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Abstract

In recent years, research of software agents has gained a tremendous amount of

attention.  To date, very little of the research has involved agents that possess real-time

constraints or operate within real-time systems. A real-time multi-agent system

(RTMAS) would have certain unique characteristics versus both traditional real-time

systems and multi-agent systems.  More specifically, the scheduling algorithm for such a

system would be capable of exhibiting a more robust scheduling algorithm than

previously implementations. This stems directly from an agent’s ability to possess

multiple execution times for a given task.  The change in execution time of these methods

is proportional to the “quality” of the result produced.  In such a system, before a set of

tasks is declared “non schedulable”, the quality of the results of scheduled tasks can be

reduced in an attempt to achieve total “schedulability” for all tasks seeking execution.

The greatest system utility is gained by executing all requested tasks while returning the

best possible result within the assigned time slot.  An exact definition of “quality” in

regards to this paper is offered further in the reading.  We have developed such an

algorithm based on a heuristic that determines which tasks are the least costly to reduce

in order to minimize the reduction in quality.  We have also developed a model for real-

time agents as well as a model for real-time agent scheduling.
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1.0 Introduction

With the advent of distributed computing and the commercial success of the

Internet, the efficient design and application of distributed software has taken on a more

elevated role in Computer Science research.  The object-oriented design methodologies

that have been so successful for non-distributed applications have recently caused

problems when applied to the development of specific distributed applications [1].  In

particular, the object-oriented model 1) lacks the ability to handle open environments

effectively and 2) cannot be applied to heterogeneous systems without tremendous

difficulty.  The development of “Software Agents”, loosely defined as autonomous

intelligent software entities, is an extension of the object-oriented paradigm that imbues

traditional “objects” with intelligence allowing for a greater level of decentralization; this

is a desirable characteristic in a distributed environment.  An Agent-oriented paradigm is

more appropriate for a distributed environment for additional reasons. First, the

autonomy of the agents allows for more efficient communication and processing among

distributed resources. Second, the flexible and responsive nature of agents provides

benefits for real-time applications; yet another characteristic that is highly beneficial in a

significant percentage of distributed applications.  These benefits will be explored in

detail later. Third, agents are highly extensible.

Applications such as information access, information filtering, electronic

commerce, workflow management, and intelligent manufacturing are becoming

increasingly common and necessary.  The industry demand for such applications far

exceeds the current supply, and to some extent, exceeds the current state of technology.

The major contributing factor to this lack of supply is the inherent difficulty, using
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current technology, in creating applications that work well in “open” environments.  An

open environment is one in which the sources of information are autonomous,

heterogeneous, and updated (added or removed) dynamically.  All the applications

previously mentioned work in open environments.  In addition, these applications need

mechanisms in order to advertise, find, fuse, use, present, manage, and update

information.  A significant number of these applications inherently place timing

constraints upon all or most of these mechanisms.  The characteristics of an open

environment dictate that the associated mechanisms must be both extensible and flexible.

Since, as stated above, extensibility and flexibility are two of the benefits provided by

software agents, it is natural that many researchers now view agents as an integral part to

creating such mechanisms.  The true power of software agents lies in their ability to

provide these mechanisms in unpredictable environments.

A designer of distributed systems may want to begin taking advantage of the

power of software agents, but generally would like to avoid having to learn an entirely

new developing environment.  This would negate the expertise and experience they have

achieved from designing systems within their current development environment.  In

addition, learning an entirely new design paradigm and the software package to

implement it is a significant economic cost that all rational developers seek to avoid

unless absolutely necessary.  Therefore, there is a high demand for extensions to current

distributed computing specifications and developing environments that allow for the use

of software agents.

This research began with the desire to provide CORBA developers with the

ability to utilize software agents.  The first goal was to design an algorithm for scheduling
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the execution of software agents in a real-time environment.  This scheduling algorithm

could then be incorporated into the Real-Time CORBA specification.  Because of the

special characteristics of agents versus CORBA objects, a standard real-time scheduling

algorithm would be too limiting, specifically during times of high resource contention.

We have designed an algorithm for scheduling agents that works within a real-time

environment and takes full advantage of an agent’s flexibility though a concept called

“load reduction”.  Although this alone will not allow CORBA developers the ability to

utilize software agents, it is an essential first step.

2.0Agents

2.1 Key Characteristics

While it is true that a basic definition for an “agent” is impossible to present due

to the varying differences in opinion, an all-encompassing list of agent properties can be

presented to promote discussion and analysis.  Researchers may disagree as to how such

characteristics should be implemented or exactly how an agent should perform under

certain conditions, but the properties themselves provide a finite set of characteristics that

a generic agent defines. The tables below can be found in the introduction of  “Readings

in Agents” [1].
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Property Range of Values

Lifespan Transient to Long-lived

Level of cognition Reactive to Deliberative

Construction Declarative to Procedural

Mobility Stationary to Itinerant

Adaptability Fixed to Teachable to Autodidactic

Modeling Of environment, themselves, or other

agents

Table 1: Agent characteristics: Intrinsic

Property Range of Values

Locality Local to Remote

Social autonomy Independent to controlled

Sociability Autistic, Aware, Team Player

Friendliness Cooperative to Competitive to

Antagonistic

Interactions • Style/Quality/Nature with

agents/world/both

• Semantic level: declarative or

procedural communications

• Logistics: direct or via facilitators

Table 2: Agent characteristics: Extrinsic
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There are two more properties that are extremely important to the discussion of agents.

The first is autonomy; the second is intelligence.  By nature, intelligence is a very

difficult concept to define, both in regards to living beings and software.  While a

universal definition of intelligence for agents is far away, the most basic requirement is

that agents have some form of rationality.  Rationality in this context depends upon [7]:

• The performance measure for success

• What the agent has perceived so far

• What the agent knows about the environment

• The actions the agent can perform

An agent can be considered rational if for all possible events, the agent acts consistently

to maximize its expected utility using the sum of its knowledge about the environment

and what has been perceived.  All the agents we have developed possess rationality as

defined here, but no further claims or requirements will be made in regards to their

intelligence.

In regards to software, autonomy is defined as a process running as a separate

thread.  There exist many different classifications of autonomy.  For example, an agent

may be autonomous in regards to the client, but may not be autonomous in regards to

another agent.  In this thesis a universal approach is taken in regards to autonomy; that is,

autonomy is used to mean absolute autonomy.  Any agent implemented or discussed here

does not share process space with any other software entity in the system.
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3.0 Real-Time Computing

3.1 Real-Time Artificial Intelligence

 Traditionally, artificial intelligence techniques have not been utilized in real-time

environments due to their highly unpredictable performance. Generally this is a result of

the types of problems AI research has been focused on solving; that is, very difficult

problems that often involve searching as a component of the solution method.  Complex

algorithms that incorporate searching are unpredictable mainly because it is never

analytically clear how much of the search space must be seen in order to compute an

answer [2].  A major step forward in real-time AI research began with the concept of

approximate processing and approximate algorithms.  To date, real-time AI research has

been interested two main types of approximate algorithms: Anytime Algorithms and

Multiple (Approximate) methods.

An anytime algorithm is an iterative refinement algorithm where a “default” answer is

first generated and then refined through multiple iterations.  It is also true that the quality

of the solution increases proportional to the amount of time the algorithm executes.  In

addition, anytime algorithms always produce a result regardless of when they are

interrupted. [2,3,4]

The multiple method approach does not rely upon continuous processing to solve a

problem.  Rather, a set of methods is available to solve a task.  Each method has different

characteristics that make it more or less appropriate given the current conditions.  Every

method solves the same problem, but varies in the amount of time it needs to produce the

result and the quality of the result.  There is a quality-time tradeoff between methods

where a shorter execution time is achieved through reducing the quality of the result
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[2,3].  Figure 1 [4] illustrates the major difference between an anytime algorithm and the

multiple method approach.

Figure 1: Anytime algorithm versus design-to-time tradeoffs.

Both approaches provide tremendous flexibility when determining an execution

schedule.  The advantage of using anytime algorithms is that they can fit into any

available time slot whereas the multiple method approach allows for multiple, yet

discrete (non-continuous), execution times.  Garvey and Lesser [2] give two potential

advantages of the multiple method approach over an anytime algorithm approach.  The

first is that it does not rely on the existence of iterative refinement algorithms that

produce incrementally improving solutions as the runtime increases.  Some problems

may not have a solution that can be implemented by an anytime algorithm.  A second

advantage to the multiple methods approach is that the methods may be completely

different approaches to solving the problem.  These approaches can have very different

characteristics depending on particular environmental conditions. An additional challenge
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to the anytime algorithm approach is developing an algorithm whose performance is

independent of environmental variables.

3.2 Definition for a Real-time Agent

A real-time agent (RT Agent) can be defined as an autonomous software entity

that acts rationally under time-constrained conditions by means of real-time AI and a

predictable well-defined “fallback method”.  The requirement of real-time AI provides

the agent with the ability to make a quality-time tradeoff, either discretely or

continuously, for any solutions it may produce.  Below is a bulleted list explaining in

greater detail the major points of the definition of an RT Agent.

• RTagents are autonomous (separate process/thread. refer to section 2.1).

• Solution methods are implemented using real-time AI techniques.  An

RTagent may have multiple methods for solving the problem(s) for which it

was designed.  Each method has a different execution time such that a longer

execution time produces a better result. Alternatively, the solution may be

generated through the use of an anytime algorithm.

• A RTagent is rational (refer to section 2.1).

• The RTagent decides based upon parameters passed to it which method is

initially the most appropriate to execute.

• Every RTagent has a “fast fallback method.”  This is a default method that is

executed under highly constrained conditions.  This method’s execution time
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is well defined and predictable.  It ensures that an agent can always provide an

answer in a specified amount of time with some minimum amount of quality.

• Every method has a statistically derived “quality” value.  This is an objective

metric that can be used to compare the solution quality of different methods.

How this value is determined shall be explored later.

3.3 Real-Time scheduling

As stated by Tanenbaum [6], real-time scheduling algorithms can be characterized

by the following parameters

1. Hard real-time versus Soft real-time

2. Preemptive versus Non-preemptive scheduling

3. Dynamic versus Static

4. Centralized versus Decentralized

These algorithms attempt to schedule a set of tasks for either a single processor or

multiple processors.  They are most concerned with the timing constraints each task has

associated with its execution.  Each task will have a deadline before which it must be

executed. Guarantees on meeting these timing constraints and how the system handles

those tasks that cannot meet their deadline, differ based on which of the above

characteristics the algorithm possesses.  Hard real time defines those systems that require

a 100% guarantee that all tasks meet their deadlines. Soft real time systems are more lax.

In a hard real time system a task has a negative value if it exceeds its deadline.  In
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addition, it may even have catastrophic consequences.  In a soft real time system the task

still has value, although that value is reduced.  Soft real time is generally characterized as

an “ as close as possible” approach.

Preemptive and non-preemptive algorithms differ in their handling of task

execution. A preemptive algorithm has the ability to suspend a task that is currently being

executed so a task of a greater priority can execute first.  Non-preemptive scheduling

does not have this ability so all tasks are executed to completion once started.

Dynamic and static algorithms are distinct based upon when they make decisions

about scheduling.  A dynamic algorithm makes these decisions “on the fly” during

execution.  Static algorithms make all scheduling decisions before run time. For example,

these decisions may be stored in a table.  When a task enters the system a table lookup is

performed to see how the task should be scheduled.

A centralized system utilizes a single machine to collect information and to

perform decision-making. In a decentralized system, decisions are made at the processor

level.

While many different types of scheduling algorithms have been proposed, only

the dynamic algorithms are of relevance to this project since RTMAS dynamic.   A

common dynamic scheduling algorithm is earliest deadline first (EDF) scheduling [8].

An EDF algorithm maintains a list of waiting tasks to be executed.  This list is always

sorted by deadline with the first task having the earliest deadline.  When a new task

enters the system, it is inserted into the list of waiting tasks. When system resources

become free, the first task of the list is removed and executed.
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3.4 Design-to-time Real-Time Scheduling

Design-to-time is an approach to problem solving in resource-constrained domains

where: 1) multiple solution methods are available for tasks, 2) those solution methods

make trade-offs in solution quality versus time, 3) and satisfying solutions are

acceptable [2].  Design-to-time involves designing a solution to a problem that uses all

available resources to maximize the solution quality within the available time.  Design-

to-time has some very specific characteristics:

• The domain may have both soft and hard real-time constraints

• As stated above, multiple solution methods are available to solve a specific task or

set of specific tasks. These methods make a tradeoff between execution time and

solution quality.

• Under highly constrained conditions, any solution that returns a result above a

satisfying threshold is acceptable.  The concept of a satisfying threshold implies

that in general it is different than the optimal solution.

• The predictability of resources and deadlines is reasonable.

Design-to-time is a problem solving methodology of the type described by D’Ambrosio.

It is a methodology that “given a time bound, dynamically constructs and executes a

problem solving procedure which will (probably) produce a reasonable answer within

(approximately) the time available”[1,4].  Bonissone and Halverson were the first to use

the term “design-to-time” to refer to these systems defined by D’Ambrosio.  Design-to-

time real-time scheduling was defined by Garvey and Lesser at the University of
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Massachusetts.  Design-to-time real-time scheduling utilizes the “Multiple Method”

implementation versus “anytime algorithms”. When it is necessary for the system to

adjust resource allocation, it can either postpone a task’s execution or it can change the

current problem solving method in the pursuit of optimal schedulability.  This is referred

to as approximate processing.  Each method has a different change in quality for a one

time-unit change in execution time. As long as the solution quality of each task remains

above the aforementioned quality threshold, a modification to the task’s problem solving

method is allowed.

4.0 Real-Time Multi-Agent Systems

4.1 An Example Real-Time Multi-Agent Application

 While current multi-agent systems can provide the underlying software to build

autonomous agents, they do not have the capacity to express or enforce timing constraints

on actions [5].  A pilot training simulation for a commercial airline is an example of an

application for which a real-time multi-agent system (RTMAS) would be useful.

Imagine a human pilot flying, landing, and taking off in a virtual environment with

numerous other virtual planes and virtual weather conditions.  These other planes and

weather conditions (snow, rain, heavy winds) could be implemented as agents, but it is

obvious that unless the system and the agents themselves can respond in real time, real

world effects can not be accurately simulated, and the application is of little value as a

training tool.  Some of the timing constraints that would be placed upon the agents’
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reactions to environmental stimuli could be due to the movements of other planes in the

simulation, detection of possible collisions, or the time delay of the effect of a specific

weather pattern. These timing constraints must be expressed in a formal way in the

system, and there must be mechanisms to enforce them.

It is interesting to note that the proposed system can be used to design both real-

time and non real-time systems.  This provides a tremendous boost to the extensibility of

such systems (i.e. theoretically, a real-time application can be converted to an application

that doesn’t require the enforcement of timing constraints by setting all the deadlines to

infinity).   A multi-agent system may not have real-time constraints associated with it, but

it may be a requirement for the system sometime in the future due to an ever changing

computing environment or a shift in demand.

4.2 Monitoring Agents and Cognitive Psychology

A significant amount of agent research has involved agents that monitor their

environment and perform a particular action(s) in response to an event.  While the

RTMAS scheduling algorithm is applicable to any RTMAS during periods of duress, the

concept developed from research in systems that utilized “Monitoring Agents”.

A “Monitoring Agent” as defined here is an agent that monitors an environment and

chooses an appropriate action from a set of unique Event → Action mappings.  To this

end the agent is in a perpetual cycle of collecting data (monitoring the environment) and

analyzing data (reacting to events in the environment).  This set of mappings need not be

static.  The distinction between a dynamic and static set of mappings is a major

component in determining if an agent has the ability to learn.  This is similar to how a
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human being interacts with its environment.  The “human monitoring agents” are our five

senses; the eyes, ears, nose, mouth, and skin collect environmental data, process the data,

and send that information to the brain for additional processing and action/reaction.

Psychology uses the terms perception and cognition respectively for the concepts of

collecting and analyzing data.  Thus these terms can be applied to agents as well.  One

can speak of the degree of perception or cognition embodied by a software agent.  It is

the cognitive ability to hypothesize, estimate, and guess that prove vital in humanity’s

unique manipulation of its environment.  Thus, these are also key elements in

determining how capable a software agent is.

The predecessors to our RTMAS scheduling algorithm were developed as part of

systems incorporating “monitoring agents”.  Garvey and Lesser [1] describe a “network

of vehicle monitoring nodes.”  Each node analyzes acoustically sensed data in an effort to

locate and monitor vehicles moving through a two dimensional space.  The vehicles in

their research are fish, ducks, and pigeons.  The agents’ must locate ducks and track their

movement, attempting to detect as soon as possible when a duck plans to attack a fish.

The agent must then warn the fish that it is in danger, allowing the fish enough time to

escape.  Pigeons in this case are not viewed as a threat to the fish, but still must be

detected by the system and determined to be harmless.

Soto,Garijo,Iglesias, and Ramos conducted their research using a simulated robot

and titled their system AMSIA.  The robot is randomly assigned a collection of missions

to accomplish.  Each mission possesses a deadline, an importance, and a destination.  A

mission requires the robot to move to the mission destination and run a series of tests that

can only be performed in that location.   The robot must perform as many missions as
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possible, with each mission being completed before the specified mission deadline.  In

addition, a number of different obstacles are randomly placed in the robot’s environment.

Both research groups were concerned with maximizing system performance and

maximizing the number of completed tasks during periods of stress.  For Garvey and

Lesser, such a situation occurs when a large group of pigeons appear in an environment

where a flock of ducks is already being monitored.  The system must analyze the type of

each new vehicle and the relative risk that each vehicle poses to the fish, while still

monitoring the patterns of previously detected dangerous vehicles.  In AMSIA, such

conditions occur when the robot is analyzing the proper method for completing a mission

while still having to compute paths to avoid newly detected obstacles.

 The means to maximize system performance and completed system tasks are

identical to how psychologists understand and model human cognition.  Although neither

research group explicitly references these psychological concepts, they both describe

identical functionality within their systems.

The first concept is the Perception-Action cycle defined by Ulric Neisser in his

book “Cognition and Reality: Principles and Implications of Cognitive Psychology.”  The

figure below shows this cycle.
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Figure 2: “The Perpetual Cycle”, taken from Ulric Neisser.

Neisser developed it as a way of modeling how humans process information.  He viewed

it as a cycle that keeps operating as long as we are awake.  We receive information from

our environment (object / events), interpret it in terms of our knowledge (schema) and

then carry out actions (exploration).  Although simple, it is also a very powerful way of

looking at the perception-cognition-action relationship.  Both of the systems described

earlier in this section behave in the same fashion.  Garvey and Lesser define a sensor

cycle as the period between two data retrieval actions; thus their cycle also consists of

perception (identify new vehicles to the environment), cognition (reason about the

vehicles), and action phases (continue to monitor threatening vehicles or warn a fish of an

impending attack).  The system is a series of the cycles over the period the system is

active, just as Neisser proposes for humans.
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The AMSIA system is defined as event driven.  “Events are abstractions that the

architecture uses to signal opportunities of activity, and they are stored in the events

blackboard.”  Other components within the system monitor the events blackboard

searching for events that they are programmed to analyze, and then compute the proper

response(s).  Proper responses are determined by searching appropriate “knowledge

sources” (KSs).  Neisser defines these knowledge sources as “schema”.  Humans, and

any entity with the ability to learn, are also able to modify these schema based upon

previous experiences.

The second concept was introduced by Kroemer in “Ergonomics: How to Design

for Ease & Efficiency.”  He compared human behavior to a tank of full of gas.  The gas

represented a person’s cognitive resources.  The amount of cognitive resources available

is finite.  Thus without enough gas certain tasks cannot be completed.  Kroemer was

interested in extending the model of basic human information processing to account for

times of stress or overload.  Where Kroemer was interested in modeling periods of task

demand exceeding available resources in human behavior, the design-to-time research

and the AMSIA research were concerned with the same conditions for real time

computing systems.  Although Kroemer and Neisser may not have used computer science

terminology in describing their work, they too were conducting research in the field of

real time computing.

Similarities are also found in how these three systems, as well as this research, act

under conditions of extreme duress.  Since there exist only a finite amount of resources, a

prioritizing of tasks must occur to determine which are executed and which are not.  The

human subconscious performs this prioritizing automatically.  It can instantly assign an
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importance to any bodily function allowing the brain to process only those tasks that are

relevant to escaping the current danger.  For example, when a person encounters a

situation that is extremely life threatening (trapped in a fire, encountering a vicious

animal) the brain immediately shuts down those bodily functions not necessary in

responding to the current situation; digestion is just one example.  Other functions may

just have the portion of allocated resources decreased and continue operating in a

diminished fashion.  Real-time computing systems also have the ability to shed tasks

completely or, through approximate processing, achieve the best possible partial results

with reduced computational time in an attempt to reduce resource overload.  The

objective is to modify the set of tasks in such a way that the total demand of the tasks is

now lower or equal to the amount of resources, allowing the system to continue

functioning.  To this end, the concept of importance, when applied to a task, is a key

component in real time computing.

The correlations between real time computing research and human cognition

offered in this section illustrate the importance of this body of work to Human-Cognitive

modeling with computers and artificial intelligence.  Viewing the human body as a

RTMAS can provide real-time computing researchers with a very powerful model and a

set of solutions for problems that are currently being tackled in computer science.  Thus

the heuristic developed here can prove beneficial not only to the field of traditional real-

time computing, but also to the field of artificial intelligence and robotics.



19

5.0 Quality

Quality is a very difficult term to quantify, especially in computer science. The

difficulty lies in the inherent subjectivity of its application.  An item or action may be of a

high quality to person A but of a very low quality to person B based solely upon

personality and taste.  How can one define a universal metric that would allow an

objective comparison to be made between the qualities of two solutions?  The term

“quality” is defined for this paper as the variance between the returned result and the

optimal result for a given task or problem.  This research is not concerned with defining

an “optimal result”.  This is a very case-specific definition. For example, when doing a

search on Altavista an optimal result can be defined as all links returned having a 90% or

higher accuracy ratio with the entered query.  When one is checking stock quotes online,

the optimal result may be defined as all quotes being no more than one minute old. These

optimal results are very specific to the requests and reject universal classification.  Either

the developer or system administrator must define them.

The scheduling algorithm we have developed is dependent upon the system’s ability

to quantify the result of a task and to compare the “quality” of the results for any two

tasks.  With the notion of a pre-defined “optimal result” for a problem, the variance

between the actual result and the optimal result can be used as an objective metric to

statistically compare the quality of different methods.  It can also be used to analytically

compare the quality of different results. Thus a search on Altavista with a 75% accuracy

ratio (optimal result is 90%) has a variance of 17% where quotes delayed for two minutes

(optimal result is one minute) would have a variance of 50%.  It is important to note that



20

it is now the “optimal result” that embodies the subjectivity. An optimal result for a

specific problem could vary from system to system.

6.0 System Models

6.1 Real-Time Agent Model

This section offers formal descriptions of both the Real-Time Agent model and

the model for Real-Time Scheduling with Load Reduction.  An example agent labeled

“StockAgent” is used to motivate the explanations.  The “StockAgent” is an agent

designed to provide useful information to an investor regarding their portfolio such as

current quotes or market trends.

RTagent  =  {S1, S2, …, Sn}

A RTagent is comprised of a set of solvables {S1,S2,…,Sn}.  A solvable is a problem

that the agent is programmed with the ability to solve.  A particular agent theoretically

may have any number of solvables, although from a design perspective an agent’s

purpose should be focused and it solvables should be related.  An agent should not

contain a solvable for filtering data and calculating the y intercept of a function.

Solvable (S)  = <O, ES >

For every solvable an optimal result  (O) must be defined.  The optimal result for a

solvable may vary from environment to environment depending upon the developer, the
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user, and the intended use of the agent.  This is an objective, system specific definition of

what is considered to be the absolute best result for this problem.  Given a solvable that

returns the price of an item at various retail stores, the optimal result could be determined

as returning the prices from at least ten different stores.   The optimal result for a solvable

that returns the position of objects in an environment could be the location of all objects

with a 5mm variance.  The optimal result is used to calculate the quality of an execution

strategy.  ES = {es1, es2, …, esn}  In addition, a solvable is comprised of a set of

execution strategies (ES).

Execution strategy (es) = <ex, q, tv>

An execution strategy (es) is a method or algorithm for computing a solution to the

problem defined by the solvable.  An execution strategy is comprised of three elements.

The execution time (ex) is how long it takes a strategy to run.  This time can vary from

machine to machine due to available resources, hardware, or network congestion, so it

must be set specific to each environment.  The level of quality (q) is a rating of the result

of an execution strategy.  Quality is calculated as a percentage of the optimal result such

that q = (strategy result / optimal result).  This definition for quality is conditional upon

the ability to quantify the result of a task.  For example, if the optimal result is pricing of

a particular Sony television from ten stores, and a strategy is only able to return prices

from seven stores, then the quality for this strategy is 70.1  The last component of an

execution strategy is the tradeoff value (tv).  The tradeoff value is defined as the change

                                                
1 A slightly different approach is necessary for tasks where the optimal result is lower than the results of the
execution strategies.  If the optimal result is a 5 second delay on stock quotes, what are the qualities of
execution strategies that return 10 or 20 second delayed quotes?  In this case all results should be 1/time.
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in quality of two execution strategies divided by the change in time.  More precisely, for

any esi:

tvi = 
1

1

+

+

−

−

exex

q

qq

i

i

ii

For the execution strategy with the least execution time the tradeoff value is undefined.

Our scheduling heuristic uses the tradeoff value to determine a prioritized ordering of

tasks that are candidates for reduction.  Thus for the “StockAgent” we have:

Get_Quote2: As the name states, when called this solvable returns the current stock price

for the user’s portfolio or may be used to obtain a quote for a specific stock.  The

Get_Quote solvable has an optimal result (GQ-O) and two execution strategies for

obtaining stock quotes:

GQ-O:  An up to the minute quote for the specified stock symbol.

GQ-es1:  The agent can access a premium service with up to the minute quotes.

There is a higher overhead in time for performing such a transaction due to the

authentication needed to access the service.

GQ-es2:  Using a public server this execution strategy can receive specific stock

quotes that are delayed by 20 minutes.

                                                                                                                                                
Thus a 5 sec delay is .2, 10 is .1, 20 is .05.  Thus a delay that is twice as long as the optimal result is now
calculates to a quality of 50 percent three times as long is 30 percent, etc.
2 Note that all execution strategies are listed in decreasing order of execution time.
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Advise2:  This solvable is a bit more advanced.  The agent is constantly collecting and

monitoring various pieces of financial information, both long and short term (i.e. S&P

Index, Dow Jones Average, Nasdaq Average, interest rates, beta values, yields of bonds,

GNP, engulfing patterns, etc.)  Based on a wide range of information, statistical

computations and calculated correlations the agent acts as a broker, dispensing financial

advice.  It can estimate the expected return and growth of a portfolio or provide buy/sell

with varying levels of confidence.  The Advise solvable has three execution strategies for

dispensing stock advice:

AD-O:  The optimal result provides advice using all available information.

AD-es1:  Provide recommendations and analysis surveying all available

information.

AD-es2:  Provide recommendations and analysis surveying all data in only the

most influential data sets such as beta values, the Dow Jones average, and trends

in interest rates.

AD-es3:  Provide recommendations and analysis surveying only half the data in

the most influential data sets.

For the “StockAgent” solvable Advise, the optimal result is defined as a result

with a 99% confidence interval calculated using all available information.  Execution

times would be obtained from a statistical average of the results from executing the

strategy some statistically significant number times or simply could be equal to the worst-

case execution time.  Thus for the three execution strategies:
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Optimal Result = 99% confidence interval using all available information

Execution Strategy Execution time (ex)3 Quality (q)4 Tradeoff value (tv)

AD-es1 7ms 95 .0789

AD-es2 5ms 80 .0833

AD-es3 2ms 60 ∞ - undefined

Table 3: Example tradeoff values.

Finally for the “StockAgent” we have:

ESstockagent = {Get_Quote , Advise }

GQ-es1 = <ex1GetQuote, q1GetQuote, tv1GetQuote >

The set of execution strategies for a solvable S can be referred to as ESS .  The

components of an execution strategy esi ∈ ESS can be referenced as exis, qis, tvis.

6.2 Scheduling under Load Reduction

This section provides definitions and requirements for a system that utilizes a

load-reduction scheduling algorithm.  When a client makes a request, the scheduler

processes the request and checks its schedulability.  If the task is schedulable, the request

is sent to the server, otherwise the scheduling service attempts to reduce the load on the

system.  If the task is still not schedulable after the load reduction, then an exception is

raised informing the client of the reason for the task not being executed.

                                                
3 These values do not represent real calculations
4 These values do not represent real calculations
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6.2.1 Definitions

• Request (R) = <A, V, I, D, H>

A is the name of the agent upon which the request is being made.  The variable V

represents the name of the solvable that is being requested.  I is the importance of

the request.  It is conceivable for some systems that the client may not be able to

provide the importance of its request.  This value could be set by the application

depending on the type of request or the requestor.  D represents the deadline of

the request.  An answer must be returned to the client before this time.  Lastly, the

variable H represents the quality threshold of the request.  A solution with a

quality below this value is of no use to the client.

• Currently Scheduled Tasks (T) = {t1, t2, …, tm}

• Scheduled Task (ti ) = < A, V, I, D, H, CE, RE, C>

A, V, I, D, H – the specifications of the request (R) as defined above

C : The cost of a task is a calculated value to determine the relative “cost” to the

     system of reducing the quality of the task (by choosing the execution strategy

     with the next fastest execution time).  Cost is defined as the current execution

     strategy’s tradeoff value (tv) times the importance (I) of the task.  If the current

     execution strategy has the lowest execution of all strategies for a solvable, then

      the cost is set to ∞.  Refer to section 6.2.4 for further information regarding a

      task’s cost.
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CE – the current execution time of the solvable.  Execution strategies are

         referenced by their execution times rather than string identifiers like the

        agent and solvable names.

RE - the remaining execution time of the task.  This attribute is necessary for

        tasks that are pre-empted.

• Scheduler

The scheduler is an object that receives client requests and makes decisions based on

the various characteristics of a task.  The scheduler has a number of responsibilities

including task creation, schedulability analysis, calling the heuristic, and exception

handling.

6.2.2 Scheduling

This section describes the scheduling algorithm in detail.  Scheduling starts when

a client makes a new request Rc = <Ak, Vk,j, Ic, Dc, Hc> for the solvable Vk,j in Agent Ak.

The request is received by the scheduler and the task tm+1 = <Ak, Vk,j, Ic, Dc, Hc, CEk,j,1,

REc, Ck > is created.  Note that there are m tasks already scheduled before the request is

made.  The current execution time (CE) defaults to the execution time of the execution

strategy with the highest quality.  Ideally, one hopes the task can be scheduled at this

quality.  Lower quality strategies are only considered during periods of overload.  The

remaining execution time (RE) is equal to the current execution time (CE) since the task

has not yet begun executing.  Task tm+1 is then added to the set of currently scheduled

tasks T.  Next the scheduler performs an EDF schedulability analysis on all tasks in T.  If

all the tasks are schedulable, then the client is notified that the request is schedulable and
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is sent a priority and an identifier for the request.  The client then passes these as

arguments in the call to the agent.  If the set T is not schedulable, then the load reduction

heuristic is performed.  Copies of the tasks in set T are stored by deadline in a sorted list

for the schedulability analysis.  The schedulability analysis also determines a list of tasks

that are candidates for reduction (RC).  Note that the list of candidates is most often a

small segment of the larger list of all tasks in the system.  The heuristic is performed on

this list of candidates.  This allows the heuristic to make any changes necessary for

analysis while maintaining the integrity of set T.

6.2.3 Selection of Reduction Candidates

The EDF schedulability analysis uses a task’s deadline, a task’s remaining

execution time, and the time the schedulability analysis begins to determine if a set of

tasks is schedulable.  Starting at the head of the list, every task in the deadline-prioritized

list is visited.  Two temporary variables are used named TotalEx and TimeToEx.  The

value of TotalExi is the total amount of time necessary to execute all the tasks up to and

including ti.  The value of TimeToExi is the amount of time available to execute all the

tasks up to and including ti, such that the tasks t0 to ti will meet their deadlines.  When the

ith task is visited, the sum of its remaining execution time and its blocking time are added

to TotalExi (blocking time is assumed to be zero throughout this research and is only

discussed in Section 9.2 Future Work and Extensions).   The variable TimeToExi is

assigned the difference between the start time of the analysis and the deadline of the ith

task ti.  More precisely:
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TotalExi = ∑
=

i

k 0

(remaining execution time of tk + blocking time of tk)

    TimeToExi = start of sched analysis – deadline of ti

If for some ti, TotalExi is greater than TimeToExi, then ti will not meet its deadline.  In

stricter terms, the non-schedulability condition for a task ti is:

TotalExi  >  TimeToExi

A pointer named EndOfList is then set to ti.  The analysis continues until all the tasks in

the list have been visited.  If it is determined that some task ti+j will also miss its deadline,

then EndofList is reset to point to ti+j.  The pointer EndofList is then passed to the

heuristic.  The amount of time that must be freed to make the set of tasks schedulable is

also passed to the heuristic.  This value is calculated as:

TimeNeeded = TotalExEndOfList  -  TimeToExEndOfList

In turn, the heuristic creates a local list that contains copies of all the tasks in the

schedulability analyzer’s list, up to and including the task pointed to by EndOfList.  Thus,

the list maintained by the heuristic is simply a sub-list of the one used for the

schedulability analysis.  It is critical that the schedulability analysis visit all the tasks

before any call to the heuristic is made.  This reduces the number of calls made to the

heuristic for a given set of tasks when multiple tasks will miss their deadlines.  For

example, assume a set of tasks T = {t0 … t7}.  The task t6 will miss its deadline by 7

seconds and t7 will miss its deadline by 10 seconds.  Imagine the heuristic was called as
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soon as it was discovered that t6 would miss its deadline.  If a solution exists so that the

first six tasks are schedulable, there is no guarantee this solution frees enough time to

allow t7 to meet its deadline as well.  The heuristic must be called again to find a suitable

solution that allows all the tasks to meet their deadlines.  If the schedulability analysis

had visited all the tasks before calling the heuristic, the decision as to whether set T was

schedulable could be made with one call to the heuristic (versus one call per task that will

miss its deadline).  Additionally, what if there does not exist a solution that allows all the

tasks to be scheduled?  Then the call to the heuristic for tasks 0 through 6 was made in

vain.  Processing time is a scarce commodity that cannot be wasted in a real time system,

especially during the times of resource overload for which the heuristic is designed.

6.2.4 Cost

The concept of a task’s cost is a critical part of how the heuristic performs load

reduction.  While the tradeoff value measures the relative reduction in quality from

executing the next fastest strategy, cost is a heuristically driven value that measures the

reduction in the overall system quality.  The cost of a task is directly proportional to its

importance.  Reducing or shedding a task of high importance is more detrimental to the

system than reducing a task of lesser importance.  This stems directly from the definition

of importance.  The term importance implies a value judgment of the superior worth or

influence of something or someone.  Thus, altering the state of an entity with a high

importance will have a greater negative impact on the environment than altering an entity

of low importance.
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The cost of reducing a task is calculated by multiplying the task’s tradeoff value

times the task’s importance.  In this way, tasks with equivalent costs are then prioritized

by their importance.  Since our goal is to develop a system that maximizes quality, under

ideal conditions the heuristic can find a valid schedule by only reducing low importance

tasks with a low tradeoff value.  The tradeoff value measures the precise amount of

quality lost, while the importance of a task calculates the impact on the system of that

quality loss.

6.2.5 Load Reduction Heuristic

This section is dedicated to explaining the heuristic.  It begins with a brief

summary as to how the heuristic works, followed by the pseudo code for the heuristic and

a detailed explanation of the code.

The heuristic takes a pointer to a node (task) in the schedulability analyzer’s list.

It makes a copy of that node and traverses the list backwards making copies of all the

tasks previous to the task to which the pointer points.  This local list is then sorted by

each task’s cost.

The heuristic attempts to reduce the task with the lowest cost.  If possible, it does so,

and recalculates the time needed.  If not enough time has been freed, the cost of the

reduced task is recalculated and the list is resorted.  If the recalculation of the time

needed equals zero, the task is schedulable and the heuristic stops executing.

Alternatively, the heuristic ceases execution if the cost of the lowest cost task is infinity.

A cost of infinity means that the current execution strategy for a task is that agent’s

fastest strategy for the given solvable.  Such a task is only seen when the cost of every
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task is infinity and indicates that no further reduction is possible.  If enough time can be

freed through load reduction, then a pointer to the heuristic’s list is returned to the

schedulability analysis.  The execution strategies of the corresponding tasks used by the

schedulability analysis are then updated to achieve schedulability.

1) //Copy nodes from list pointed to by ptr into local list

2) Copy(ptr from argument list);

3) //Sort list of reduction candidates (RC) by their cost (C) in descending

//order.

4) Sort ( );

5) TimeNeeded = CalcTimeNeeded();

6) temp_ptr = first task in list; //the task with the lowest cost

7) 

8) while (temp_ptr->Cost ! =  ∞ && TimeNeeded > 0)

9) {

10) //if quality of next execution strategy is < quality threshold of the

11) //task.

12) if  (temp_ptr->next quality (Q) < temp_ptr->quality threshold (H) )

13)    action = 1;

14) else

15) {

16)    //if execution time of next execution strategy is < remaining

17)    //execution time of the current task, time can be freed by altering

18)    //the execution strategy.
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19)    if  (temp_ptr->next_es.execution time < RE )

20)      action = 2;

21)    else

22)    {

23)      //check the execution times of other execution strategies

24)      if  (temp_ptr->some_es.execution time < RE)

25)         action = 2;

26)     else

27)         action = 1;

28)    }// end else

29) 

30) switch(action)

31)  {

32)    case 1: temp_ptr->cost =  ∞;

33)                temp_ptr = temp_ptr->next;  goto 12;

34)                break;

35)    case 2: int NewEt = temp_ptr->new_exec_time;

36)                temp_ptr  = new task <S, I, D, H, NewEt, REnew,Costrecalc >;

37)               // REnew = CEleast+1

38)               TimeNeeded =  CalculateTimeNeeded();

39)               break;

40)   }  //end switch

41) 

42)  Sort( );
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43)  temp_ptr = first task in list; //the task with the lowest cost.

44) } //end while loop

45) 

46) if  (TimeNeeded <= 0)

47)    return (pointer to local list);  //set of tasks in now schedulable.

48) else

49)    return NULL; //task is not schedulable.  Exception raised to client

Figure 3: Heuristic pseudo code.

The heuristic detailed above is a more general, more readable version of the

implemented heuristic.  To start, the list of reduction candidates is copied and sorted by

cost (C), the variable TimeNeeded is set, and the temporary pointer is set to the head of

the list (lines 1-6).  The variable temp_ptr always points to the reduction candidate with

the lowest cost.  When a node is visited one of two conditions is checked.  The first

condition is whether or not reducing the task will violate the quality threshold specified

by the client (line 12).  If this is the case the cost of the task is set to infinity (line 32)

because this task is not reducible.  The heuristic moves to the next task (line 33) and

begins again.  If the quality threshold is not violated then the remaining execution time of

the task is checked.  The remaining execution time needs to be less than the execution

time of the next strategy (line 19) for reduction to occur.  The only time this is not the

case is if the task to be reduced has already been partially executed.  If the task can be

reduced then the execution time is changed, the current execution time (CE) is updated,

and the remaining execution time (RE) is set equal to CE (lines 35-37).  The cost (C) of

reducing the task is recalculated using the tradeoff value for the new execution strategy.

TimeNeeded is then reset to the new amount of time that must be freed (line 38).  This is
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done by setting TimeNeeded to the return value of CalcTimeNeeded.  CalcTimeNeeded

starts at the beginning of the list calculating the amount of time it will take to execute

every task at its current execution strategy.  It returns the difference between this value

and the amount of time available for the tasks to execute plus an estimate of the running

time for the heuristic.

The list of candidates is then resorted (line 42), and the temporary pointer is reset

to the new head of the list (line 43), which is the new least-cost node.  If the remaining

execution time is greater than the next execution strategy, the heuristic searches for an

execution strategy with an execution time that is less than the task’s remaining execution

time (line 24).  If such an execution strategy is found the appropriate changes are made

(lines 35-37).  Otherwise, the task should no longer be considered for reduction.

Therefore the cost is set to infinity (line 32).

When the while loop finishes executing, the value of TimeNeeded is checked

(line 46).  If enough time has been freed, the heuristic returns a pointer to the head of its

list so the schedulability analysis can update its tasks with the new execution times

(line 47).  Otherwise, NULL is returned to indicate the failure of the heuristic to

determine a schedulable solution (line 49).

7.0 System Implementation

The scheduling algorithm described in Section 6 is implemented as a scheduling

service that is part of a Real-Time Multi-Agent System prototype being developed at

URI.  This prototype is based on the RTMAS architecture depicted in Figure 3 as well as
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other ongoing real-time dynamic scheduling work at URI.  This research is the

preliminary portion of the RT Agent Scheduling section of Figure 3 below.   Section 7.2

describes in detail how the real-time agent scheduling algorithm from Section 6 is

implemented.  Section 7.3 defines a RT CORBA architecture and implementation for

dynamic scheduling.  It also describes the interface for the scheduling service that has

been implemented for a RTMAS and the interface for the scheduling service for real-time

systems used in previous URI research.  The RTMAS scheduling service is an extension

of the more generic real-time scheduling service for systems without software agents.

Figure 3: RTMAS architecture.

7.1 Determining the Correct Execution Strategy

This section explains how an agent knows which execution strategy to use for a

call to one of its solvables.  The following two sections will be easier to understand
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provided this information.  An agent is implemented as an object with its solvables being

methods of the object.  When the scheduling service determines that a client’s request is

schedulable, it passes back to the client the unique task identifier and an operating system

priority at which the request will execute.  The execution time associated with this task

identifier is used to determine which execution strategy should be used.  It is passed as a

parameter in the client’s call to the solvable.  The agent’s first action is to pass this

identifier to the scheduling service and receive the execution time for the task.

Each solvable is implemented as a case-switch statement.  The execution time that

is returned to a solvable is used as the switch variable.  The case statements execute a call

to the execution strategy that has an execution time equal to the execution time received

from the scheduling service.  An example will help further to illustrate the process.

Client A sends a request for the Get_Quote solvable of the “StockAgent” defined

in Section 6.1, to the scheduling service.  This request is determined to be schedulable.

The scheduling service returns a task identifier x to the client along with a priority p.  The

client then makes the call to the agent, passing x and p as a parameters.  The solvable then

passes x back to the scheduling service to receive the execution time et.  The case

statement that corresponds to the value of et is then executed in a thread running at

priority p; specifically, a call to the execution strategy with an execution time of et is

made.  Note that depending upon a task’s priority, a significant amount of processing

time may elapse between the call to the solvable and the execution of the solvable.  It is

during this time that the heuristic may have reduced the tasks execution time.  Thus, the

decision as to which execution strategy to execute must be determined at the time of a

solvable’s execution.
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7.2 RTMAS Scheduling Service Implementation

This section is dedicated to explaining in greater detail the workings of the

RTMAS scheduling service.  Figure 4 illustrates the interface of a scheduling service

object as part of the research being conducted by the Real-Time Research Group at the

University of Rhode Island.  Figure 5 illustrates the interface for the derived scheduling

service class used in the implementation of this research.  Clients make requests by

calling the AddTask method; agents advertise (register) with the scheduling service

through the AgentAdvert method.

An agent is responsible for bundling all of its characteristics in an object that is a

sub-class of the Node base-class.  The Node class is an abstract class that defines the

functionality common to all linked list elements in this implementation.  The agent then

passes only a pointer of type Node to the AgentAdvert function.  Thus, if the agent

characteristics that must be advertised change, the prototype of the AgentAdvert function

is not affected.  The Node pointer is then added to the Agent Registry, which is

implemented as a linked list.  The comments below the function in Figure 5 describe the

members of the object currently passed to AgentAdvert.  The function returns one (zero)

if the insertion was completed successfully (unsuccessfully).

The AddTask function is designed in the same way as AgentAdvert.  Again, the

comments below the function describe in detail the members of the function parameter.

When AddTask is called, the Agent Registry is immediately checked to ensure the

“agent name-solvable name” pair is valid.  If the pair is not valid, the function returns

zero.  A return value of zero raises an “invalid agent-solvable pair” exception to the
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client.  Next, the quality threshold of the request is validated.  If the solvable does not

have an execution strategy with a quality that satisfies the quality threshold indicated,

then –1 is returned indicating a “threshold not met” exception, along with the highest

quality the agent can provide.

Only after these two conditions are met is a new task created and added to the

linked list GlobalTable.  GlobalTable stores all the tasks in the system along with any

information pertaining to a task such as the task id and deadline.  The schedulability

analysis object Analyzer is a derived class of LinkedList.  A node in Analyzer merely

contains a pointer to an entry in GlobalTable and an execution time indicating the current

execution strategy chosen for this task.  The nodes are sorted by deadline for the EDF

analysis using the pointer to the GlobalTable node.  The schedulability of the system is

now checked, since the new request has been added, by a call to CheckSched in Analyzer.

If the set of tasks is schedulable, an operating system priority and a task identifier are

returned to the client, which are then passed as parameters in the call to the agent’s

solvable.  A task’s initial execution strategy is set to the strategy with the highest quality.

If the schedulability analysis fails, then the heuristic is performed by a call to the heuristic

object LoadReducer.  If a satisfiable solution is not found, LoadReducer returns false and

a “not schedulable” exception is raised with the client (AddTask returns three).  In

addition, the task is removed from GobalTable and the list of tasks used for the

schedulability analysis.  If the heuristic is successful, the flow of execution is the same as

if the task were initially schedulable.

class SchedulingService  {
  public:

SchedulingService();
virtual ~SchedulingService();
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int AddTask(Node*);
      //int deadline, int importance, int threshold,

  protected:
      LinkedList     GlobalTable;
      SchedAnalysis  Analyzer;
};

Figure 4: IDL for the abstract scheduling service class.

class RTMAS_SchedulingService : public SchedulingService {
  public:

RTMAS_SchedulingService();
virtual ~RTMAS_SchedulingService();

int AddTask(Node*);
      //int deadline, int importance, int threshold,
      //char* agent_name, char* solvable_name

int AgentAdvert(Node*);
      //char* agent_name, char* solvable_name, LinkedList ExecStrats
      //a node in the execstrat list contains a tradeoff value (int),
      //a quality (int), and an execution time (int).  

  protected:
      // LinkedList     GlobalTable; **Inherited**
      // SchedAnalysis  Analyzer;    **Inherited**

      Heuristic      LoadReducer;
      LinkedList     AgentRegistry;

};

Figure 5: Scheduling service IDL for RTMAS.

7.3 RT CORBA Architecture and Implementation

This body of work is part of a larger initiative by the URI Real-Time Research

Group to develop a scheduling service for RT CORBA ORBs.  Figure 6 below illustrates

the basic system architecture of the RTMAS.  The Scheduling Service has been designed

as a CORBA object that receives all client requests.  First, all agents must register with
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the scheduling service (1) as described in the previous section.  Clients can make requests

to all agents that have advertise with the scheduling service(2).  If a request is found

schedulable, the client receives a priority and a task identifier from the scheduling service

(3), otherwise the heuristic called (4).  Once a client has received a priority and a task id,

it then proceeds to make a RT CORBA method call to the server side agent (5).  If a task

is not schedulable, then an exception is raised with client.

RT Agent
Scheduling Service

Client

Heuristic
(plug-in module)

1

2

3

4

5

Agent registers

Request task

Load reduction (if necessary)                                   

Assign priority 
& task id

Call         
agent task

Schedulability
Analyzer

RT Agent
(CORBA object)

Execution strategies

solvable

Figure 6: System architecture.

The RTMAS heuristic described in the previous section is designed to “plug in”

to the scheduling service.  It is one of a few such modules that are currently being

developed within the URI RT research group.

There is one significant difference between the RT CORBA implementation and

the implementation used for testing.  Presently, when a solvable is executing, there is no
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way to change the execution strategy being run.  Significant work must be done to ensure

that the precise remaining execution time of any task is always known for such a feature

to be beneficial (for the current implementation the remaining execution time of a task is

always equal to the initial execution time of that task).  This functionality will be added

through the use of signal handlers.

The future implementation in RT CORBA will also differ slightly in the

assignment of priorities.  Priority assignment for the current implementation is described

in greater detail in Section 8.  All testing was conducted using Linux, which only allows

priorities to be set in the range of 1-99.  There are a significantly greater number of RT

CORBA priorities.  Thus a mapping scheme will need to be developed for the RT

CORBA system to run under Linux.  The same is true of Solaris, which allows the user to

set a task’s priority in the range of 1-59.

The combination of a small range of priorities and the fact that these priorities are

static allow only tasks with one of 99 distinct deadlines to be handled by the scheduler

concurrently.  Note that there can be any number of tasks assigned a specific priority.  A

greater detailing of the problem and a proposed solution are presented in Section 8 with

the explanation of the test bed.

8.0 Results

This section details the tests that were performed and their results.  A driver was

designed to simulate client requests.  In addition a randomizer was developed to

randomly generate all the values of a request: deadline, quality threshold, importance,

agent name and solvable name.  In addition, the randomizer generates characteristics for
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the randomly generated agents.  The agent name, solvable name, quality of the execution

strategies, and the execution times of the agents are all determined and set by the

randomizer.  A slightly different class was designed for the three different types of

agents.  All were derived from an Agent base class.  There are three types of agents, each

differing only by the number of execution strategies they provide.  Every agent has only

one solvable with two, three, or four execution strategies.  As mentioned earlier, the

execution times and the qualities are randomly generated and are set using accessor

functions of the agent objects.  The range of the randomized values differs depending on

the test and are defined in the next section.

A total of forty-five agents are created with fifteen agents created for each type.

Once all the agents are created, they register with the scheduling service.  Once the agent

registering is complete, the driver begins to create requests.  Two command line options

are provided.  The first indicates the type of scheduling algorithm that should be used:

Earliest Deadline First, Admission Control, or the Load Reduction Heuristic with an EDF

schedulability analysis.  For Admission Control, an EDF schedulability analysis is

performed to determine if a request is scheduled.  If it is not schedulable, the task is not

executed and an exception is raised with the client.  The second command line parameter

indicates the number of requests to be made.

If a task is found to be schedulable, the priority and task id returned by the

scheduling service is captured.  The driver then spawns a thread at the given priority that

executes the call to the scheduled task’s solvable.  Finally, after all requests have been

processed and all scheduled tasks have been executed, the driver writes the results to file.



43

All the tests were run on Dell Pentium II 350 MHz machine running Red Hat

Linux release 5.2 (kernel 2.0.35).   The scheduling was implemented with the

sched_setscheduler method, which is part of sched.h (exhaustive information can be

found in the Linux programmer’s manual).  The user is provided with two real-time

scheduling alternatives to the default policy: SCHED_FIFO and SCHED_RR.  The driver

spawns threads using the SCHED_FIFO scheduling algorithm because it does not use

time slicing; thus it is the only algorithm of the two that allows the user to run processes

following EDF.

A thread can be assigned a priority in the range of 1 – 99.  Any number of threads

can be given the same priority.  As stated above, threads of the same priority execute in a

first-in first-out order.  Tasks are assigned a priority using the task’s deadline and the

time the driver begins.  The difference between the tasks deadline and the system start

time is subtracted from 99 to determine a task’s priority.  For example, if the system

begins at 962457703 (seconds since 00:00:00 UTC, January 1, 1970) and a tasks deadline

is 962457717, the task is assigned a priority of 85 (99 – 14).  Unfortunately, tasks must

be assigned static priorities.  Therefore, the system encounters a problem when a task

with a deadline greater than or equal to 99 seconds after the system start time needs to be

executed.  Priorities below one are not allowed and setting the priority to anything higher

will violate EDF, since any tasks with deadlines earlier will be preempted.  Therefore

when the system has been operating for 99 seconds, tasks are not immediately spawned

as threads once they are determined schedulable.  Rather, the tasks are queued.  When the

last thread of priority 1 has been executed, the queued tasks are assigned priorities and

executed.  The priority assignment begins again from 99.  The system knows the start
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time, execution time, and therefore the expected completion time of each task.  Thus, it is

able to track when the priority assignment and execution of the queued tasks should

begin.  This is not a problem with systems that allow for dynamic priority setting.  For

dynamic priorities, the concept of “priority aging”[9] can be applied.  The URI Real-

Time Research Group developed the concept of priority aging which assigns a dynamic

priority based upon how long a task has been in the system.

8.1 Tests

In all there were six different test suites.  For the Baseline, Short Deadline, and

Long Deadline suites, there are three different tests, each one utilizing a different

scheduling algorithm: EDF, Admission Control, or RTMAS Heuristic.  For EDF,

requests were not checked to be schedulable before being assigned a priority and

executed.  They were simply executed.  Admission Control performed an EDF

schedulability analysis for each request.  If a request was determined to not be

schedulable it was not executed.  The heuristic also performed an EDF schedulability

analysis for each request.  The difference being that for non-schedulable requests, the

heuristic attempts to make the task schedulable through load reduction.  If the request

was found to still not be schedulable it was not executed.  Each of the three scheduling

algorithms was tested with twenty, forty, and sixty requests.  Table 4 through Table 6

show the range of values randomly generated for each test suite.

The other three suites were designed to test the effect of the number of execution

strategies defined for a solvable.  They each used the same randomly generated values

listed in Table 4.  All the agents used in each suite had the same number of execution
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strategies per solvable.  One suite utilized agents with only two execution strategies per

solvable, another utilized agents with only three execution strategies, and the last only

agents with four execution strategies.

For all tests, the estimated processing time of the heuristic was set to two seconds.

This amount of time was used by the heuristic when it calculated how much time must be

freed to obtain a schedulable set of tasks.  The overhead of the heuristic ranges from 20%

to 100% of a task’s execution, depending on the current execution time of the task to be

scheduled.

Randomly Generated
Value

Low High

Deadline of request5 2 10

Importance of request 1 10

Quality threshold of request 50 90

Execution times of
execution strategies

1 10

Quality of execution strategies 70 100

Table 4: Values for “Baseline Suite” and the “Execution Strategy Suite.”

Randomly Generated
Value

Low High

Deadline of request5 1 3

Importance of request 1 10

Quality threshold of request 50 90

Execution times of
execution strategies

1 10

                                                
5Deadline = Chart Value + Time Request Made + Longest Execution Time of Solvable
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Quality of execution strategies 70 100

Table 5: Values for the “Short Deadline Suite.”

Randomly Generated
Value

Low High

Deadline of request5 10 15

Importance of request 1 10

Quality threshold of request 50 90

Execution times of
execution strategies

1 10

Quality of execution strategies 70 100

Table 6: Values for the “Long Deadline Suite.”

8.2 Test Results

8.2.1 Made Deadlines

The primary metric used for comparing the performance of the three scheduling

algorithms is the number of made deadlines.  Figures 7, 8, and 9 plot the total number of

executed tasks that met their deadlines.  The tests were designed to simulate periods of

extremely high resource contention.  It is plain to see that scheduling with our heuristic

allows a significantly greater number of tasks to execute.  Also notice that as the number

of requests increases, the difference between the number of successfully executed tasks
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using the heuristic and the number of successfully executed tasks using admission control

also increases.  The slope for the heuristic’s results is always greater than the slope of the

plotted results for admission control, regardless of the length of the deadlines.  It is not

surprising to see such a low value for EDF since the algorithm is known to perform very

poorly in periods of high duress.
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Figure 7: Comparison of Successfully Completed Tasks for Baseline Suite.
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Figure 9: Comparison of Successfully Completed Tasks for Long Deadline Suite.

8.2.2 Effect of Deadline Length on Heuristic Performance

Figure 10 compares the performance of the heuristic for different deadline

lengths.  The length of the deadlines had a nearly negligible effect upon the total number

of successfully executed tasks for the heuristic and admission control.  EDF was able to

schedule one additional task, for a total of two, when all tasks had long deadlines.

On average, for a set of requests with very long deadlines, our heuristic will be

able to successfully schedule 1.3 more tasks than if the same set were comprised of

requests with very short deadlines.  Such a tight variance indicates that quality threshold

is a significant contributing factor of the number tasks that meet their deadlines.  Twenty

tasks with long deadlines, as presented below, are easily schedulable if there exists no

limit to how low the quality of the tasks can be reduced.  All twenty tasks could
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theoretically be set to run at their lowest quality, and consequently, at very low execution

times.  This would allow nearly all, if not all, the tasks to be scheduled.  Yet, the quality

threshold of a task prohibits such an occurrence.  Even if all requests specify long

deadlines, when a system is flooded resource contention will occur.  If quality thresholds

are all very high, most of the benefit to schedulability from the long deadlines is lost.
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8.2.3 Average Quality

Figure 11 is very important, for it illustrates the sacrifice that must be made to

improve the number of schedulable tasks.  The results are the same regardless of the

length of the deadlines.   The average task quality is reduced 11% by our heuristic for an

approximate 50% increase over admission control in the number of successfully executed

tasks (refer to Figures 7 through 9). 
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8.2.4 Effect of Execution Strategy Quantity on Heuristic Performance

Figures 12 and 13 clearly show the correlation between the heuristic’s

performance and the number of execution strategies provided for each solvable.  The

number of scheduled tasks that meet their deadlines is directly proportional to the number

of execution strategies as illustrated by Figure 12.  For a given number of requests,

doubling the number of execution strategies doubles the percentage of made deadlines.

This effect can be diminished though if the quality of the execution strategies is relatively

low.  As discussed in Section 8.2.2, the performance of the heuristic is very sensitive to

the quality thresholds of the requests.  Secondary execution strategies of significantly low

quality reduce the positive effects of increasing the number of execution strategies by

inhibiting the number of reduction candidates.  Figure 13 illustrates the effect by focusing

on the percentage of the requests that are not schedulable.  Notice as the number of

execution strategies increase, the slope of the plotted values decreases.  Thus a system

comprised of agents with four execution strategies shows less of a performance decrease

as the number of requests increases versus systems of agents with fewer execution

strategies per solvable.
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8.2.5 Additional Heuristic Statistics

The tables in this section are for the Baseline suite.  The tables provide

approximate base averages for the percentage of successfully executed tasks, tasks

schedulable due to reduction, and tasks not scheduled.  These averages can be used as

reference points when trying to estimate the performance of other systems.  Thus, about

30% of all requests are schedulable and about 22% of those are due to the heuristic.

Approximately 65% of requests will not be schedulable during periods of high resource

contention.  Thus, from the previous section one can expect these percentages to increase

if the minimum number of execution strategies for a solvable is three or greater.  They

can be expected to decrease otherwise.

Number of Tasks Short Baseline Long

20 29% 31.6% 35.67%

40 29% 29.6% 30.67%

60 27.56% 28.69% 29.67%

Table 7: Percentage of Tasks Making Their Deadline

Number of Tasks Short Baseline Long

20 23.3% 22.3% 25%

40 25% 22.5% 24%

60 22.89% 21.6% 24.2%

Table 8: Percentage of Tasks Schedulable Due to the Heuristic
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Number of Tasks Short Baseline Long

20 65.67% 63% 59%

40 65.5% 65% 64%

60 67.2% 66.29% 65.11%

Table 9: Percentage of Tasks not Schedulable6

9.0 Conclusions

This chapter summarizes the completed research and then discusses some key

work to be done in the future.

9.1 Summary of Completed Work

While our research has answered many questions about real time scheduling with

agents, some areas need to be researched further.  It is important to formalize the research

that has been done to clearly see what has been accomplished and what is the best way to

proceed.  Therefore to summarize, we have achieved the following at the end of this

research:

1 Developed a model for Real-Time Agents.

2 Developed a heuristically driven scheduling algorithm that utilizes load reduction for

a Real-Time Multi-Agent System.

3 Implemented and tested the algorithm in a simulated environment.

                                                
6 Note:  Percentage of tasks not executed due to quality threshold are not shown.
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4  Substantiated the advantages and improved performance of such an algorithm over

other scheduling algorithms.

5 Isolated key elements that can improve or detract from the algorithm’s performance.

6 Developed benchmarks to help gauge the impact of future enhancements.

We were successful in achieving our goals as outlined in the introduction of this

paper.  The scheduling algorithm can provide CORBA developers the ability to schedule

agents within a real-time environment.  With the development of load reduction and the

load reduction heuristic, we have also developed a means improving performance under

periods of high resource contention.  Although efficient algorithms already exist to do

this, none are specifically designed with software agents in mind or to allow for load

reduction.  They are geared towards solving tradition problems in real-time scheduling

while we have focused our work on real-time scheduling for future technologies.

While more work around the topic still exists, our research has provided an important

foundation for future RTMAS research at URI.  In addition, it provides a strong model

for future work involving real time agents and a methodology for implementing load

reduction.
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9.2 Future Work and Extensions

All extensions and future work are listed below.

1 Blocking time

Blocking time will be added to the schedulability analysis.  The blocking

time of a task t is the amount of time left before which the task must start if it

will make its deadline.  The blocking time of a task t will be considered when

a schedulability analysis will be done.  In our implementation the blocking

time of a task was assumed to be zero for all tasks.

2 Remaining execution time

The remaining execution time was always equal to the initial execution

time.  Indeed, before a task starts this is true.  The remaining execution time

is no longer equal to task’s initial execution time when the task is preempted.

The remaining execution time of a preempted task is the difference between

its initial execution time and the amount of time it has already executed.  This

information will be used to determine of if it is quicker for a preempted task

to finish executing the strategy it has already partially processed, or if it

should start executing another strategy.  It is also necessary to make the

decision whether the currently executing task should be signaled to change

the execution strategy it is running.

3 Changing the execution strategy of currently executing task

To allow a currently executing agent to change its execution strategy, each

agent will define a signal handler function named StratCheck, of type void,
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that takes a single integer argument.  This function will retrieve the new

execution time from the scheduling service and execute a goto statement that

jumps to the beginning of the solvable function.  From this point a call to the

new execution strategy will be made.  Each execution strategy must define a

signal of the form signal(SIGALRM,  StratCheck).  When the scheduling

service updates the execution strategy for a task(s), it must set an alarm to

trigger the signal in the agent currently being executed.  The code would be

alarm(0) which causes the alarm clock to immediately go off and the signal

SIGALRM is generated. When the signal is generated, control flow is

switched from the execution strategy to the StratCheck function.

4 Schedulability Analysis determines critical points

The schedulability analysis will be enhanced to include the calculation of

the time to be freed.  This will help to improve the performance of the system

since this amount can be determined at the same time it is determined if the

set of tasks is schedulable.  It will also improve the complexity of the

heuristic by improving the time complexity of the calculation for the time

that must be freed.  Currently, the heuristic has a worst case time complexity

of O(nk), where k equals the average number of reductions possible per task.

This is very poor, but since the number of reduction candidates is generally

below ten and k is strictly less than or equal to four in all the tests, there

wasn’t any effect upon the system performance.  But these conditions cannot

be guaranteed (nor should they be).  Therefore the time complexity must be

improved.  By isolating critical points the complexity can be reduced to O(n).
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The schedulability analysis will be modified to isolate critical points in the

schedule.  A critical point is defined as a point in the schedule where a task

will miss its deadline.  For each critical point, an amount of time is assigned;

this is the amount of time that needs to be freed before the deadline of the

task at the critical point.  These critical points and their associated times will

be passed to the heuristic.

5 Different Calculation for Cost

The formula for a task’s cost could be changed to take into account other

variables or to improve the performance of the algorithm.  Currently, the cost

calculation does not take into consideration the total amount of time that a

reduction will free or the total amount of quality lost.  Only importance and

the percentage change in quality per time unit is used.  For two tasks with the

same costs, as defined within this paper, it may prove beneficial to always

reduce the task that frees the most absolute time, has the lowest absolute

reduction in quality, or some combination of both.

6 Alternative Base Scheduling Algorithm

It may prove beneficial to change the schedulability analysis to an

algorithm that behaves better during times of high resource contention.  For

example, an algorithm that uses time slicing where the time quantum is a

task’s deadline.  In this way, the foundation from which the load reduction

begins can schedule more tasks naturally, and thus be modified by the

heuristic to allow an even greater number of tasks to be scheduled.
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