParameters(Task *src). 

 

The appropriate description of the new parameters has been added to the 

help.h and help.cc files. 

 

 

5.3 Client->Tasks Translator Implementation 

 

To implement the Client->Task Translator described in Section 5.1.2, we have 

introduced the set of new methods described below.  The first method  

TaskGraph::Translate() 

scans through the list of tasks of the Task Graph, searching for the clients with 

Intermediate Deadlines.  As soon as an Intermediate Deadline is found, the Translate() 

method 

• creates a new task; 

• inserts a new task into the task list before the client under consideration; 

• inserts a new dependency into dependency list and modifies the existing 

dependencies, as described in Section 5.1.2; 

• adjusts the parameters of the new task using method: 

Task::Modify_new_task(Task* cur_task, PTime cur_start, PTime cur_end, PTime cur_deadline); 
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• adjusts the parameters of the client using method: 

Task::Modify_Task (PTime cur_end, int counter). 

 

These two methods are similar in implementation.  The first method copies all 

parameters from the original client and then deletes all events coming after the End 

Time of the Intermediate Deadline.  The second method deletes all events before the 

End Time of the Intermediate Deadline under consideration.  These methods perform 

the parameter adjustments using the following methods.  

Task::Modify_optionalIntervalList(PTime cur_end, int i) 

and 

Task::Modify_NPSList(PTime cur_end, int i) 

which delete all intervals after the End Time of the Intermediate Deadline for the new 

task and before it - for the client. 

The method 

Task::Modify_resRequirementList(PTime cur_end, int i) 

deletes all Resource Requirements after the End Time of the Intermediate Deadline 

for the new task and before it for the client. 

The method 

Task::Modify_IntermediateList(PTime cur_end) 

deletes the first Intermediate Deadline in the client’s list of Intermediate Deadlines. 

The method 

Task::Modify_name(int counter) 

increments the index attached to the client name (to indicate sequence of the tasks 

generated from the same client). 
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Taking into consideration the new amount of work to be performed by the 

client all these methods modify the appropriate client parameters. 

 

After all clients have been split into tasks the method 

TaskGraph::Reorder() 

is called to reassign task id’s to all tasks. 

 

 

 

5.4 Schedulability Analyzer Modifications Implementation 

 

To include the Network Delay into PERTS analysis, we have incorporated 

into class SA_Task (sa_task.h) a new member 

 _total_Network_Delay 

containing a value of the Total Network Delay experienced by a task during one 

period, 2 * N * delta, as described in Section 4.3.  We also introduce new member 

methods 

Ptime    SA_Task::network_Delay ()   

Ptime    SA_Task::total_Network_Delay() 

void    SA_Task::set_Total_Network_Delay () 

 returning the Network Delay, Total Network Delay of the task and assigning value of 

the Total Network Delay, respectively. 

We have modified the 

 PTime PCP_Node::worst_Blocking_Time(SA_Task *inTask) 
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method (in pcp_node.cc), which besides blocking time also calculates and sets the 

value of the Total Network Delay. 

To incorporate the Total Network Delay into calculation of the Lehoczky’s 

demand method we have modified method 

BOOLEAN SA_Node::time_Demand_Test(SA_Task *inTask) 

reporting system schedulability. 

 

To eliminate Liu-Layland’s condition from schedulability analysis, we have 

excluded the call for the Liu-Layland’s test and test of the system schedulability 

before calling the Lehoczky’s test (Note: the original code performed the Liu-

Layland’s analysis and called the Lehoczky’s test only if previous result was “non-

schedulable”). 

 

To include task total network delay into calculations of its completion time we 

have modified method 

void SA_Node::build_Time_Demand_Line(SA_Task *inTask, int instance) 

in sa_node.cc. 

We have modified the format of the reports in all three regimes of the 

Schedulability Analyzer introducing Network QoS Parameter and Total Network 

Delay. 



 48

 

VI. Evaluation 

 

After the implementation of the modifications to the GUI for the Task Graph 

Editor, the implementation of the Client->Task Translator, and the modification of 

the Schedulability Analyzer were completed, several tests were done to demonstrate 

the implementation correctness. 

 
 

 

6.1 Task Graph Editor GUI Tests 

 

Tests of the modified Task Graph Editor GUI have demonstrated presence and 

correctness of all desired features. 

The General Task Data Edit Window contains a new box "Network QoS 

Parameter".  The introduction of the new field did not affect others.  A user can 

specify the Network QoS Parameter (along with previously presented in the dialog 

parameters).  If the Network QoS Parameter is not specified, it contains a 0 (zero) 

value.  By clicking on "OK" button the Network QoS Parameter is saved (along with 

other task parameters).  It was tested by opening General Task Data Edit Window of a 

task, containing a non-zero value of the Network QoS Parameter assigned in advance.  

Option "Help" contains a description of the "Network QoS Parameter". 
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We have tested the "Intermediate Deadline Edit Dialog", which enables an 

edit of the Intermediate Deadline parameters.  The "Intermediate Deadline Edit 

Dialog" properly inserts a new set of parameters into the list of Intermediate 

Deadlines, deletes selected (one or more) Intermediate Deadlines from the list, 

modifies the parameters of a specified Intermediate Deadline, saves the current list of 

Intermediate Deadlines in the increasing End Time order, closes the Intermediate 

Deadline Dialog Window and pops up the Help window, describing features of the 

Intermediate Deadline Dialog Window. 

 

Using a task with known values of the Network QoS Parameter and 

Intermediate Deadlines parameters, we have performed the “Copy Task Parameters” 

operation to assure its correctness. 

Generating the report we have confirmed presence of the new parameters and 

the correct fit into report format. 

By saving a Task Graph containing clients with some Intermediate Deadlines 

and Network QoS Parameter, we have tested the modified “Save” function.  We have 

checked the textual file generated by “Save” function for presence of the new 

parameters.  As a continuation of this test and as a test for “Open” operation, we have 

opened previously saved file with Intermediate Deadlines and Network QoS 

Parameter.  Using the appropriate dialogs in the Task Graph Editor Window we have 

checked previously saved parameters and confirmed “Save” and “Open” operations. 
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6.2 Client->Task Translator Tests 

 

To perform the Client->Tasks Translator tests we have built various Task 

Graphs, containing clients with and without intermediate deadlines.  Using the 

Translator we have performed the translation of the original Task Graphs (with 

clients, containing Intermediate Deadlines).  The ability of Schedulability Analyzer to 

save modified Task Graphs allowed us to save the translated Task Graph as a textual 

file of standard format.  Comparing the translated Task Graph with theoretical 

expectations confirmed Translator correctness. 

Intermediate Deadlines were chosen to test all possible situations, including 

such non-trivial as “Intermediate Deadline is less strict than the original client 

Relative Deadline” or “Intermediate Deadline End Time is later than client entire 

Execution Time”.  In the tests we have adjusted parameters of Optional Intervals (or 

Resource Requirements) so that the Intervals belong completely or partially to a new 

task generated from a client.  One of the tests, in which we have tried to combine all 

mentioned aspects, is presented in Appendix A. 

The task parameters, specifying geometrical location of the tasks on screen in 

End-to-End Analysis and in Task Graph Editor, have been tested visually.  We have 

introduced large number of intermediate deadlines to “saturate” the screen with tasks 

(generated from the same client) not fitting on one line.  The Translator has 

performed a correct assignment of these parameters by moving exceeding tasks to the 

next line.  We also have checked visually the presence of the dependencies between 

generated tasks and the original clients. 
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6.3 Schedulability Analyzer Tests 

 

 The testing of accounting for the Network Delay in the Schedulability Analyzer 

consisted of two different parts.  In the first part we confirmed that schedulability 

report depends on Lehoczky’s (not Liu-Layland’s) criterion, and that Single-Node 

Analysis takes into account the Network Delay. 

To do so, we have built a Task Graph containing a task, which barely meets 

its deadline (introduction of one more unit of time delay makes the task non-

schedulable).  At that stage, the Network QoS Parameter of the task was set to zero.  

After running the Schedulability Analyzer and confirming that the system is 

schedulable, we have set the Network Delay parameter of the described task to one.  

All other parameters were kept unchanged.  Running the Schedulability Analyzer we 

have confirmed that the system is not schedulable.  These tests have proven that the 

Network Delay is taken into account. 

The original Schedulability Analyzer performed tests of the Liu-Layland’s 

condition and, only if it has not been satisfied, it then checked Lehoczky’s criterion.  

Since we have modified code for the Lehoczky’s criterion only, the report of the 

system non-schedulability in our test proves that schedulability report is based on the 

Lehoczky’s criterion only. 

 

The second part of the test aimed to confirm correctness of the End-to-End 

Schedulability Analysis that we modified to incorporate Network Delay.  The purpose 

of this part was to demonstrate that the Network Delay is taken into account in the 
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calculation of the Completion Time of a task from the path of dependent tasks.  This 

value is crucial for assignment of the Ready Time for the successor in that path.  We 

built a Task Graph that contains a path of dependent tasks with Network QoS 

Parameters set to zero.  Running the End-to-End Schedulability Analyzer, we 

obtained and saved Ready Times of all tasks in the Task Graph.  Then we set some 

non-zero values to the Network QoS Parameters of all tasks in the original Task 

Graph.  Running the End-to-End Schedulability Analyzer, we confirmed that Ready 

Times of each task in the path had been shifted (relative to the value from the 

previous run) by the sum of all Total Network Delays of the predecessors in the path.  

This proves the correctness of End-to-End Schedulability Analysis incorporating 

Network Delay. 

 

In the tests we also have checked the presence of the Network QoS Parameter 

and Total Network Delay values in the generated report. 
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VII. Limitations and Future Work 

 

This project has been a first and necessary step towards creating analysis 

theory and tools for distributed real-time systems such as RT CORBA–based 

applications.  However, further steps are necessary before PERTS can fully analyze 

RT CORBA systems.  In this chapter we describe the further necessary steps. 

 

 

7.1 Effects of Limited Priorities 

 

RT CORBA implemented on commercial real-time operating systems (RTOS) 

may face the problem of the RTOS providing fewer priorities than the RT CORBA 

system requires, particularly under DPCP which has its own range of (very high) 

priorities for tasks executing global critical sections (see Section 7.2.1).  For instance, 

a Solaris RTOS provides only 60 local RT priorities, while the RT CORBA system 

may need more than 60 priorities assigned.  We suggest to modify the PERTS 

Resource Graph Editor interface to allow specification of the number of priorities on 

each node. 

 

To further define the problem, let a node have N tasks (representing parts of 

CORBA clients) C global critical sections (executing on CORBA servers) under the 

DPCP protocol, and P local priorities.  If  N+C ≤ P, then there is no problem - an 

enforceable priority assignment can be done and PERTS can analyze it.  However, if 
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N+C > P, then either the resulting priority assignment is not enforceable, or several 

entities will need to be at the same priority.  PERTS can not currently handle this 

situation. 

 

We present here one possibility to assign available priorities and analyze a 

schedulability in the described situation.  We split P available priorities into two 

partitions, that are proportional to N and C.  The first partition, Ptask, is serving tasks, 

and the second partition, Pgcs, is serving global critical sections on the particular node.  

Then we assign Ptask–1 highest priorities to the Ptask–1 highest priority tasks and Pgcs–

1 highest priorities to the Pgcs–1 highest priority gcs’s.  Then we assign the lowest 

task priority to the remaining N-(Ptask–1) tasks and the lowest gcs priority to the 

remaining C-(Pgcs–1) gcs’s.  This algorithm may not guarantee the best schedulability 

results (other combinations of split of available priorities and their distributions 

among the tasks and gcs’s are possible).  We have chosen this algorithm to simplify 

the illustration of the problem. 

 

To analyze the schedulability of a system in the described situation, we check 

how the limited priorities affect the time demand function introduced by the 

Lehoczky’s schedulability criterion.  We assume FIFO scheduling of tasks with the 

same local priority and make the worst case assumption that each task or global 

critical section falls at the end of the FIFO queue for its priority.  The demand 

function should be modified as follows 
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Here Cl represents an Execution Time of the task Tl, Bi - blocking time of task Ti. Mk 

is a factor defined as 

  

where ng is a number of remote global critical sections executed by task Ti.  The 

origin of this factor is in the fact that the task Ti may be waiting for an end of the 

same priority task execution.  It may be waiting once, when the task Ti is initialized, 

and every time when it releases its CPU for an execution of the remote global critical 

section, since a task of the same priority may get the CPU at that time period.  At the 

same time it may not happen more often than frequency of the same priority task  

 

Despite this obvious modification of the demand function, there is also a 

hidden modification of the blocking time Bi.  This modification is due to the new 

feature of the global blocking 
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Before a global critical section could be blocked for a duration of the longest 

lower priority global critical section, bg.  Now along with this blocking it may be 

blocked by the duration of all global critical sections, CS, of the same priority. 

 

The described modifications should be incorporated into the PERTS 

Schedulability Analyzer engine. 

 

 

7.2 On possibility of Using DASPCP 

 

We speculate that URI’s Distributed Affected Set Priority Ceiling Protocol 

(DASPCP), which has been shown to improve concurrency in object oriented systems 

[13], can be incorporated into PERTS analysis.  The DASPCP is a relatively new 

resource access protocol developed at URI particularly for RT object-oriented 

software [13].  It incorporates two protocols: DPCP [8] and ASPCP [14].  In Section 

7.2.1 we prove its deadlock free property and tight Priority Inversion bound.  The 

main idea behind DASPCP is to consider particular methods of a CORBA server (not 

the entire server) as a PERTS resources and assign each method its own priority 

ceiling based on other methods of the server with which it conflicts.  In Section 7.2.1 

we describe the DPCP and DASPCP and show that latter increases concurrency. 
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Introduction of the DASPCP slightly modifies the mapping of the RT 

CORBA to PERTS, described in Chapter IV.  Namely, PERTS resources do not 

represent whole CORBA servers, instead they represent the methods of the servers.  

The necessity to specify a set of conflicting methods [13, 14] (resources) for each 

method would need to be added to the PERTS Resource Graph Editor interface and 

the revision of the calculation of the priority ceiling in PERTS Schedulability 

Analyzer.  

 

 

7.2.1 DPCP versus DASPCP 

 

In this section we describe the Distributed Priority Ceiling Protocol (DPCP) 

and Distributed Affected Set Priority Ceiling Protocol (DASPCP).  We compare the 

concurrency under these protocols and prove that DASPCP is deadlock free and has a 

limited blocking time. 

The DPCP [8] handles a synchronization of task method calls, executing on 

distributed systems. Before we start the description of the protocol we must introduce 

the following definitions: 

• A semaphore that is accessed by tasks allocated to different processors (a single 

processor) is referred to as a global (local) semaphore. 

• A critical section guarded by a global (local) semaphore is referred to as a global 

(local) critical section, gcs (lcs). 
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First, all tasks must be bound to processors. A task T executes its non-critical-

section code and lcs’s on its host processor, while its gcs’s may be bound and 

executed on a processor(s) different than the T’s host processor. All gcs’s controlled 

by the same semaphore SG, and the semaphore SG itself, are bound to the same 

synchronization processor. A gcs, generated by task T, is assigned a priority equal to 

the sum of the base priority ceiling PG (a fixed priority, higher than the priority 

assigned to the highest priority task in the system) and P, the priority of task T. Each 

processor runs the priority ceiling protocol on the gcs’s (considering each thread of 

execution for executing a gcs as a “task”), the set of application tasks (if any), and the 

set of global and local semaphores bound to the processor. DPCP prohibits a mixed 

nesting of lcs’s and gcs’s. 

The following example is not an exhaustive demonstration of possible 

situations (of blocking, preemption etc.), that may occur under DPCP.  Our goal is a 

simplest possible example, demonstrating benefits of DASPCP relative to DPCP.  For 

more detailed example of application of DPCP we refer reader to the original 

Rajkumar’s work [8]. 

Example 7.1. Consider a distributed system with 2 nodes.   The application 

consists of 3 tasks and 2 databases (Otrack1 and Otrack2), guarded by 2 semaphores (S1 and 

S2).  Task T3 is bound to the Node 1, while tasks T1 and T4 are bound to the Node 2.  

  
 

 
 
 
 
 
 
 

T1 S2 

Node 1 

T3 

Node 2 
T4 

S1 
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Tasks T1, T3 and T4 execute the following sequence of steps. 

T1: ...O_track2.read_speed... 

T3: ...O_track1.write_speed... 

T4: ...O_track1.read_altitude...O_track2.read_depth 

 

Note: in our system the priority of task Ti, p(Ti), is assumed to be lower than that of 

Ti+1. 

 

The semaphores S1 and S2 are bound to the Nodes 1 and 2 respectively.  The 

priority ceilings of each semaphore, and the normal execution priority of each critical 

section thread are listed in Tables 7.1 and 7.2, respectively. 

 

 
Priority Ceiling Of Semaphores 

Semaphore Priority Ceiling 
S1 (Global) p(T4) + PG 
S2 (Local) p(T4) 

 
Table 7.1. The priority ceilings of Semaphores in Example 7.1 under DPCP. 

 
 

Normal Execution Priorities of Critical Sections 
Task Critical Section 

Guarded by 
Execution Priority 

T1 S2 p(T1) 
T3 S1 p(T3) + PG 
T4 S1 

S2 
p(T4) + PG 

p(T4) 
 

Table 7.2. The Normal Execution Priority of Critical Sections in Example 7.1 
under DPCP. 
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The following example demonstrates the sequence of events in the system 

under DPCP, presented graphically in Figure 7.1: 

• At time t0, task T1 arrives on Node 2 and begins its execution.  Similarly, task T3 

begins execution on Node 1. 

• At time t1, task T1 locks the local semaphore S2 on Node 2 and begins execution of 

lcs at its normal execution priority of p(T1).  Task T3 locks the global semaphore S1 

on Node 1 and begins execution of gcs at its normal execution priority of p(T3) + 

PG. 

• At time t2, task T4 arrives on Node 2 and preempts T1. Task T3 continues its 

execution of gcs on Node 2. 

• At time t3, task T4 requests a lock on global semaphore S1.  However, the 

semaphore is currently locked by a lower priority gcs, p(T3) + PG.  Hence T4 is 

blocked and T3 continues its gcs execution at the inherited priority of p(T4) + PG.  

Task T1 resumes its execution of lcs at Node 2. 

• At time t4, task T3 completes the execution of its gcs and releases the lock on 

global semaphore S1 and resumes its own priority. Task T4 locks the global 

semaphore S1 on Node 1 and begins execution of gcs at its normal execution 

priority of p(T4) + PG. Task T3 is preempted by higher priority T4’s gcs.  Task T1 

continues the execution of its lcs at Node 2. 

• At time t5, task T4 completes the execution of its gcs and releases lock on global 

semaphore S1.  T3 resumes its execution on Node 1.  T4 attempts to get a lock on 

semaphore S2.  However, the semaphore is currently locked by a lower priority 
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task T1. Hence T4 is blocked and T1 continues its execution with inherited priority 

of p(T4). 

• At time t6, task T1 completes the execution of its lcs and releases the lock on 

semaphore S2 and resumes its own assigned priority.  Task T4 locks the local 

semaphore S2 on Node 2 and begins its execution. 

• On completion of execution of T4 at t9, task T1 resumes its execution.  T1 and T3 

complete their executions at some later times. 

 

To increase the concurrency of the task method calls in a distributed system 

we propose to incorporate DPCP with ASPCP [14] into DASPCP.  The DASPCP 

copies all characteristics of the DPCP except the resource access control protocol at a 

processor level.  While under DPCP each processor runs PCP on the gcs’s, the set of 

application tasks, and the set of global and local semaphores bound to the processor, 

the DASPCP uses ASPCP. 

The following example illustrates the application of DASPCP and 

demonstrates an increased concurrency compared to application of DPCP.  Here we 

consider the system of tasks identical to one described in Example 7.1.  Also we have 

the same databases, but instead of associating a semaphore with each database we 

provide one semaphore per each method of a database [13, 14].   

The priority ceilings of each semaphore, and the normal execution priority of 

each critical section thread are listed in Tables 7.3 and 7.4 respectively. 
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Priority Ceiling Of Semaphores 
Semaphore Priority Ceiling 

S1 write_speed (Local) p(T3) 
S1 read_altitude (Global) 0 
S2 read_speed (Local) 0 
S2 read_depth (Local) 0 

 
Table 7.3. The priority ceilings of Semaphores in Example 7.1 under DASPCP. 

 
 
 
 
 

Normal Execution Priorities of Critical Sections 
Task Critical Section 

Guarded by 
Execution Priority 

T1  S2 read_speed p(T1) 
T3 S1 write_speed p(T3) 
T4 S1 read_altitude 

S2 read_depth 
p(T4) + PG 

p(T4) 
 
Table 7.4. The Normal Execution Priority of Critical Sections in Example 7.1 
under DASPCP. 
 
 

Following example demonstrates the sequence of events in our system under 

DASPCP, illustrated in Figure 7.1: 

• At time t0, task T1 arrives on Node 2 and begins its execution.  Similarly, task T3 

begins execution on Node 1. 

• At time t1, task T1 locks the local semaphore S2 read_speed on Node 2 and begins 

execution of lcs at its normal execution priority of p(T1).  Task T3 locks the local 

semaphore S1write_speed on Node 1 and begins execution of lcs at its normal execution 

priority of p(T3). 

• At time t2, task T4 arrives on Node 2 and preempts T1. Task T3 continues its 

execution of lcs. 
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• At time t3, task T4 requests a lock on global semaphore S1 read_altitude.  Since its gcs’s 

priority, p(T4) + PG, is higher than the priority ceiling of S1 write_speed, p(T3), it gets lock 

on S1 read_altitude and preempts T3’s lcs.  Task T1 continues the execution of its lcs at 

Node 2. 

• At time t4, task T4 completes the execution of its gcs and releases the lock on 

global semaphore S1 read_altitude. Task T3 resumes the execution of its lcs at S1 write_speed.  Task 

T4 requests a lock on local semaphore S2 read_depth.  Since its priority, p(T4), is higher 

than the priority ceiling of S2 read_speed, 0, it gets lock on S2 read_depth and preempts T1. 

• At time t5, task T3 completes the execution of its lcs.  No changes on Node 2. 

• At time t7, task T4 completes its execution, as well as the execution of its lcs on 

S2read_depth and releases the lock.   T1 resumes its execution of lcs on S2 read_speed on Node 2.  

T1 and T3 complete their executions at some later times. 

 

The main advantage of the DASPCP compared to the DPCP may be seen in 

Figure 7.1 and two considered sequences of events: under DASPCP there were no 

blocking, while running it under DPCP, T4 was blocked twice, ones at global and ones 

at local resource. 

 

To conclude the discussion of the DASPCP we state and proof its main 

properties, using Rajkumar’s approach [8]. 

1.  Under DASPCP deadlocks are avoided. 

Proof:  A task can deadlock with other tasks only, since, by assumption, it 

cannot deadlock with itself.  Since, by assumption, nesting of gcs’s and lcs’s is 
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prohibited, access to gcs’s and lcs’s cannot occur within the same critical section.  

Since each global and local semaphore is accessed only by a single processor, 

deadlocks can’t occur across processor boundaries.  The only possibility, we have not 

considered yet, is a deadlock within a processor.  The ASPCP used on each processor 

excludes this, last, possibility of deadlock [13,14].  Therefore, under DASPCP 

deadlocks are avoided. 

 

2.  Maximum blocking time is finite under DASPCP. 

Proof:  There are 3 possible types of blocking.  The limitation of blocking 

time in each type guarantees the finite total blocking time. 

• Satement1: a task T can be blocked for the duration of at most nG+1 local critical 

sections of lower priority tasks bound to the same processor as T.  Here nG is a 

number of gcs’s executed by T at remote processors during on period. 

Proof: Task T can be considered to be suspending itself nG times during one 

period, when it attempts to execute gcs at remote processors.  Every time, when 

task T tries to resume its execution after suspension, it may be blocked on local 

resource by a lower priority task.  It may happen once more, when task T arrives 

on a processor.  Under the ASPCP the blocking time is limited by a longest 

critical section of a low priority task.  Statement1 follows from here. 

• Statement2: for every outermost gcs that T enters at remote processor, the task T 

can be blocked for the duration of one longest global critical section of a lower 

priority tasks, executing their gcs’s at the same remote processor. 
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Proof:  This statements follows from the consideration of the gcs’s as a tasks at 

the remote processor accessing resource on the same processor, and the fact that 

under ASPCP the blocking time is limited by a longest critical section of a low 

priority task. 

• Statement3:  a task T can be preempted by any task Ti residing at the remote node 

and accessing T’s host node, as well as by higher priority tasks Ti executing their 

gcs’s at the same remote nodes as used by T’s gcs’s., for a finite amount of time. 

Proof:  The execution times of gcs’s of tasks Ti are finite quantities.  Number of 

tasks is also finite.  Periods of tasks Ti and T are also finite, and therefore there 

may not be an infinite repetition of a task Ti during one period of T.  Statement3 is 

proven. 

Since all three types of blocking are finite under DASPCP the total one is also 

finite. 

 

3.  Introduction of DASPCP never can decrease concurrency of the 

system in comparison with DPCP. 

Proof:  Replacement of PCP by ASPCP at a processor level may never 

increase the priority ceiling of any semaphore (it may introduce additional 

semaphores controlling particular methods, but their priority ceilings may not be 

higher than a priority ceiling of the original semaphore controlling the entire 

database).  Therefore under DASPCP the blocking time may never increase and 

concurrency may never decrease. 
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. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1. Time diagram for the task system, described in Example 7.1 

under DPCP (top) and DASPCP (bottom). 

 

 

7.3  Possible Improvements of the Schedulability Analyzer 

 

We consider here three different aspects that will improve the schedulability 

analysis. 

The first issue addresses the problem of schedulability analysis of the 

Harmonic Tasks.  In Section 7.3.1 we describe this problem and suggest the 

modification of the Lehoczky’s schedulability criterion.  In Section 7.3.2 we discuss a 

possible way to make the End-to-End schedulability analysis less pessimistic.  
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Finally, we describe a need to eliminate the detected mistakes in the schedulability 

theory and PERTS implementation for systems under DPCP.  These problems are 

summarized in Section 7.3.3 along with suggested ways to correct them. 

 

 

7.3.1  Necessary Schedulability Criterion for the task systems with 

harmonic tasks 

 

An existence of the harmonic tasks in a task system requires modifications to 

the original Lehoczky’s necessary and sufficient schedulability criterion.  In this 

section we present the original Lehoczky’s condition.  We demonstrate a counter-

example, demonstrating that the original criterion is not necessary.  Finally, we 

present necessary modifications to the criterion to guarantee its necessity. 

 

The original Lehoczky’s criterion states following [10]: 

If for every i-th task in a system of n tasks that do not use shared resources and do not 

contain Non-Preemptable Sections there exists a value of t such, that   

and 

 

then the system is schedulable. 

 

 

0 < ≤t di

W t ti ( ) ≤
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Here 

 

di is a relative deadline of the task i, Cj and Tj are the Execution Time and Period of 

the task j.  The tasks are numbered in the decreasing priority order (the first task has 

the highest priority).  This criterion indeed is necessary and sufficient in case of 

worst-case phasing, when all tasks are ready to start their executions at the same time. 

 

We have found that the worst-case phasing may never occur in the set of 

harmonic tasks with different Release Times (in terms of the task timing parameters, 

introduced in Chapter II, task Release Time is a sum of its Phase and Ready Time).  

Here we present a counter-example demonstrating that the Lehoczky’s criterion is not 

necessary in the described situation. 

Example 7.2.  Let us consider two tasks, Task1 and Task2, residing on a 

single node system without shared resources.  We present the tasks timing parameters  

in Table 7.5. 

 

 Task1 Task2 

Relative Deadline 1 3 

Release Time 3 0 

Execution Time 1 3 

Period 5 10 

 

Table 7.5.  Timing parameters of the tasks from the Example 7.2. 
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Using RM priority assignment Task1 has a higher priority.  Following the Lehoczky’s 

schedulability criterion we obtain that 

 

 

and 

 

Under this criterion the Task1 is schedulable since at t=1 function W1(t)=1 which is 

equal to the deadline d1=1.  Task2 is not schedulable since the function Wi(t) is 

monotonically increasing and its smallest value of 1+3=4 is greater than its deadline 

d2=3. 

Analysis of the time diagram, shown in Figure 7.2, demonstrates that this 

system is schedulable. 

 

 

 

 

 

 

Figure 7.2.  Time diagram of the task system described in Example 7.2.  The top 

line corresponds to the Task1, the bottom one - to the Task2. 
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At time t=0 Task2 is the only one ready to start execution.  It gets the CPU, 

runs until t=3, completes its execution and meets the deadline d2=3.  At the time t=3 

Task1 gets the CPU, runs until t=4, completes its execution and meets its timing 

constraint d1=1.  It also runs between t=7 and  t=8 and meets its deadline.  Figure 7.2 

represents one cycle (period) of the Task2.  Since the two tasks are harmonic and 

their Release Times are separated by the same time period in every cycle, the time 

diagram will be repeated as time goes on. 

The original Lehoczky’s condition would yield correct result if the tasks have 

the same Release Time (indeed, in this case the Task2 would miss its deadline).  The 

crucial point in the considered example is that two tasks never interfere with each 

other, which may happen only in case of harmonic tasks with different Release 

Times. 

 

Concluding that Lehoczky’s condition is sufficient but not necessary, we 

present here our modifications to correct this drawback.  We modify the calculation 

of the time demand function Wi(t).  Note that the original description of the function 

Wi(t) includes the execution times of all higher than the task i priority tasks.  In our 

approach we separate these tasks into two different sets: the set of tasks that are 

harmonic with task i and the set of tasks that are non-harmonic with i.  To exclude the 

execution time of the harmonic tasks that never “interfere” with task i, we introduce a 

new function Lk that characterizes the time period between the Release Time of the 

task i and harmonic task k.  This function is formally defined as 
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Lk = Release_Timei  - Release_Timek  - N * Tk 

where N is a maximum whole number guaranteeing positive Lk value. 

 Lehoczky’s demand function after we exclude the execution of the non-interfering 

tasks has the following form: 

 

where k and j represent the set of higher priority harmonic and non-harmonic tasks, 

respectively. 

 

This improved criterion is necessary and sufficient in two extreme cases: the 

case of worst-case phasing and the case of “non-interfering” harmonic tasks.  

However, it is not valid in case of “partial harmonic task interference”.  This case 

occurs when a task i is released after the harmonic task k has completed some, but not 

all, of its execution.  Under these circumstances, the task i is not blocked by entire 

execution time of task k (Ck), but only by the part of task k that has not been 

completed by the Release Time of task i.  To incorporate this case into Lehoczky’s 

schedulability criterion, we introduce the function Mk that represents the time period 

necessary to complete the execution of task k after task i has been released.  Function 

Mk is formally defined as: 

Mk = 0  if Wk(t) ≤ t, for 0 ≤ t ≤ Lk 

Mk = Wk(t) - Lk  otherwise. 

The first condition corresponds to the case when harmonic task k completes its 

execution before task i is released and therefore Mk = 0, while the second one 
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calculates the time period necessary to complete the execution of task k after task i 

has been released. 

 

 The final form of the Lehoczky’s demand function, after we exclude the 

execution of the non-interfering tasks and incorporate the execution of the “partially 

interfering tasks”, has the following form: 

 

This final form of the time demand function corresponds to the necessary and 

sufficient schedulability condition.  It is necessary only for the task systems that do 

not use shared resources. 

To analyze the task systems that use shared resources, one need to add the 

blocking time of task i to the time demand function.  Since schedulability theory does 

not calculate the exact blocking time, but only its upper bound, no schedulability 

criterion for the systems with shared resources may be necessary, but sufficient only. 

 

 

7.3.2.  Modification of the End-to-End Schedulability Analysis 

 

Unfortunately, the schedulability analysis assumption of worst-case phasing 

drastically affects the End-to-End analysis, since in a path of the dependent harmonic 

tasks all their Ready Times are different.  The schedulability criterion for harmonic 
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tasks developed in Section 7.3.1 does not support analysis of systems with task 

dependencies.  The reason for this is that in the End-to-End analysis, a task Ready 

Time is modified, while our schedulability criterion strongly depends on its value.  

This issue is important for the analysis of the RT CORBA.  Since every client with 

Intermediate Deadlines is modeled as a path of dependent tasks, these tasks never 

interfere (preempt or block each other).  A new schedulability criterion needs to be 

developed to exclude the described problem with the analysis of the dependent tasks.  

We propose that, until this criterion is developed, the PERTS End-to-End analysis use 

the following modification to the Lehoczky’s criterion to make it less pessimistic: 

When calculating the demand function Wi(t) of a task i, do not include Execution 

Times and blocking due to the tasks from the same path (regardless of their priority) 

if they have hard deadlines, the same Periods, the same Phases and for each such task 

the sum of its Ready Time and Relative Deadline is not greater than its Period.  These 

conditions guarantee that next cycle of the path execution never starts until the 

previous is completed.  Furthermore, a successor task never starts its execution before 

its predecessor completes.  Thus, tasks of the same path that satisfy these conditions 

never interfere.  The described modification will make the analysis of the RT 

CORBA systems less pessimistic because tasks that are generated from the CORBA 

clients always satisfy the described conditions. 

The proposed schedulability criterion modification is not the final solution for 

the analysis of the dependent tasks, but it does allow making less pessimistic analysis 

of RT CORBA systems. 
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7.3.3 Concerns with PERTS Analysis of DPCP 

 

We have identified some concerns with the current PERTS analysis of 

systems under DPCP.  We consider two categories of concerns: dangerous (when 

PERTS reports task sets schedulable while they are not schedulable) and pessimistic 

(when PERTS reports tasks sets non-schedulable when they are actually schedulable).   

For each concern, we show an illustrative example complete with full PERTS 

parameters (that we have run through PERTS), an explanation as to why the improper 

behavior occurred, and in most cases suggested solutions.  All concerns are numbered 

(D1-D3 for dangerous and P1-P6 for pessimistic concerns). 

 

Notations: 

In all examples we are considering distributed systems with RM algorithm 

and DPCP. 

Our examples include two tasks T_high and T_low with higher and lower 

priorities, respectively.  Global_i and Local_i stand for the global and local resources 

(as specified in Section 7.2.1) residing at Node i. 
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B.1 Dangerous Concerns 

 

D1)  GCS’s of lower priority tasks at the “processor of interest” are not detected. 

 

 

 

 

 

 

Example: 

Task Period Phasing Ready 
Time 

Relative 
Deadline 

Execution 
Time 

Node Resources 

High 10 0 0 10 7 1  
Low 100 0 0 100 50 2 Global_1  [0->50] 

 

This system of tasks is reported by PERTS to be schedulable, while one can see that it 

is not: T_low executes its GCS at the Node_1 and preempts task T_high for 50 units 

of time. This causes T_high to miss its deadline five times before it starts its 

execution. Thus, the system is not schedulable. 

 

Solution: Let us take a look at the schedulability criterion 
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The first term in the schedulability criterion includes executions of higher priority 

tasks residing on the same node and all GCS’s of higher priority tasks that reside at 

remote processors and access the host processor for GCS execution. The solution is to 

include executions of all GCS’s of all tasks residing at remote processors and 

accessing the host processor for GCS execution, not only executions of GCS’s of 

higher priority tasks. 

 

 

D2) Global blocking: GCS’s of lower priority tasks at remote processors are not 

detected. 

 

T_high

Global_2

Node 1

T_low

Node 3

Node 2
 

Example: 

Task Period Phasing Ready 
Time 

Relative 
Deadline 

Execution 
Time 

Node Resources 

High 10 0 0 10 10 1 Global_2  [1->2] 
Low 100 0 0 100 50 3 Global_2  [0->2] 
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This system of tasks is reported by PERTS to be schedulable, while one can see that it 

is not: Task T_low executes its GCS at the Node_2 and blocks (Globally) task T_high 

for 1 unit of time. This causes task T_high to miss its deadline at time 10 since it has 

to execute 10 units before time 10. Thus, the system is not schedulable. 

 

Solution: Redondo’s [11] and Rajkumar’s [8] schedulability theory is correct for this 

case, so the implementation in PERTS must be wrong. 

 

 

D3) Local blocking: GCS’s of lower priority tasks at host processor are not 

detected properly. 

 

Global_1

Node 1

T_high

T_low

 

 

Example: 

Task Period Phasing Ready 
Time 

Relative 
Deadline 

Execution 
Time 

Node Resources 

High 10 1 0 10 7 1  
Low 100 0 0 100 25 1 Global_1  [0->5] 

 

This system of tasks is reported to be schedulable by PERTS, while one can see that it 

is not: Task T_low executes its GCS at Node_1 and blocks task T_high for 4 units of 
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time when it is ready to run ([1->5]). T_high starts to run only after task T_low 

releases Global_1 at time 5. Task T-high finishes its execution at time 12, missing its 

deadline at time 11.  Thus, the system is not schedulable. 

 

Solution: This type of error is due to a mistake in the schedulability theory behind it. 

Namely, the Local Blocking is said to be N+1 times the longest execution times of 

local critical section, bl , which may block the task; where N is the number of GCS’s 

executed by the task. We claim, that bl should be replaced by max{ bl , bgl }, where 

bgl is the longest execution time of a GCS executed at the host processor by lower 

priority tasks residing at that host processor. 

 

 

 

B.2 Overly Pessimistic Cases 

 

P1) Harmonic tasks with different Release Times 

 

Example: 

Task Period Phasing Ready 
Time 

Relative 
Deadline 

Execution 
Time 

Node Resources 

High 5 3 0 1 1 1  
Low 10 0 0 3 3 1  

 

This system of tasks is reported to be non-schedulable by PERTS, while one can see 

that it is schedulable. 
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Task T_low runs at the Node_1  first because task T_high is not available yet due to 

task T_high’s phasing.  The task T_low finishes its job at time 3.  The task T_high 

becomes ready at the same time and runs its execution for 1 unit of time, and also 

meets its deadline. Task T_high also executes between time 8 and time 9. The 

situation is identical during all future periods of time: [10->20], [20->30].... Thus, the 

system is schedulable. 

 

Solution: This type of error is due Lehoczky's schedulability condition being designed 

to guarantee the schedulability of the worst phasing case. However, in the systems 

with harmonic tasks with staggered phasing, the worst phasing case occurs either 

every time or never.  We have modified the original version of the Lehoczky’s 

criterion to analyze the systems with harmonic tasks and presented it in Section 7.2.1. 

 

 

P2) Including execution time of high priority tasks while they are executing 

GCSs at other processors. 

 

T_high Global_2

Node 1

T_low

Node 2
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Example: 

Task Period Phasing Ready 
Time 

Relative 
Deadline 

Execution 
Time 

Node Resources 

High 10 0 0 10 8 1 Global_2  [1->8] 
Low 11 0 0 11 4 1  

 

This system of tasks is reported by PERTS to be non-schedulable, while one can see 

that it is schedulable.  Consider the worst case phasing: Task T_high starts its 

execution and after 1 unit of time starts the execution of its GCS at Node_2 and 

relinquishes the CPU on Node_1.  At this tine, task T_low executes on the Node_1 

and finishes its execution at time 5 (before its deadline). At time 8, task T_high 

finishes its execution (also before the deadline). Since we have considered the worst 

case phasing case, the system is always schedulable. 

 

Solution: The calculation of the processor time demand function for a task i should 

not include the total execution times of the higher priority tasks, but only their 

execution times at the host processor - excluding the time spent by higher priority 

tasks while executing GCSs at other nodes. 
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P3)  Local blocking: wrong number of GCS’s used 

Local

Node 1

T_high

T_low Global_1

 

Example: 

Task Period Phasing Ready 
Time 

Relative 
Deadline 

Execution 
Time 

Node Resources 

High 10 0 0 10 9 1 Global_1  [1->8] 
Local_1 [0->1] 

Low 1000 0 0 1000 9 1 Local_1[0->1] 

 

This system of tasks is reported by PERTS to be non-schedulable, while one can see 

that it is schedulable. 

 

Solution: The problem here is that task T_high accesses the same Local resource as 

task T_low and may be blocked by task T_low on that Local resource.  This blocking 

is for the longest duration of the Local Critical Section (LCS) of task T_low.  The 

schedulability theory assumes that the blocking may happen n+1 times, where n is the 

number of GCSs executed by task T_high. We claim that n should be the number of 

GCS’s executed by task T_high at other than the host processor. 
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P4) Global blocking: reports a false blocking when GCS is bound to a processor 

with Local resource in use. 

 

T_high

Node 1

T_low

Node 2
Global_2

Local_2

 

 

Example: 

 

Task Period Phasing Ready 
Time 

Relative 
Deadline 

Execution 
Time 

Node Resources 

High 10 0 0 10 9 1 Global_2  [1->2] 
Low 100 0 0 100 11 2 Local_2[0->11] 

 

This system of tasks is reported by PERTS to be non-schedulable, while one can see 

that it is schedulable. 

 

Solution: This appears to be an implementation mistake in PERTS. The problem here 

is that PERTS  wrongly reports the blocking of the GCS  that is initiated by task 

T_high by the LCS of the task Low.  This blocking by the LCS can never happen 

because under the DPCP all GCSs execute at the higher priorities than any LCS.  This 

means that the LCS of task T_low will be preempted by the GCS of task T_high. 
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P5) Remote blocking: reports false blocking by all GCS’s of higher priority tasks 

that are accessing the processor used by lower priority GCSs even if not all of 

these higher priority tasks are accessing the processor used by lower priority 

GCS’s. 

 

T_low

Node 1

T_high

Node 2

Node 3

Global_2

Node 4

Global_4

 

 

Example: 

Task Period Phasing Ready 
Time 

Relative 
Deadline 

Execution 
Time 

Node Resources 

High 10 0 0 10 10 3 Global_2 [0->1] 
Global_4 [1->2] 

Low 100 0 0 100 90 1 Global_2 [0->5] 

 

This system of tasks is reported to be non-schedulable by PERTS, while one can see 

that it is schedulable. 

 

Solution: The problem is the PERTS implementation.  PERTS assumes that, since 

task T_low accesses the same node as task T_high,  T_low may be blocked  for the 

duration of all global critical sections of task T_high, which is wrong.  PERTS should 



 84

check conflicts only at nodes that are accessed by the task T_low’s GCSs.  In the 

example above, T_low does not access Node_4, and therefore T_low should not be 

blocked by task T_high’s GCS on  Node_4. 

 

 

P6) The priority ceilings of global resources are assigned to zero.  

 

Solution: This appears to be an error in the implementation of PERTS. Redondo’s and 

Rajkumar’s DPCP definition clearly state that the priority ceiling of global resources 

is the highest priority of the task accessing this resource plus the base priority ceiling, 

defined in the Section 7.2.1.  This error unnecessarily increases blocking time in 

PERTS analysis. 
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VIII. Conclusion 

 

 

In this thesis we have presented our contributions to real-time scheduling 

theory for distributed systems.  We concentrated on techniques to perform 

schedulability analysis of Real-Time CORBA systems.  On the basis of PERTS 3.0, 

we have developed an automated schedulability analysis tool for RT CORBA 

systems.  We have discussed various aspects of the schedulability theory, including: 

modification of the Lehoczky’s schedulability criterion for the systems containing 

harmonic tasks and for the RT systems built on operating systems with limited 

available priorities; comparison of the Liu-Layland’s and Lehoczky’s criteria for the 

systems with shared resources; description and comparison of two resource access 

protocols, DPCP and DASPCP. 

 

This thesis has presented the ability of the PERTS to describe real-time 

systems and analyze their schedulability.  We have modeled RT CORBA systems 

using PERTS primitives, such as resources, tasks and their dependencies.  To 

support the schedulability analysis of the RT CORBA systems we have modified 

PERTS. 

We have introduced new task parameters: Intermediate Deadline and Network 

QoS Parameter.  It involved modification of the Task Graph Editor GUI to enable 

user to specify these new task parameters. 
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Since the original PERTS version could not support the schedulability 

analysis of a system of clients with intermediate deadlines, we have designed and 

implemented the Client->Tasks Translator.  The Translator is called prior to the 

schedulability analysis to translate the RT CORBA clients into set of dependent tasks, 

based on clients intermediate deadlines, according to our model. 

In order to take into account the Network Delay (a time that a remote service 

request spends travelling through the network) we have modified the Lehoczky’s 

schedulability criterion.  Based on this new criterion, we have modified PERTS 

schedulability analysis 

We have performed the exhaustive testing of the new and modified PERTS 

components and demonstrated their correctness and proper behavior. 

A significant part of our project addressed the problems of the schedulability 

analysis theory. 

We have considered a potential problem when a real-time operating system 

provides less priorities than the task system requires (schedulability theory always 

assumes unlimited available priorities).  Under these circumstances, a system that is 

predicted to be schedulable in practice might appear to be non-schedulable.  In our 

study we have suggested one possible mapping of tasks to limited priorities.  Under 

this approach, the priorities are not unique, so we have modified the Lehoczky’s 

schedulability criterion to account for this situation in analysis. 

We have detected a set of concerns in schedulability analysis under DPCP.  

We considered two categories of concerns: dangerous (when PERTS reports a task 

system schedulable while it is not schedulable) and pessimistic (when PERTS reports 
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a tasks system non-schedulable when it is schedulable).  Along with the examples 

demonstrating the misleading results of the schedulability analysis we suggest the 

solutions to these problems. 

We have demonstrated that the Lehoczky’s schedulability criterion is not 

necessary (but sufficient only) in the analysis of a system with harmonic tasks.  We 

have eliminated an overly pessimistic assumption of “worth phasing case” made by 

Lehoczky et. al. [10].  If the harmonic tasks have different Ready Times then the 

“worth phasing case” will never occur.  We have modified the Lehoczky’s criterion to 

make it necessary in the case of harmonic tasks. 

We have pinpointed that the End-to-End analysis of the dependent tasks is 

overly pessimistic.  We have described a modification that could be used until a 

general criterion is developed for the schedulability analysis of the dependent tasks.  

In the RT CORBA systems clients are represented by the set of dependent tasks.  All 

of the tasks generated from the same CORBA client never interfere (preempt or 

block) with each other.  Eliminating these tasks in the calculation of the processor 

demand function in the Lehoczky’s schedulability criterion, we make it less 

pessimistic. 

We have compared Liu-Layland’s and Lehoczky’s schedulability criteria and 

have proven that the satisfaction of the first guarantees satisfaction of the latter one in 

all real-time systems.  Based on it we have eliminated the first one from the 

schedulability analysis for PCP-DM and recommend the same changes for all 

combinations of the priority assignment mechanisms and resource access protocols 

supported by the Lehoczky’s criterion. 
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We have described DPCP and DASPCP and have proven that the latter one is 

deadlock free and has a limited blocking time.  We have compared concurrency in the 

real-time systems under DPCP and DASPCP.  While it indicated the advantage of the 

DASPCP, we suggest to incorporate DASPCP into PERTS and CORBA only after 

previously described drawbacks are fixed. 

 

This project is a first and necessary step towards creating analysis theory and 

tools for distributed real-time systems such as RT CORBA–based applications.  On 

the basis of the PERTS 3.0 we have developed an automated schedulability analysis 

tool for RT CORBA systems.  However, further steps are necessary before PERTS 

can fully analyze RT CORBA systems.  Based on our modifications to the analysis 

theory for the distributed real-time systems, we have proposed the continuation of the 

project.  The aspects to be addressed in the nearest future include:  modification of the 

PERTS engine to account for the effect of limited available priorities in RTOS;  

improvement of the schedulability analysis of the system of harmonic and dependent 

tasks;  elimination of the mistakes in the schedulability theory and PERTS 

implementation in analysis of the systems under DPCP;  incorporation of the 

schedulability analysis of systems under DASPCP into PERTS and replacement of 

the DPCP by DASPCP in RT CORBA systems. 
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